1
|
Shang F, Lu Y, Li Y, Han B, Wei R, Liu S, Liu Y, Liu Y, Wang X. Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia. Genes (Basel) 2022; 13:genes13081347. [PMID: 36011255 PMCID: PMC9407616 DOI: 10.3390/genes13081347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is considered to be an extremely sensitive tissue to hypoxia, and the brain of fish plays an important role in regulating growth and adapting to environmental changes. As an important aquatic organism in northern China, the economic yield of Takifugu rubripes is deeply influenced by the oxygen content of seawater. In this regard, we performed RNA-seq analysis of T. rubripes brains under hypoxia and normoxia to reveal the expression patterns of genes involved in the hypoxic response and their enrichment of metabolic pathways. Studies have shown that carbohydrate, lipid and amino acid metabolism are significant pathways for the enrichment of differentially expressed genes (DEGs) and that DEGs are significantly upregulated in those pathways. In addition, some biological processes such as the immune system and signal transduction, where enrichment is not significant but important, are also discussed. Interestingly, the DEGs associated with those pathways were significantly downregulated or inhibited. The present study reveals the mechanism of hypoxia tolerance in T. rubripes at the transcriptional level and provides a useful resource for studying the energy metabolism mechanism of hypoxia response in this species.
Collapse
Affiliation(s)
- Fengqin Shang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
| | - Yun Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Yan Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Bing Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Renjie Wei
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Shengmei Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
| | - Ying Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (F.S.); (Y.L.); (Y.L.); (B.H.); (R.W.); (S.L.)
- Correspondence: (Y.L.); (X.W.)
| | - Xiuli Wang
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
- Correspondence: (Y.L.); (X.W.)
| |
Collapse
|
2
|
Campen KA, Lavallee M, Combelles CM. The impact of bisphenol S on bovine granulosa and theca cells. Reprod Domest Anim 2018; 53:450-457. [PMID: 29330967 PMCID: PMC5847463 DOI: 10.1111/rda.13130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Bisphenol S (BPS) is an endocrine-disrupting chemical with multiple potential mechanisms of action, including as an oestrogen receptor agonist. BPS is increasingly used in plastics and thermal receipts as a substitute for bisphenol A, which has been phased out due to concerns about human health implications. The ability of BPS to alter female reproductive function in mammals has not been widely studied, despite the importance of normal hormone signalling for female reproduction. The aim of this study was to investigate how BPS (in a wide range of doses, including very low doses) affects granulosa cell and theca cell steroid hormone production and cell viability in the bovine. Granulosa cell oestradiol production was stimulated when cells were exposed to 100 μM BPS under basal conditions, but there was no effect of BPS when cells were stimulated with follicle-stimulating hormone (FSH). Additionally, there was no effect of BPS on granulosa cell progesterone production or cell viability under basal or FSH-stimulated conditions. BPS did not affect theca cell androstenedione or progesterone production, or theca cell viability under basal or luteinizing hormone-stimulated conditions. This study suggests for the first time that BPS may alter oestradiol production by bovine granulosa cells, albeit at a concentration that is unlikely to be physiologically relevant. Further studies are needed to determine the effects of BPS on the bovine oocyte and on other functions of follicular cells.
Collapse
Affiliation(s)
| | - Muriel Lavallee
- Biology Department, Middlebury College, Middlebury, Vermont, United States of America
| | | |
Collapse
|
3
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
4
|
Hala D, Petersen LH, Martinovic D, Huggett DB. Constraints-based stoichiometric analysis of hypoxic stress on steroidogenesis in fathead minnows, Pimephales promelas. J Exp Biol 2012; 215:1753-65. [DOI: 10.1242/jeb.066027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In this study, an in silico genome-scale metabolic model of steroidogenesis was used to investigate the effects of hypoxic stress on steroid hormone productions in fish. Adult female fathead minnows (Pimephales promelas) were exposed to hypoxia for 7 days with fish sub-sampled on days 1, 3 and 7 of exposure. At each time point, selected steroid enzyme gene expressions and steroid hormone productions were quantified in ovaries. Fold changes in steroid enzyme gene expressions were used to qualitatively scale transcript enzyme reaction constraints (akin to the range of an enzyme’s catalytic activity) in the in silico model. Subsequently, in silico predicted steroid hormone productions were qualitatively compared with experimental results. Key findings were as follows. (1) In silico gene deletion analysis identified highly conserved ‘essential’ genes required for steroid hormone productions. These agreed well (75%) with literature-published genes downregulated in vertebrates (fish and mammal) exposed to hypoxia. (2) Quantification of steroid hormones produced ex vivo from ovaries showed a significant reduction for 17β-estradiol and 17α,20β-dihydroxypregnenone production after 24 h (day 1) of exposure. This lowered 17β-estradiol production was concomitant with downregulation of cyp19a1a gene expression in ovaries. In silico predictions showed agreement with experimentation by predicting effects on estrogen (17β-estradiol and estrone) production. (3) Stochastic sampling of in silico reactions indicated that cholesterol uptake and catalysis to pregnenolone along with estrogen methyltransferase and glucuronidation reactions were also impacted by hypoxia. Taken together, this in silico analysis introduces a powerful model for pathway analysis that can lend insights on the effects of various stressor scenarios on metabolic functions.
Collapse
Affiliation(s)
- David Hala
- Institute of Applied Sciences, University of North Texas, Denton, TX 76203, USA
| | - Lene H. Petersen
- Institute of Applied Sciences, University of North Texas, Denton, TX 76203, USA
| | - Dalma Martinovic
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Duane B. Huggett
- Institute of Applied Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
5
|
Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia. Free Radic Biol Med 2011; 50:645-66. [PMID: 21185934 DOI: 10.1016/j.freeradbiomed.2010.12.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 10/24/2022]
Abstract
Constituting an integral part of a heme's porphyrin ring, iron is essential for supplying cells and tissues with oxygen. Given tight links between oxygen delivery and iron availability, it is not surprising that iron deprivation and oxygen deprivation (hypoxia) have very similar consequences at the molecular level. Under hypoxia, the expression of major iron homeostasis genes including transferrin, transferrin receptor, ceruloplasmin, and heme oxygenase-1 is activated by hypoxia-inducible factors to provide increased iron availability for erythropoiesis in an attempt to enhance oxygen uptake and delivery to hypoxic cells. Iron-response proteins (IRP1 and IRP2) and "cap-n-collar" bZIP transcriptional factors (NE-F2 p45; Nrf1, 2, and 3; Bach1 and 2) also control gene and protein expression of the key iron homeostasis proteins. In this article, we give an overview of the mechanisms by which iron pathways are regulated by hypoxia at multiple levels. In addition, potential clinical benefits of manipulating iron pathways in the hypoxia-related conditions anemia and ischemia are discussed.
Collapse
|
6
|
Gallagher CJ, Balliet RM, Sun D, Chen G, Lazarus P. Sex differences in UDP-glucuronosyltransferase 2B17 expression and activity. Drug Metab Dispos 2010; 38:2204-9. [PMID: 20810538 DOI: 10.1124/dmd.110.035345] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are enzymes involved in the metabolism of steroid hormones, carcinogens, cancer chemotherapy agents, and addictive agents from cigarettes. Because the UGT2B family of genes has been linked to hormonal regulation in human cell lines in vitro, we hypothesized that there may be sex-related differences in the expression and activity of these genes in human tissues. To evaluate whether there are sex differences in UGT2B expression and activity, we examined 103 normal human liver specimens for UGT2B expression by real-time polymerase chain reaction and in vitro glucuronidation activities in human liver microsomes (HLM). Men exhibited an approximately 4-fold higher level of expression of UGT2B17 than women (p = 0.007). Consistent with the increased expression of UGT2B17 in men, HLM from men also had a higher level of glucuronidation activity than HLM from women against three UGT2B17 substrates: 3-fold higher for 17-dihydroexemestane (p = 0.002); 3-fold higher for 3-hydroxycotinine (p < 0.001); and 1.5-fold higher for suberoylanilide hydroxamic acid (p = 0.014). When we stratified by UGT2B17 gene deletion genotype, similar patterns were observed for all three substrates, with HLM from men with the UGT2B17 (+/+) or (+/0) genotypes exhibiting significantly higher levels of glucuronidation activity against all three substrates compared with HLM from women. These data suggest that men have a higher amount of UGT2B17 glucuronidation activity then women. This sex difference in UGT2B17 gene expression and corresponding protein activity could potentially result in different levels of carcinogen detoxification or drug elimination in men versus women.
Collapse
Affiliation(s)
- Carla J Gallagher
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, CH69, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
7
|
Zhou W, Bolden-Tiller OU, Shetty G, Shao SH, Weng CC, Pakarinen P, Liu Z, Stivers DN, Meistrich ML. Changes in gene expression in somatic cells of rat testes resulting from hormonal modulation and radiation-induced germ cell depletion. Biol Reprod 2009; 82:54-65. [PMID: 19684331 DOI: 10.1095/biolreprod.109.078048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although gonadotropins and androgen are required for normal spermatogenesis and both testosterone and follicle-stimulating hormone (FSH) are responsible for the inhibition of spermatogonial differentiation that occurs in irradiated rats, it has been difficult to identify the specific genes involved. To study specific hormonally regulated changes in somatic cell gene expression in the testis that may be involved in these processes, without the complication of changing populations of germ cells, we used irradiated LBNF(1) rats, the testes of which contain almost exclusively somatic cells except for a few type A spermatogonia. Three different groups of these rats were treated with various combinations of gonadotropin-releasing hormone antagonist, an androgen receptor antagonist (flutamide), testosterone, and FSH, and we compared the gene expression levels 2 wk later to those of irradiated-only rats by microarray analysis. By dividing the gene expression patterns into three major patterns and 11 subpatterns, we successfully distinguished, in a single study, the genes that were specifically regulated by testosterone, by luteinizing hormone (LH), and by FSH from the large number of genes that were not hormonally regulated in the testis. We found that hormones produced more dramatic upregulation than downregulation of gene expression: Testosterone had the strongest upregulatory effect, LH had a modest but appreciable upregulatory effect, and FSH had a minor upregulatory effect. We also separately identified the somatic cell genes that were chronically upregulated by irradiation. Thus, the present study identified gene expression changes that may be responsible for hormonal action on somatic cells to support normal spermatogenesis and the hormone-mediated block in spermatogonial development after irradiation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stern ST, Tallman MN, Miles KK, Ritter JK, Smith PC. Androgen Regulation of Renal Uridine Diphosphoglucuronosyltransferase 1A1 in Rats: Fig. 1. Drug Metab Dispos 2008; 36:1737-9. [DOI: 10.1124/dmd.108.020610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Wilson MJ, Bowles J, Koopman P. The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation. Mol Reprod Dev 2006; 73:531-9. [PMID: 16425238 DOI: 10.1002/mrd.20394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.
Collapse
Affiliation(s)
- Megan J Wilson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | | |
Collapse
|