1
|
Lu Y, Liu W. Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer. J Med Chem 2020; 63:15094-15114. [PMID: 33138369 DOI: 10.1021/acs.jmedchem.0c00913] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.
Collapse
Affiliation(s)
- Yunlong Lu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Coadministration of nanosystems of short silencing RNAs targeting oestrogen receptor α and anti-oestrogen synergistically induces tumour growth inhibition in human breast cancer xenografts. Breast Cancer Res Treat 2009; 122:145-58. [DOI: 10.1007/s10549-009-0558-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/11/2009] [Indexed: 02/05/2023]
|
3
|
|
4
|
Renoir JM, Stella B, Ameller T, Connault E, Opolon P, Marsaud V. Improved anti-tumoral capacity of mixed and pure anti-oestrogens in breast cancer cell xenografts after their administration by entrapment in colloidal nanosystems. J Steroid Biochem Mol Biol 2006; 102:114-27. [PMID: 17056251 DOI: 10.1016/j.jsbmb.2006.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anti-oestrogens (AEs) are currently used for treating hormone-dependent breast cancers. They specifically bind to oestrogen receptors (ERs) and inhibit their transactivation capacity. However, ERs are present in various other tissues in which AEs may have either a beneficial or detrimental action. AE administration via systems targeting breast tumours may be an important therapeutic improvement. Thus, several biodegradable drug delivery systems containing either "mixed" (4-hydroxytamoxifen - 4-HT) or "pure" (RU 58668 - RU) AEs were prepared. Liposomes and nanospheres (NS, composed of non-toxic and biodegradable lipids and poly(d,l-lactic acid) incorporated up to 1 and 0.5 mM AE, respectively. Nanocapsules (NCs) in which an oily core solubilises the AE incorporated no more than 0.02 mM of the drug. PEG-functionalised nanoparticles survived longer in plasma and had better controlled release of the drug. The small size of the vectors (100-250 nm) was compatible with their extravasation through the discontinuous endothelium of tumour vasculature, allowing their accumulation in MCF-7 cell xenografts and leading to a prolonged exposure of the tumour to AEs. In these tumours and in MCF-7/ras xenografts, RU-NS and RU-NC (6.5mg/kg/week and 0.27 mg/kg/week, respectively, doses at which free RU had a very weak effect), both inhibited tumour growth. Entrapped RU significantly induced involution of tumours and strongly induced apoptosis in tumour cells, concomitantly with inhibiting tumour angiogenesis. 4-HT-nanoparticles also arrest oestradiol-induced tumour growth, inducing apoptosis and inhibiting angiogenesis. However, unlike RU-nanoparticles, they did not promote ERalpha subtype loss in tumour cells. Subcutaneous administration of both RU- and 4-HT-NS in MCF-7 xenografts strongly arrested tumour growth for prolonged periods and RUNS decreased the number of tumour epithelial cells. Analysis of the proteins involved in cell cycle proliferation and apoptosis confirmed that RU-nanoparticles were more efficient than 4-HT-nanoparticles. Their lack of toxicity and high anti-tumour potency that affects only tumour cells in the xenograft models mean these AE-loaded colloidal systems are a breakthrough in hormone-dependent breast cancer treatment.
Collapse
Affiliation(s)
- Jack-Michel Renoir
- CNRS, UMR 8612, and Université Paris-Sud, Faculté de Pharmacie, IFR 141, 92296 Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
5
|
Maillard S, Gauduchon J, Marsaud V, Gouilleux F, Connault E, Opolon P, Fattal E, Sola B, Renoir JM. Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. J Steroid Biochem Mol Biol 2006; 100:67-78. [PMID: 16753295 DOI: 10.1016/j.jsbmb.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In most of multiple myeloma (MM) cells, the "pure" antiestrogen (AE) RU 58668 (RU) induced either a G1-arrest (LP-1, OPM-2, NCI-H929, U266 cells) or apoptosis (RPMI 8226 cells). In RPMI 8226 cells, RU activates a caspase-dependent cell death pathway leading to the release of cytochrome c, the decrease of the essential MM survival factor Mcl-1, the cleavage of Bid and the activation of caspases-3 and -8. Incorporation of RU in pegylated cholesterol-containing liposomes allowed a controlled RU release, improving its anti-proliferative and apoptotic effects in cells. In RPMI 8226 xenografts, i.v. injected RU-liposomes but not free RU, exhibited antitumor activity. In vivo, RU-liposomes triggered the mitochondrial death pathway, concomitantly with a down-regulation of Mcl-1 and Bid cleavage. The decrease of CD34 immunoreactivity indicated a reduction of angiogenesis. The decrease of VEGF secretion in vitro supported a direct effect of RU on angiogenesis. These pro-apoptotic and antiangiogenic effects were explained by a prolonged exposure to the drug and to the endocytosis capacity of liposomes which might increase RU uptake and bypass a membrane export of free RU. Thus, these combined enhanced activities of RU-liposomes support that such a delivery of an AE may constitute a strategy of benefit for MM treatment.
Collapse
|
6
|
Fog CK, Christensen IJ, Lykkesfeldt AE. Characterization of a human breast cancer cell line, MCF-7/RU58R-1, resistant to the pure antiestrogen RU 58,668. Breast Cancer Res Treat 2005; 91:133-44. [PMID: 15868441 DOI: 10.1007/s10549-004-5871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer disease in women in the western world. Tamoxifen has been the standard first line endocrine therapy for patients with estrogen receptor (ER) positive tumors. Unfortunately, almost all patients with advanced disease develop tamoxifen resistance. This has lead to a search for new potent antiestrogens. One of the new compounds under development is the pure antiestrogen RU 58,668. To study the mechanisms behind acquired resistance to RU 58,668, the RU 58,668-resistant cell line MCF-7/RU58(R)-1 (RU58(R)-1) was developed. The RU58(R)-1 cell line was responsive to tamoxifen, but cross-resistant to ICI 182,780 and the estrogen-sensitivity was reduced compared to the parental MCF-7 cell line. The protein levels of ERalpha, IGF-I Receptor (IGF-IR) and Bcl-2 were severely reduced, when RU58(R)-1 cells were cultured with RU 58,668 and the expression of progesterone receptor (PR) was lost. The ERalpha level increased upon withdrawal of RU 58,668 and the ERalpha protein was destabilized by RU 58,668 in both cell lines. Regulation of most of the investigated estrogen-sensitive mRNAs was found to be normal in the resistant cells. The protein levels of IGF-IR, Bcl-2 and the IGF Binding Protein 2 (IGFBP2) reverted towards MCF-7 levels upon RU 58,668 withdrawal, but the resistant phenotype was maintained. Thus, it appears as acquired resistance to RU 58,668 is not a result of loss of the ERalpha expression or function and we suggest that in the presence of RU 58,668, the RU58(R)-1 cell line probably uses other mitogenic pathways than the ERalpha pathway for growth and survival.
Collapse
Affiliation(s)
- C K Fog
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
7
|
Ameller T, Marsaud V, Legrand P, Gref R, Renoir JM. Pure antiestrogen RU 58668-loaded nanospheres: morphology, cell activity and toxicity studies. Eur J Pharm Sci 2004; 21:361-70. [PMID: 14757510 DOI: 10.1016/j.ejps.2003.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nanospheres (NS) formulated using biodegradable and biocompatible polymers, poly(D,L-lactide-co-glycolide) (PLGA), poly(D,L-lactide) (PLA) and poly(epsilon-caprolactone) (PCL), loaded with the pure anti-estrogen RU 58668 (RU), a promising estrogen-dependent anticancer agent, have been prepared. They all possess a small size compatible with an intratumoral extravasation behavior and their pegylation reduce significantly their zeta potential. Characterization by freeze fracture electron microscopy have shown that NS are spheric particles with a size ranging between 30 and 50nm and a tendency to agglomerate which is reduced by polyethylene glycol (PEG) grafting. PEG-grafted NS are all non-toxic as revealed by cell viability assay. A specific cellular model has been used to evaluate not only the release extent of the drug but also its biological activity. All formulations tested showed that they release slowly RU as measured by the delayed ability of RU to inhibit estrogen-induced transcription in human breast cancer cells and that they possess only a small amount of surface adsorbed RU.
Collapse
Affiliation(s)
- Thibault Ameller
- UMR CNRS 8612, Pharmacologie Cellulaire et Moléculaire, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France.
| | | | | | | | | |
Collapse
|
8
|
Ameller T, Legrand P, Marsaud V, Renoir JM. Drug delivery systems for oestrogenic hormones and antagonists: the need for selective targeting in estradiol-dependent cancers. J Steroid Biochem Mol Biol 2004; 92:1-18. [PMID: 15544926 DOI: 10.1016/j.jsbmb.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
The pleiotropic activity of oestrogens and their mechanism of action via their binding to the two oestrogen receptors alpha (ER alpha) and beta (ER beta) subtypes in the different tissues where oestrogens exert their action have been briefly described. The fate of these compounds trapped into different galenic forms is discussed with regard to their therapeutic applications. Firstly, the advantages and disadvantages of the different forms (pills, i.v. forms and transdermal patches) used in contraception are compared. Secondly, the therapeutic use of formulated oestrogens for the post-menopausal hormone replacement therapy (HRT) is analysed through the various results obtained in different trials. The link between HRT and the risks of breast cancer and cardiovascular disease is underlined. Finally, comparing the activity of selective oestrogen receptor modulators such as tamoxifen and pure anti-oestrogens such as RU58668 and ICI182780, we analysed the reasons leading to the need for a tumor targeting of the latters, but not of the former for the treatment of oestrogen-dependent breast cancer. Different injectable and biodegradable formulations, that lead to a remarkable anti-tumor efficiency in xenografts, have been recently developed and we believe that they may represent promising new administration ways of added therapeutic values for anti-oestrogens. Such devices could be extended to the delivery of other anti-cancer drugs with more aggressive activities than anti-oestrogens.
Collapse
Affiliation(s)
- Thibault Ameller
- UMR CNRS 8612, Department of Pharmacologie Cellulaire et Moléculaire des Anticancéreux, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
9
|
Marsaud V, Gougelet A, Maillard S, Renoir JM. Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 2003; 17:2013-27. [PMID: 12855746 DOI: 10.1210/me.2002-0269] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Estrogen receptor-alpha (ER) is down-regulated in the presence of its cognate ligand, estradiol (E2), as well as in the presence of antiestrogens, through the ubiquitin proteasome pathway. Here, we show that, at pharmacological concentrations, the degradation rate of pure antagonist/endogenous ER complexes from human breast cancer MCF-7 cells is 10 times faster than that of ER-E2 complexes, while 4-hydroxy-tamoxifen (4-OH-T)-ER complexes are stable. Whereas pure antagonist-ER complexes are firmly bound to a nuclear compartment from which they are not extractable, the 4-OH-T-ER accumulates in a soluble cell compartment. No difference was observed in the fate of ER whether bound to pure antiestrogens ICI 182,780 or RU 58668. Cycloheximide experiments showed that, while the proteasome-mediated destruction of E2-ER (unlike that of RU 58668- and ICI 182,780-ER) complexes could implicate (or not) a protein synthesis-dependent process, both MAPKs (p38 and ERKs p44 and p42) are activated. By using a panel of kinase inhibitors/activators to study the impact of phosphorylation pathways on ER degradation, we found that protein kinase C is an enhancer of proteasome-mediated degradation of both ligand-free and ER bound to either E2, 4-OH-T, and pure antagonists. On the contrary, protein kinase A, MAPKs, and phosphatidyl-inositol-3 kinase all impede proteasome-mediated destruction of ligand free and E2-bound ER while only MAPKs inhibit the degradation of pure antiestrogens/ER species. In addition, no correlation was found between the capacity of kinase inhibitors to affect ER stability and the basal or E2-induced transcription. These results suggest that, in MCF-7 breast cancer cells, ER turnover, localization, and activity are maintained by an equilibrium between various phosphorylation pathways, which are differently modulated by ER ligands and protein kinases.
Collapse
Affiliation(s)
- Véronique Marsaud
- Pharmacologie Cellulaire et Moléculaire des Anticancéreux, Unité Mixte de Recherche 8612, Centre National de la Recherche Scientifique, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
10
|
Ameller T, Marsaud V, Legrand P, Gref R, Renoir JM. In vitro and in vivo biologic evaluation of long-circulating biodegradable drug carriers loaded with the pure antiestrogen RU 58668. Int J Cancer 2003; 106:446-54. [PMID: 12845687 DOI: 10.1002/ijc.11248] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have developed a parenteral delivery system for the administration of the highly promising pure antiestrogen RU 58668 (RU). Two types of nanoparticles (NP) made of biodegradable copolymers and coated with polyethylene-glycol (PEG) chains were prepared: nanospheres (NS) (diameter, approximately 110 nm) and nanocapsules (NC) with an oily core (diameter, approximately 250 nm). The amount of RU incorporated into NS and NC was approximately 33 vs. approximately 5 microg RU/mg of polymer, respectively. Coating with PEG chains prolonged the antiestrogenic potency of RU, as shown by a prolonged antiuterotrophic activity of encapsulated RU into PEG-poly(D,L lactic acid) (PLA) NS, as compared to that of conventional nonpegylated NS. In mice bearing MCF-7 estrogen-dependent tumors, free RU injected at 4.3 mg/kg/week by i.v. route slightly decreased the estradiol-promoted (0.5 mg/kg/week) tumor growth while RU-loaded PEG-PLA NS injected at the same dose strongly reduced it. Analysis of cell cycle parameters in tumors treated with RU indicated that RU-loaded PEG-PLA NS injected at 4.3 mg/kg/week in MCF-7 tumors decreased cyclin D(1) and cyclin E simultaneously, and increased p27. The antitumoral activity of RU encapsulated within pegylated NC was stronger than that of RU entrapped with pegylated NS loaded at an equivalent dose. Indeed, the former decreased the tumor size in nude mice transplanted with the estrogen receptor-positive but estrogen-independent MCF-7/Ras breast cancer cells at a concentration 2.5 times lower than that of the latter (0.4 mg/kg/week compared to 1 mg/kg/week). Empty PEG-PLA NS and NC were devoid of antiuterotrophic and antitumoral activities. Altogether, these results suggest that the incorporation of the pure antiestrogen RU into long-circulating NP could represent a novel antiestrogen drug delivery system for the parenteral route.
Collapse
Affiliation(s)
- Thibault Ameller
- UMR CNRS 8612, Pharmacologie Cellulaire et Moléculaire, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
11
|
Ameller T, Marsaud V, Legrand P, Gref R, Barratt G, Renoir JM. Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonization properties. Pharm Res 2003; 20:1063-70. [PMID: 12880293 DOI: 10.1023/a:1024418524688] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The pure antiestrogen RU58668 (RU) was encapsulated within nanospheres (NS) and nanocapsules (NC) prepared from different polyester copolymers with poly(ethylene glycol) (PEG) chains. The influence of their physicochemical properties on drug release in vitro and their susceptibility to opsonization were evaluated. METHODS RU-loaded PEG-bearing nanoparticles (NP) prepared by interfacial deposition of preformed polymer were characterized (size, zeta potential, percentage encapsulation and loading). In vitro release kinetics were studied in the presence of 10% fetal calf serum (FCS). Their opsonization in mouse serum was evaluated by silver staining of SDS-PAGE and Western blotting of desorbed proteins. RESULTS The NS were smaller than NC and had a zeta potential close to zero and a higher percentage of loading. RU release from NS in vitro was reduced as compared with the dissolution profile of free RU in a serum-containing medium. Decreased opsonin adsorption at the surface of pegylated NS was observed. CONCLUSION Small nanoparticulate systems containing a high load of pure antiestrogen, showing reduced drug release, have been developed. Among the six nanosphere preparations containing RU, two show a size below 200 nm, and two others undergo reduced protein adsorption in the presence of serum, compatible with increased persistence in the blood.
Collapse
Affiliation(s)
- Thibault Ameller
- UMR CNRS 8612, Pharmacologie Cellulaire et Moléculaire, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
12
|
Sims NA, Clément-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M, Baron R. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor–deficient mice. J Clin Invest 2003. [DOI: 10.1172/jci200317246] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Sims NA, Clément-Lacroix P, Minet D, Fraslon-Vanhulle C, Gaillard-Kelly M, Resche-Rigon M, Baron R. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest 2003; 111:1319-27. [PMID: 12727923 PMCID: PMC154447 DOI: 10.1172/jci17246] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although the role of estradiol in maintaining bone mass is well established, the relative contributions of the estradiol receptors ERalpha and ERbeta and of the androgen receptor (AR) remain controversial. To determine the role of ERalpha-mediated, ERbeta-mediated, and non-ER-mediated mechanisms in maintaining bone mass, gonadectomy and estradiol treatment were studied in ER-knockout mice. Estradiol treatment of ovariectomized ERalphabeta(-/-) mice failed to prevent bone loss, precluding significant effects of estradiol on bone through non-ER-signaling pathways. In contrast, estradiol prevented ovariectomy-induced bone loss in ERbeta(-/-) mice, as in WT males and females, indicating that ERalpha is the major mediator of estradiol effects in bone. No response of bone to estradiol was detected in orchidectomized ERalpha(-/-) mice, suggesting estradiol cannot protect bone mass via the AR in vivo. In contrast to female ERalphabeta(-/-) and male ERalpha(-/-) mice, female ERalpha(-/-) mice were partially protected against ovariectomy-induced bone loss by estradiol, confirming that ERbeta mediates estradiol effects in bone, but only in females and with a lower efficacy than ERalpha. We conclude that ERalpha is the main effector of estradiol's protective function in bone in both male and female mice, and that, in its absence, AR is not sufficient to mediate this response.
Collapse
Affiliation(s)
- Natalie A Sims
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut 06520-8044, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Gust R, Keilitz R, Schmidt K. Synthesis, structural evaluation, and estrogen receptor interaction of 2,3-diarylpiperazines. J Med Chem 2002; 45:2325-37. [PMID: 12014971 DOI: 10.1021/jm0208368] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To develop novel estrogen receptor (ER) ligands, ring-fused derivatives of the hormonally active (1R,2S)/(1S,2R)-1-(2-chloro-4-hydroxyphenyl)-2-(2,6-dichloro-4-hydroxyphenyl)ethylenediamine 4b were synthesized. (2R,3S)/(2S,3R)-2-(2-Chloro-4-hydroxyphenyl)-3-(2,6-dichloro-4-hydroxyphenyl)piperazine 4 induced ligand-dependent gene expression in MCF-7-2a cells, stably transfected with the plasmid ERE(wtc)luc and was therefore used as a lead structure. The influence of the substitution pattern in the aromatic rings (4-OH (1), 2-F,4-OH (2), 2-Cl,4-OH (3), 2,6-Cl2,3-OH (5), and 2,6-Cl2,4-OH (6)) and the effect of N-ethyl chains on the ER binding and activation of gene expression were studied. The synthesis started from the respective methoxy-substituted (1R,2S)/(1S,2R)-configurated 1,2-diarylethylenediamines 6b to 4b, which were reacted with dimethyl oxalate in order to get 5,6-diarylpiperazine-2,3-diones. Reduction with BH3*tetrahydrofuran and ether cleavage with BBr3 yielded the piperazines 1-6. The N-alkylation of the piperazines 1a-3a, which was employed for obtaining compounds 7-11, was succeeded by acetic anhydride followed by reduction and ether cleavage. Nuclear magnetic resonance (NMR) spectroscopical studies revealed a synclinal conformation of the 1,2-diarylethane pharmacophore and a preference of the substituents at the heterocyclic ring for an equatorial position. This spatial structure prevents an interaction with the ER analogously to that of estradiol (E2). Therefore, the piperazines can displace E2 from its binding site only to a very small extent. Only the N-ethyl (8) and N,N'-diethyl (11) derivatives of piperazine 3 showed relative binding affinity values > 0.1% (8, 0.42%, and 11, 0.17%). Nevertheless, ER-mediated gene activation was verified for the piperazines 4 (20%), 6 (73%), 7 (34%), 8 (74%), and 11 (37%) (concentration, 1 microM; E2, 100% activation) on the MCF-7-2a cell line. O-methylation led to completely inactive compounds and showed the necessity of H bridges from the piperazines to the ER for activating gene expression.
Collapse
Affiliation(s)
- Ronald Gust
- Institute of Pharmacy, Free University of Berlin, Königin-Luise Strasse 2+4, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
15
|
Lesuisse D, Albert E, Bouchoux F, Cérède E, Lefrançois JM, Levif MO, Tessier S, Tric B, Teutsch G. Biphenyls as surrogates of the steroidal backbone. Part 1: synthesis and estrogen receptor affinity of an original series of polysubstituted biphenyls. Bioorg Med Chem Lett 2001; 11:1709-12. [PMID: 11425543 DOI: 10.1016/s0960-894x(01)00267-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the course of a programme aimed at discovering new ligands of the estrogen receptor, we explored a series of substituted biphenyls. Their synthesis and binding affinity are described.
Collapse
Affiliation(s)
- D Lesuisse
- Medicinal Chemistry, Aventis, 102 route de Noisy, 93235 Cedex, Romainville, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Howell A. Tamoxifen versus the newer SERMs: what is the evidence? Ann Oncol 2001; 11 Suppl 3:255-65. [PMID: 11079150 DOI: 10.1093/annonc/11.suppl_3.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A Howell
- CRC Department of Medical Oncology, University of Manchester, Christie Hospital, UK
| |
Collapse
|
17
|
Chapter 15. Targeting the estrogen receptor with SERMs. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2001. [DOI: 10.1016/s0065-7743(01)36055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
18
|
Miller CP, Jirkovsky I, Tran BD, Harris HA, Moran RA, Komm BS. Synthesis and estrogenic activities of novel 7-thiosubstituted estratriene derivatives. Bioorg Med Chem Lett 2000; 10:147-51. [PMID: 10673099 DOI: 10.1016/s0960-894x(99)00648-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A diastereomerically pure series of 7alpha-thioestratrienes was prepared and evaluated for its affinity for both the human estrogen receptor alpha and the more recently discovered estrogen receptor beta. The functional estrogenic activities of the compounds were measured in a MCF-7 ERE-tk-luciferase assay. The activities and selectivities of the compounds were sensitive to the nature of the thioether side chain.
Collapse
Affiliation(s)
- C P Miller
- Chemical Sciences, Wyeth-Ayerst Research, Radnor, PA 19087, USA
| | | | | | | | | | | |
Collapse
|