1
|
Rashdan HRM, Abdelmonsef AH, Shehadi IA, Gomha SM, Soliman AMM, Mahmoud HK. Synthesis, Molecular Docking Screening and Anti-Proliferative Potency Evaluation of Some New Imidazo[2,1- b]Thiazole Linked Thiadiazole Conjugates. Molecules 2020; 25:molecules25214997. [PMID: 33126630 PMCID: PMC7663531 DOI: 10.3390/molecules25214997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Imidazo[2,1-b]thiazole scaffolds were reported to possess various pharmaceutical activities. RESULTS The novel compound named methyl-2-(1-(3-methyl-6-(p-tolyl)imidazo[2,1-b]thiazol-2-yl)ethylidene)hydrazine-1-carbodithioate 3 acted as a predecessor molecule for the synthesis of new thiadiazole derivatives incorporating imidazo[2,1-b]thiazole moiety. The reaction of 3 with the appropriate hydrazonoyl halide derivatives 4a-j and 7-9 had produced the respective 1,3,4-thiadiazole derivatives 6a-j and 10-12. The chemical composition of all the newly synthesized derivatives were confirmed by their microanalytical and spectral data (FT-IR, mass spectrometry, 1H-NMR and 13C-NMR). All the produced novel compounds were screened for their anti-proliferative efficacy on hepatic cancer cell lines (HepG2). In addition, a computational molecular docking study was carried out to determine the ability of the synthesized thiadiazole molecules to interact with active site of the target Glypican-3 protein (GPC-3). Moreover, the physiochemical properties of the synthesized compounds were derived to determine the viability of the compounds as drug candidates for hepatic cancer. CONCLUSION All the tested compounds had exhibited good anti-proliferative efficacy against hepatic cancer cell lines. In addition, the molecular docking results showed strong binding interactions of the synthesized compounds with the target GPC-3 protein with lower energy scores. Thus, such novel compounds may act as promising candidates as drugs against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence:
| | | | - Ihsan A. Shehadi
- Chemistry Department, Faculty of Science, University of Sharjah, Sharjah 27272, UAE;
| | - Sobhi M. Gomha
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.G.); (H.K.M.)
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia
| | | | - Huda K. Mahmoud
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.M.G.); (H.K.M.)
| |
Collapse
|
2
|
Nozeret K, Loll F, Cardoso GM, Escudé C, Boutorine AS. Interaction of fluorescently labeled pyrrole-imidazole polyamide probes with fixed and living murine and human cells. Biochimie 2018; 149:122-134. [DOI: 10.1016/j.biochi.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022]
|
3
|
Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy. Bioorg Med Chem Lett 2017; 27:2197-2200. [PMID: 28389153 DOI: 10.1016/j.bmcl.2017.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct.
Collapse
|
4
|
Vasilyeva SV, Filichev VV, Boutorine AS. Application of Cu(I)-catalyzed azide-alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA. Beilstein J Org Chem 2016; 12:1348-60. [PMID: 27559384 PMCID: PMC4979877 DOI: 10.3762/bjoc.12.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Efficient protocols based on Cu(I)-catalyzed azide-alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole-imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable triple helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- Institute of Chemical Biology & Fundamental Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France
| |
Collapse
|
5
|
Hydrazonoyl Chlorides as Precursors for Synthesis of Novel Bis-Pyrrole Derivatives. Molecules 2016; 21:326. [PMID: 27005604 PMCID: PMC6273510 DOI: 10.3390/molecules21030326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022] Open
Abstract
A convenient synthesis of some novel bis-pyrrole derivatives via hydrazonoyl halides is described. Antimicrobial evaluation of some selected examples of the synthesized products was carried out. The bis-pyrrole derivative having chloro substituents showed good activity against all of the used microbes. The molecular docking of the bis-pyrrole derivatives was performed by the Molecular Operating Environment (MOE) program.
Collapse
|
6
|
Wirth-Hamdoune D, Ullrich S, Scheffer U, Radanović T, Dürner G, Göbel MW. A Bis(guanidinium)alcohol Attached to a Hairpin Polyamide: Synthesis, DNA Binding, and Plasmid Cleavage. Chembiochem 2016; 17:506-14. [DOI: 10.1002/cbic.201500566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Wirth-Hamdoune
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Toni Radanović
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Gerd Dürner
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
7
|
Nozeret K, Bonan M, Yarmoluk SM, Novopashina DS, Boutorine AS. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA. Bioorg Med Chem 2015; 23:5932-45. [PMID: 26190459 DOI: 10.1016/j.bmc.2015.06.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022]
Abstract
Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications.
Collapse
Affiliation(s)
- Karine Nozeret
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France.
| | - Marc Bonan
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France; Université Paris René Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France.
| | - Serguiy M Yarmoluk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, ul. Zabolotnogo, 150, P.O. 88, 03187 Kiev, Ukraine.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Lavrentyev prosp., 8, 630090 Novosibirsk, Russia.
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France.
| |
Collapse
|
8
|
Wang S, Aston K, Koeller KJ, Harris GD, Rath NP, Bashkin JK, Wilson WD. Modulation of DNA-polyamide interaction by β-alanine substitutions: a study of positional effects on binding affinity, kinetics and thermodynamics. Org Biomol Chem 2015; 12:7523-36. [PMID: 25141096 DOI: 10.1039/c4ob01456a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects that β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on the binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino)propylamine] in parent PA has been modified into a dicationic Ta group (3,3'-diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Nozeret K, Loll F, Escudé C, Boutorine AS. Polyamide fluorescent probes for visualization of repeated DNA sequences in living cells. Chembiochem 2015; 16:549-54. [PMID: 25639955 DOI: 10.1002/cbic.201402676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/07/2022]
Abstract
DNA imaging in living cells usually requires transgenic approaches that modify the genome. Synthetic pyrrole-imidazole polyamides that bind specifically to the minor groove of double-stranded DNA (dsDNA) represent an attractive approach for in-cell imaging that does not necessitate changes to the genome. Nine hairpin polyamides that target mouse major satellite DNA were synthesized. Their interactions with synthetic target dsDNA fragments were studied by thermal denaturation, gel-shift electrophoresis, circular dichroism, and fluorescence spectroscopy. The polyamides had different affinities for the target DNA, and fluorescent labeling of the polyamides affected their affinity for their targets. We validated the specificity of the probes in fixed cells and provide evidence that two of the probes detect target sequences in mouse living cell lines. This study demonstrates for the first time that synthetic compounds can be used for the visualization of the nuclear substructures formed by repeated DNA sequences in living cells.
Collapse
Affiliation(s)
- Karine Nozeret
- Structure and Instability of Genomes, Sorbonne Universités, Muséum national d'Histoire naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris Cedex 05 (France)
| | | | | | | |
Collapse
|
10
|
Fang L, Yao G, Pan Z, Wu C, Wang HS, Burley GA, Su W. Fully Automated Synthesis of DNA-Binding Py-Im Polyamides Using a Triphosgene Coupling Strategy. Org Lett 2014; 17:158-61. [DOI: 10.1021/ol503388a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lijing Fang
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Guiyang Yao
- Key Laboratory for the Chemistry and Molecular Engineer of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhengyin Pan
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Chunlei Wu
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Heng-Shan Wang
- Key Laboratory for the Chemistry and Molecular Engineer of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, P. R. China
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Wu Su
- Guangdong
Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
11
|
Fallows AJ, Singh I, Dondi R, Cullis PM, Burley GA. Highly efficient synthesis of DNA-binding polyamides using a convergent fragment-based approach. Org Lett 2014; 16:4654-7. [PMID: 25162625 DOI: 10.1021/ol502203y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two advances in the synthesis of hairpin pyrrole-imidazole polyamides (PAs) are described. First, the application of a convergent synthetic strategy is shown, involving the Boc-based solid phase synthesis of a C-terminal fragment and the solution phase synthesis of the N-terminal fragment. Second a new hybrid resin is developed that allows for the preparation of hairpin PAs lacking a C-terminal β-alanine tail. Both methods are compatible with a range of coupling reagents and provide a facile, modular route to prepare PA libraries in high yield and crude purity.
Collapse
Affiliation(s)
- Andrew J Fallows
- Department of Chemistry, University of Leicester , University Road, Leicester, LE1 7RH, U.K
| | | | | | | | | |
Collapse
|
12
|
Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG. Fluorescent probes for nucleic Acid visualization in fixed and live cells. Molecules 2013; 18:15357-97. [PMID: 24335616 PMCID: PMC6270009 DOI: 10.3390/molecules181215357] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Collapse
Affiliation(s)
- Alexandre S. Boutorine
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| | - Olga A. Krasheninina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 2, Novosibirsk 630090, Russia
| | - Karine Nozeret
- Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail:
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: (D.S.N.); (O.A.K.); (A.G.V.)
| |
Collapse
|
13
|
Abstract
![]()
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps.
Collapse
Affiliation(s)
- James W Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
14
|
Idhayadhul A, Kumar RS, Nasser AJA, Manilal A. Synthesis of Some Pyrrole Derivatives and their Anticoagulant Activity. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajdd.2012.40.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Edwards TG, Koeller KJ, Slomczynska U, Fok K, Helmus M, Bashkin JK, Fisher C. HPV episome levels are potently decreased by pyrrole-imidazole polyamides. Antiviral Res 2011; 91:177-86. [PMID: 21669229 DOI: 10.1016/j.antiviral.2011.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/19/2011] [Accepted: 05/29/2011] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV) causes cervical cancer and other hyperproliferative diseases. There currently are no approved antiviral drugs for HPV that directly decrease viral DNA load and that have low toxicity. We report the potent anti-HPV activity of two N-methylpyrrole-imidazole polyamides of the hairpin type, polyamide 1 (PA1) and polyamide 25 (PA25). Both polyamides have potent anti-HPV activity against three different genotypes when tested on cells maintaining HPV episomes. The compounds were tested against HPV16 (in W12 cells), HPV18 (in Ker4-18 cells), and HPV31 (in HPV31 maintaining cells). From a library of polyamides designed to recognize AT-rich DNA sequences such as those in or near E1 or E2 binding sites of the HPV16 origin of replication (ori), four polyamides were identified that possessed apparent IC(50)s≤150nM with no evidence of cytotoxicity. We report two highly-active compounds here. Treatment of epithelia engineered in organotypic cultures with these compounds also causes a dose-dependent loss of HPV episomal DNA that correlates with accumulation of compounds in the nucleus. Bromodeoxyuridine (BrdU) incorporation demonstrates that DNA synthesis in organotypic cultures is suppressed upon compound treatment, correlating with a loss of HPV16 and HPV18 episomes. PA1 and PA25 are currently in preclinical development as antiviral compounds for treatment of HPV-related disease, including cervical dysplasia. PA1, PA25, and related polyamides offer promise as antiviral agents and as tools to regulate HPV episomal levels in cells for the study of HPV biology. We also report that anti-HPV16 activity for Distamycin A, a natural product related to our polyamides, is accompanied by significant cellular toxicity.
Collapse
|
16
|
Chenoweth DM, Harki DA, Dervan PB. Oligomerization route to Py-Im polyamide macrocycles. Org Lett 2009; 11:3590-3. [PMID: 19627138 DOI: 10.1021/ol901311m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic eight-ring pyrrole-imidazole polyamides are sequence-specific DNA-binding small molecules that are cell permeable and can regulate endogenous gene expression. Syntheses of cyclic polyamides have been achieved by solid-phase and solution-phase methods. A rapid solution-phase oligomerization approach to eight-ring symmetrical cyclic polyamides yields 12- and 16-membered macrocycles as well. A preference for DNA binding by the 8- and 16-membered oligomers was observed over the 12-ring macrocycle, which we attributed to a conformational constraint not present in the smaller and larger systems.
Collapse
Affiliation(s)
- David M Chenoweth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
17
|
Su W, Gray SJ, Dondi R, Burley GA. Highly efficient synthesis of DNA-binding hairpin polyamides via the use of a new triphosgene coupling strategy. Org Lett 2009; 11:3910-3. [PMID: 19670849 DOI: 10.1021/ol9015139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile and highly efficient solid phase synthesis method is reported for the preparation of hairpin DNA-binding polyamides using the cost-effective triphosgene (BTC) activating agent. Difficult polyamide sequences were prepared from N-methylimidazole (Im) and N-methylpyrrole (Py) building blocks with high stepwise yields (>98%) using Boc chemistry. The versatility of the triphosgene coupling approach was also demonstrated for the first time on aryl hydrazine resins to afford biomedically relevant tail-truncated polyamides in excellent isolated yields.
Collapse
Affiliation(s)
- Wu Su
- Department of Chemistry, University of Leicester, University Road, Leicester, UK
| | | | | | | |
Collapse
|
18
|
Chenoweth DM, Harki DA, Dervan PB. Solution-phase synthesis of pyrrole-imidazole polyamides. J Am Chem Soc 2009; 131:7175-81. [PMID: 19413320 DOI: 10.1021/ja901307m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrole-imidazole polyamides are DNA-binding molecules that are programmable for a large repertoire of DNA sequences. Typical syntheses of this class of heterocyclic oligomers rely on solid-phase methods. Solid-phase methodologies offer rapid assembly on a micromole scale sufficient for biophysical characterizations and cell culture studies. In order to produce gram-scale quantities necessary for efficacy studies in animals, polyamides must be readily synthesized in solution. An 8-ring hairpin polyamide 1, which targets the DNA sequence 5'-WGWWCW-3', was chosen for our synthesis studies as this oligomer exhibits androgen receptor antagonism in cell culture models of prostate cancer. A convergent solution-phase synthesis of 1 from a small set of commercially available building blocks is presented which highlights principles for preparing gram quantities of pyrrole-imidazole oligomers with minimal chromatography.
Collapse
Affiliation(s)
- David M Chenoweth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
19
|
Moore MJB, Cuenca F, Searcey M, Neidle S. Synthesis of distamycin A polyamides targeting G-quadruplex DNA. Org Biomol Chem 2006; 4:3479-88. [PMID: 17036143 DOI: 10.1039/b607707b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of amide-linked oligopyrroles based on distamycin molecules have been synthesized by solid-state methods, and their interactions with a human intramolecular G-quadruplex have been measured by a melting procedure. Several of these molecules show an enhanced ratio of quadruplex vs. duplex DNA binding compared to distamycin itself, including one with a 2,5-disubstituted pyrrole group. Quadruplex affinity increases with the number of pyrrole groups, and it is suggested that this is consistent with a mixed groove/G-quartet stacking binding mode.
Collapse
Affiliation(s)
- Michael J B Moore
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK WC1N 1AX
| | | | | | | |
Collapse
|
20
|
Tse WC, Ishii T, Boger DL. Comprehensive high-resolution analysis of hairpin polyamides utilizing a fluorescent intercalator displacement (FID) assay. Bioorg Med Chem 2003; 11:4479-86. [PMID: 13129584 DOI: 10.1016/s0968-0896(03)00455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four hairpin polyamides bearing subtle N- and C-terminal substitutions were examined in a fluorescent intercalator displacement (FID) assay enlisting a library of 512 DNA hairpins that contain all possible five base pair sequences in a challenging probe of its capabilities for establishing DNA binding sequence selectivity. Not only did the assay define the global sequence selectivity expected based on known structural interactions and Dervan's pairing rules establishing the utility of the method for characterizing such polyamides, but previously unappreciated subtle substituent effects on global sequence selectivity were also revealed. Thus, we report the discovery of a novel five base pair high affinity binding site of the form 5'-WWCWW (vs 5'-WGWWW) for the polyamide ImPyPy-gamma-PyPyPy-beta-Dp and its structural basis.
Collapse
Affiliation(s)
- Winston C Tse
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
21
|
Choi JS, Lee Y, Kim E, Jeong N, Yu H, Han H. The 2-(4-trifluoromethylphenylsulfonyl)ethoxycarbonyl (Tsc) amino-protecting group: use in the solid-phase synthesis of pyrrole-imidazole polyamides. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00010-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|