1
|
Park HG, Kim JH, Dancer AN, Kothapalli KS, Brenna JT. The aromatase inhibitor letrozole restores FADS2 function in ER+ MCF7 human breast cancer cells. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102312. [PMID: 34303883 DOI: 10.1016/j.plefa.2021.102312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro. METHODS Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS. RESULTS In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells. CONCLUSION Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.
Collapse
Affiliation(s)
- Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Jae Hun Kim
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Andrew N Dancer
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Kumar S Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
2
|
Geng R, Zheng Y, Zhao L, Huang X, Qiang R, Zhang R, Guo X, Li R. RNF183 Is a Prognostic Biomarker and Correlates With Tumor Purity, Immune Infiltrates in Uterine Corpus Endometrial Carcinoma. Front Genet 2020; 11:595733. [PMID: 33324448 PMCID: PMC7726321 DOI: 10.3389/fgene.2020.595733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
RNF183, a member of the E3 ubiquitin ligase, has been shown to involve in carcinogenesis and proposed as one of the biomarkers in Uterine Corpus Endometrial Carcinoma (UCEC). However, no research focused on the role of RNF183 in UCEC. We analyzed the expression and immune infiltration of RNF183 in UCEC. TIMER, UALCAN, and GEPIA were used to analyze the gene expression of RNF183. We emplored Kaplan-Meier Plotter to examine the overall survival and progression-free survival of RNF183, and applied GeneMANIA to identify RNF183-related functional networks. LinkedOmics was helpful to identify the differential gene expression of RNF183, and to further analyze gene ontology and the genome pathways in the Kyoto Protocol. Finally, we used TIMER to investigate the immune infiltration of RNF183 in UCEC. Otherwise, we partly verified the results of bioinformatics analysis that RNF183 controlled ERα expression in ERα-positive Ishikawa cells dependent on its RING finger domain. We also found that ERα increased the stability of RNF183 through the post-translational mechanism. Together, patients with a high level of RNF183 harbor favorable overall and progression-free survival. High expression of RNF183 was associated with a low stage, endometrioid, and TP53 Non-Mutant status in endometrial cancer. The RNF183 expression was greater at higher expression and the tumor stage was greater at the lower level. On the side of immunization, high level of RNF183 in UCEC is negatively related to tumor purity, infiltrating levels of CD4 + T cells, neutrophils, and dendritic cells. Besides, the expression of RNF183 in UCEC is significantly correlated with the expression of several immune cell markers, including B cell, M1 macrophage marker, M2 Macrophage, Dendritic cell, Th1 markers, Th2 markers, Treg markers, and T cell exhaustion markers, indicating its role in regulating tumor immunity. These results suggested that RNF183 may be considered as a novel prognostic factor in endometrial cancer and an early diagnostic indicator for patients with UCEC.
Collapse
Affiliation(s)
- Rong Geng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.,Foshan Maternal and Children Healthy Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yuhua Zheng
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Lijie Zhao
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaobin Huang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Rong Qiang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Rujian Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaoling Guo
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
CUEVAS MARIAE, LINDEMAN TRACEYE. In vitro cytotoxicity of 4′-OH-tamoxifen and estradiol in human endometrial adenocarcinoma cells HEC-1A and HEC-1B. Oncol Rep 2014; 33:464-70. [DOI: 10.3892/or.2014.3565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/29/2014] [Indexed: 11/06/2022] Open
|
4
|
Abstract
The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.
Collapse
|
5
|
Lupien M, Jeyakumar M, Hébert E, Hilmi K, Cotnoir-White D, Loch C, Auger A, Dayan G, Pinard GA, Wurtz JM, Moras D, Katzenellenbogen J, Mader S. Raloxifene and ICI182,780 increase estrogen receptor-alpha association with a nuclear compartment via overlapping sets of hydrophobic amino acids in activation function 2 helix 12. Mol Endocrinol 2007; 21:797-816. [PMID: 17299137 DOI: 10.1210/me.2006-0074] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The basis for the differential repressive effects of antiestrogens on transactivation by estrogen receptor-alpha (ERalpha) remains incompletely understood. Here, we show that the full antiestrogen ICI182,780 and, to a lesser extent, the selective ER modulator raloxifene (Ral), induce accumulation of exogenous ERalpha in a poorly soluble fraction in transiently transfected HepG2 or stably transfected MDA-MB231 cells and of endogenous receptor in MCF7 cells. ERalpha remained nuclear in HepG2 cells treated with either compound. Replacement of selected hydrophobic residues of ERalpha ligand-binding domain helix 12 (H12) enhanced receptor solubility in the presence of ICI182,780 or Ral. These mutations also increased transcriptional activity with Ral or ICI182,780 on reporter genes or on the endogenous estrogen target gene TFF1 in a manner requiring the integrity of the N-terminal AF-1 domain. The antiestrogen-specific effects of single mutations suggest that they affect receptor function by mechanisms other than a simple decrease in hydrophobicity of H12, possibly due to relief from local steric hindrance between these residues and the antiestrogen side chains. Fluorescence anisotropy experiments indicated an enhanced regional stabilization of mutant ligand-binding domains in the presence of antiestrogens. H12 mutations also prevent the increase in bioluminescence resonance energy transfer between ERalpha monomers induced by Ral or ICI182,780 and increase intranuclear receptor mobility in correlation with transcriptional activity in the presence of these antiestrogens. Our data indicate that ICI182,780 and Ral locally alter the ERalpha ligand binding structure via specific hydrophobic residues of H12 and decrease its transcriptional activity through tighter association with an insoluble nuclear structure.
Collapse
Affiliation(s)
- Mathieu Lupien
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Endometrial cancer is the most common gynaecological cancer, and is associated with endometrial hyperplasia, unopposed oestrogen exposure and adjuvant therapy for breast cancer using selective oestrogen-receptor modulators (SERMs), particularly tamoxifen. Oestrogen and SERMs are thought to be involved in endometrial carcinogenesis through their effects on transcriptional regulation. Ultimately, oestrogen and SERMs affect the transduction of cellular signalling pathways that govern cell growth and proliferation, through downstream effectors such as PAX2 (paired box 2).
Collapse
Affiliation(s)
- Yongfeng Shang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100083, China.
| |
Collapse
|
7
|
Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, Sun L, Shang Y. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 2006; 438:981-7. [PMID: 16355216 DOI: 10.1038/nature04225] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/08/2005] [Indexed: 11/10/2022]
Abstract
Tamoxifen, a selective oestrogen receptor modulator, has been used in the treatment of all stages of hormone-responsive breast cancer. However, tamoxifen shows partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial cancer. The molecular explanation for these observations is not known. Here we show that tamoxifen and oestrogen have distinct but overlapping target gene profiles. Among the overlapping target genes, we identify a paired-box gene, PAX2, that is crucially involved in cell proliferation and carcinogenesis in the endometrium. Our experiments show that PAX2 is activated by oestrogen and tamoxifen in endometrial carcinomas but not in normal endometrium, and that this activation is associated with cancer-linked hypomethylation of the PAX2 promoter.
Collapse
Affiliation(s)
- Huijian Wu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lewis JS, Jordan VC. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat Res 2005; 591:247-63. [PMID: 16083919 DOI: 10.1016/j.mrfmmm.2005.02.028] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 02/10/2005] [Accepted: 02/12/2005] [Indexed: 05/03/2023]
Abstract
Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17beta-estradiol (E(2)), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ERalpha or ERbeta, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.
Collapse
Affiliation(s)
- Joan S Lewis
- Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
9
|
Bayram M, Bayram O, Dursun A, Isik I, Dilekoz E, Ozkan S. Expression of steroid receptors in intact rat uterus, mammary gland, and liver treated with selective estrogen receptor modulators and conjugated equine estrogens. Adv Ther 2005; 22:587-94. [PMID: 16510375 DOI: 10.1007/bf02849952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to determine the effects of conjugated equine estrogens (CEE) and selective estrogen receptor modulators (SERM) (tamoxifen [TAM] and raloxifene [RAL]) on the expression of steroid receptors-estrogen receptor (ER) and progesterone receptor (PR)-in intact rat uterus, mammary gland, and liver. A total of 24 female rats weighing 250 to 300 g were randomized into 4 groups. Groups 1, 2, 3, and 4 were respectively given conjugated equine estrogen, tamoxifen, raloxifene, and vehicle for a 28-day period. ER and PR expression was detected in tissues of the uterus, mammary gland, and liver. Uterine wet weight and serum estradiol levels were established for all groups. No statistical difference was observed between groups in the ER expression of mammary gland and liver and in the PR expression of uterus, mammary gland, and liver, but differences were noted in serum estradiol levels and uterine ER expression. Serum estradiol levels were lower in the TAM-treated group; differences between the TAM-treated group and the other groups were statistically important (P<.05). Uterine ER expression was greater in the CEE-treated group; differences between the CEE-treated group and the TAM- and RAL-treated groups were statistically important (P<.05). CEE or SERM versus vehicle treatment in controls did not seem to result in statistically important differences in ER and PR expression in intact rat uterus, mammary gland, and liver. Only ER expression in the uterus was found to be greater in the CEE-treated group than in SERM-treated groups.
Collapse
Affiliation(s)
- Merih Bayram
- Kirikkale University, Faculty of Medicine, Department of Gynecology and Obstetrics, Kirikkale, Turkey
| | | | | | | | | | | |
Collapse
|