1
|
Pertile E, Dvorský T, Václavík V, Heviánková S. Use of Different Types of Biosorbents to Remove Cr (VI) from Aqueous Solution. Life (Basel) 2021; 11:life11030240. [PMID: 33799430 PMCID: PMC8000416 DOI: 10.3390/life11030240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023] Open
Abstract
This article summarizes the results of a research study that was focused on the possibility of removing Cr (VI) from aqueous solution, using low-cost waste biomaterial in a batch mode. A set of seven biosorbents was used: Fomitopsis pinicola, a mixture of cones, peach stones, apricot stones, Juglans regia shells, orange peels, and Merino sheep wool. Three grain fractions (fr. 1/2, fr. 0.5/1.0, and fr. 0/0.5 mm) of biosorbents were studied. The aim was to find the most suitable biosorbent that can be tested with real samples. The influence of other factors on the course of biosorption was studied as well (chemical activation of the biosorbent, pH value, rotation speed during mixing, temperature, and the influence of biosorbent concentration). The use of chemical activation and adjustment of the pH to 1.1 to 2.0 make it possible to increase their sorption capacity and, for some biosorbents, to shorten the exposure times. Two kinetic models were used for the analysis of the experimental data, to explain the mechanism of adsorption and its possible speed control steps: pseudo-first and pseudo-second-order. The pseudo-second-order kinetic model seems to be the most suitable for the description of the experimental data. The thermodynamic parameters suggest that the biosorption was endothermic and spontaneous. In the biosorption equilibrium study, the adsorption data were described by using Langmuir and Freundlich adsorption isotherms. The Langmuir model was applicable to describe the adsorption data of all biosorbents. Both models are suitable for chemically treated sheep fleece and peach stones.
Collapse
Affiliation(s)
- Eva Pertile
- Correspondence: (E.P.); (T.D.); Tel.: +420-597-325-188 (E.P.); +420-597-323-593 (T.D.)
| | - Tomáš Dvorský
- Correspondence: (E.P.); (T.D.); Tel.: +420-597-325-188 (E.P.); +420-597-323-593 (T.D.)
| | | | | |
Collapse
|
2
|
Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, Sarmah AK, Nguyen HQ, Nguyen PT, Nguyen DD, Nguyen TV, Vigneswaran S, Vo DVN, Chao HP. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:258-270. [PMID: 30925385 DOI: 10.1016/j.jhazmat.2019.03.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl-, NO3-, SO42-, and CO32-) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
Collapse
Affiliation(s)
- Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam.
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Fatma Tomul
- Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Chemistry Department, 15100 Burdur, Turkey
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-Gu, Daejeon 305-719, Republic of Korea
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hung Quang Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Tri Nguyen
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| | | | - Dai-Viet N Vo
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Pahang, Malaysia
| | - Huan-Ping Chao
- Department of Environmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
3
|
Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. WATER RESEARCH 2017; 120:88-116. [PMID: 28478298 DOI: 10.1016/j.watres.2017.04.014] [Citation(s) in RCA: 1003] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 05/09/2023]
Abstract
In recent years, adsorption science and technology for water and wastewater treatment has attracted substantial attention from the scientific community. However, the number of publications containing inconsistent concepts is increasing. Many publications either reiterate previously discussed mistakes or create new mistakes. The inconsistencies are reflected by the increasing publication of certain types of article in this field, including "short communications", "discussions", "critical reviews", "comments", "letters to the editor", and "correspondence (comment/rebuttal)". This article aims to discuss (1) the inaccurate use of technical terms, (2) the problem associated with quantities for measuring adsorption performance, (3) the important roles of the adsorbate and adsorbent pKa, (4) mistakes related to the study of adsorption kinetics, isotherms, and thermodynamics, (5) several problems related to adsorption mechanisms, (6) inconsistent data points in experimental data and model fitting, (7) mistakes in measuring the specific surface area of an adsorbent, and (8) other mistakes found in the literature. Furthermore, correct expressions and original citations of the relevant models (i.e., adsorption kinetics and isotherms) are provided. The authors hope that this work will be helpful for readers, researchers, reviewers, and editors who are interested in the field of adsorption studies.
Collapse
Affiliation(s)
- Hai Nguyen Tran
- Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, Chungli 320, Taiwan.
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Chungli 320, Taiwan
| | - Ahmad Hosseini-Bandegharaei
- Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar, Iran; Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar, Iran
| | - Huan-Ping Chao
- Department of Environmental Engineering, Chung Yuan Christian University, Chungli 320, Taiwan.
| |
Collapse
|
5
|
Gnanamani A, Kavitha V, Radhakrishnan N, Suseela Rajakumar G, Sekaran G, Mandal A. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B Biointerfaces 2010; 79:334-9. [DOI: 10.1016/j.colsurfb.2010.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/10/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
6
|
Prabhakaran SK, Vijayaraghavan K, Balasubramanian R. Removal of Cr(VI) Ions by Spent Tea and Coffee Dusts: Reduction to Cr(III) and Biosorption. Ind Eng Chem Res 2009. [DOI: 10.1021/ie801380h] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Syam K. Prabhakaran
- Division of Environmental Science and Engineering, National University of Singapore, Singapore 117576, and Singapore-Delft Water Alliance, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - K. Vijayaraghavan
- Division of Environmental Science and Engineering, National University of Singapore, Singapore 117576, and Singapore-Delft Water Alliance, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - R. Balasubramanian
- Division of Environmental Science and Engineering, National University of Singapore, Singapore 117576, and Singapore-Delft Water Alliance, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| |
Collapse
|