1
|
Cheng W, Huang Y, Gao H, Bold B, Zhang T, Yang D. Marine Natural Products as Novel Treatments for Parasitic Diseases. Handb Exp Pharmacol 2024. [PMID: 38554166 DOI: 10.1007/164_2024_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.
Collapse
Affiliation(s)
- Wenbing Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine/The Second Clinical Medical College), Chengdu, Sichuan, China
| | - Bolor Bold
- National Center for Zoonotic Disease, Ulaanbaatar, Mongolia
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, China
| |
Collapse
|
2
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
3
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
4
|
Huang G, Murillo Solano C, Melendez J, Shaw J, Collins J, Banks R, Arshadi AK, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Synthesis, Structure-Activity Relationship, and Antimalarial Efficacy of 6-Chloro-2-arylvinylquinolines. J Med Chem 2020; 63:11756-11785. [PMID: 32959656 DOI: 10.1021/acs.jmedchem.0c00858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is an urgent need to develop new efficacious antimalarials to address the emerging drug-resistant clinical cases. Our previous phenotypic screening identified styrylquinoline UCF501 as a promising antimalarial compound. To optimize UCF501, we herein report a detailed structure-activity relationship study of 2-arylvinylquinolines, leading to the discovery of potent, low nanomolar antiplasmodial compounds against a Plasmodium falciparum CQ-resistant Dd2 strain, with excellent selectivity profiles (resistance index < 1 and selectivity index > 200). Several metabolically stable 2-arylvinylquinolines are identified as fast-acting agents that kill asexual blood-stage parasites at the trophozoite phase, and the most promising compound 24 also demonstrates transmission blocking potential. Additionally, the monophosphate salt of 24 exhibits excellent in vivo antimalarial efficacy in the murine model without noticeable toxicity. Thus, the 2-arylvinylquinolines represent a promising class of antimalarial drug leads.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Justin Shaw
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Jennifer Collins
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Robert Banks
- Research Program Services, University of Central Florida, Orlando, Florida 32816, United States
| | - Arash Keshavarzi Arshadi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States.,Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
5
|
Altundas B, Marrazzo JPR, Fleming FF. Metalated isocyanides: formation, structure, and reactivity. Org Biomol Chem 2020; 18:6467-6482. [PMID: 32766609 DOI: 10.1039/d0ob01340d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metalated isocyanides are highly versatile organometallics. Central to the reactivity of metalated isocyanides is the presence of two orthogonally reactive carbons, a highly nucleophilic "carbanion" inductively stabilized by a carbene-like isocyanide carbon. The two reactivities are harnessed in the attack of metalated isocyanides on π-electrophiles where an initial nucleophilic attack leads to an electron pair that cyclizes onto the terminal isocyanide carbon in a rapid route to diverse, nitrogenous heterocycles. Harnessing the potent nucleophilicity of metalated isocyanides while preventing electrophilic attack on the terminal isocyanide carbon has largely been driven by empirical heuristics. This review provides a foundational understanding by surveying the formation, structure, and properties of metalated isocyanides. The focus on the interplay between the structure and reactivity of metalated isocyanides is anticipated to facilitate the development and deployment of these exceptional nucleophiles in complex bond constructions.
Collapse
Affiliation(s)
- Bilal Altundas
- Chemistry, Drexel University, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
6
|
Shi W, Liu Q, Zhang J, Zhou X, Yang C, Zhang K, Xie Z. Tetraphenylethene-decorated functional polybenzoxazines: post-polymerization synthesis via benzoxazine–isocyanide chemistry and application in probing and catalyst fields. Polym Chem 2019. [DOI: 10.1039/c8py01689e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzoxazine–isocyanide chemistry (BIC) was utilized to construct functional polybenzoxazines via a post-polymerization protocol, and the application of corresponding polymers was investigated.
Collapse
Affiliation(s)
- Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Qiao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Jie Zhang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Xinyu Zhou
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Chang Yang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Kesong Zhang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| |
Collapse
|
7
|
Lu HH, Pronin SV, Antonova-Koch Y, Meister S, Winzeler EA, Shenvi RA. Synthesis of (+)-7,20-Diisocyanoadociane and Liver-Stage Antiplasmodial Activity of the Isocyanoterpene Class. J Am Chem Soc 2016; 138:7268-71. [PMID: 27244042 DOI: 10.1021/jacs.6b03899] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
7,20-Diisocyanoadociane, a scarce marine metabolite with potent antimalarial activity, was synthesized as a single enantiomer in 13 steps from simple building blocks (17 linear steps). Chemical synthesis enabled identification of isocyanoterpene antiplasmodial activity against liver-stage parasites, which suggested that inhibition of heme detoxification does not exclusively underlie the mechanism of action of this class.
Collapse
Affiliation(s)
- Hai-Hua Lu
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sergey V Pronin
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | - Stephan Meister
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Schnermann MJ, Shenvi RA. Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat Prod Rep 2015; 32:543-77. [PMID: 25514696 DOI: 10.1039/c4np00109e] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isocyanoterpenes (ICTs) are marine natural products biosynthesized through an unusual pathway that adorns terpene scaffolds with nitrogenous functionality derived from cyanide. The appendage of nitrogen functional groups - isonitriles in particular - onto stereochemically-rich carbocyclic ring systems provides enigmatic, bioactive molecules that have required innovative chemical syntheses. This review discusses the challenges inherent to the synthesis of this diverse family and details the development of the field. We also present recent progress in isolation and discuss key aspects of the remarkable biological activity of these compounds.
Collapse
Affiliation(s)
- Martin J Schnermann
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21701, USA.
| | | |
Collapse
|
9
|
Davis DC, Mohammad H, Kyei-Baffour K, Younis W, Creemer CN, Seleem MN, Dai M. Discovery and characterization of aryl isonitriles as a new class of compounds versus methicillin- and vancomycin-resistant Staphylococcus aureus. Eur J Med Chem 2015; 101:384-90. [PMID: 26164843 DOI: 10.1016/j.ejmech.2015.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) have emerged as a global health concern. A new class of compounds featuring an aryl isonitrile moiety has been discovered that exhibits potent inhibitory activity against several clinically-relevant MRSA and VRSA isolates. Structure-activity relationship studies have been conducted to identify the aryl isonitrile group as the key functional group responsible for the observed antibacterial activity. The most potent antibacterial aryl isonitrile analogs (MIC 2 μM) did not show any toxicity against mammalian cells up to a concentration of 64 μM.
Collapse
Affiliation(s)
- Dexter C Davis
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, United States
| | - Kwaku Kyei-Baffour
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Waleed Younis
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, United States
| | - Cassidy Noel Creemer
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907, United States.
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Anti-Fertilization Activity of a Spirocyclic Sesquiterpene Isocyanide Isolated from the Marine SpongeGeodia exiguaand Related Compounds. Biosci Biotechnol Biochem 2014; 72:1764-71. [DOI: 10.1271/bbb.80071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Malik S, Khan SA, Ahuja P, Arya SK, Sahu S, Sahu K. Singlet oxygen-mediated synthesis of malarial chemotherapeutic agents. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0578-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Guchhait SK, Priyadarshani G, Chaudhary V, Seladiya DR, Shah TM, Bhogayta NP. One-pot preparation of isocyanides from amines and their multicomponent reactions: crucial role of dehydrating agent and base. RSC Adv 2013. [DOI: 10.1039/c3ra40347e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Abstract
SIGNIFICANCE Parasitic diseases affect hundreds of millions of people worldwide and represent major health problems. Treatment is becoming extremely difficult due to the emergence of drug resistance, the absence of effective vaccines, and the spread of insecticide-resistant vectors. Thus, identification of affordable and readily available drugs against resistant parasites is of global demand. RECENT ADVANCES Susceptibility of many parasites to oxidative stress is a well-known phenomenon. Therefore, generation of reactive oxygen species (ROS) or inhibition of endogenous antioxidant enzymes would be a novel therapeutic approach to develop antiparasitic drugs. This article highlights the unique metabolic pathways along with redox enzymes of unicellular (Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani, Entamoeba histolytica, and Trichomonas vaginalis) and multicellular parasites (Schistosoma mansoni), which could be utilized to promote ROS-mediated toxicity. CRITICAL ISSUES Enzymes involved in various vital redox reactions could be potential targets for drug development. FUTURE DIRECTIONS The identification of redox-active antiparasitic drugs along with their mode of action will help researchers around the world in designing novel drugs in the future.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
14
|
Chanthathamrongsiri N, Yuenyongsawad S, Wattanapiromsakul C, Plubrukarn A. Bifunctionalized amphilectane diterpenes from the sponge Stylissa cf. massa. JOURNAL OF NATURAL PRODUCTS 2012; 75:789-792. [PMID: 22376176 DOI: 10.1021/np200959j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two new amphilectane-type diterpenes, 8-isocyanato-15-formamidoamphilect-11(20)-ene (1) and 8-isothiocyanato-15-formamidoamphilect-11(20)-ene (2), along with two known derivatives, 8-isocyano-15-formamidoamphilect-11(20)-ene (3) and 7-formamidoamphilect-11(20),15-diene (4), were isolated from the sponge Stylissa cf. massa. Diterpenes bearing two different isonitrile-related functionalities, as in 1-3, are rare. The coexistence of these compounds, all of which possess the identical carbon skeleton, in the same sponge specimen suggests interconversion among them. All the isolated compounds were tested for antimalarial activity. Compound 3 proved approximately 10 times more active than 1 and 2, indicating the importance of the isonitrile moiety to antimalarial activity versus the isocyanate and isothiocyanate groups, respectively. Compound 4, which contains only the formamide group, was inactive at the highest concentration tested.
Collapse
Affiliation(s)
- Naphatson Chanthathamrongsiri
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | | | | | | |
Collapse
|
15
|
Meyyanathan SN, Ramu M, Suresh B. Synthesis, antimalarial and antibacterial activities of 3-amino acid- and aryl amine-substituted 2-methyl-3H-quinalzolin-4-ones. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9245-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wattanapiromsakul C, Chanthathamrongsiri N, Bussarawit S, Yuenyongsawad S, Plubrukarn A, Suwanborirux K. 8-Isocyanoamphilecta-11(20),15-diene, a new antimalarial isonitrile diterpene from the sponge Ciocalapata sp. CAN J CHEM 2009. [DOI: 10.1139/v09-030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new isonitrile diterpene of the amphilectane family, 8-isocyanoamphilecta-11(20),15-diene (4), was isolated from the sponge Ciocalapata sp., along with three known isonitriles, 8,15-diisocyano-11(20)-amphilectene (1), 7-isocyanoamphilecta-11(20),15-diene (2), and 8-isocyanoamphilecta-11(20),14-diene (3), and two steroidal peroxides, ergosterol peroxide (5) and 5α,9α-epidioxy-8α,14α-epoxy-(22E)-ergosta-6,22-dien-3β-ol (6). The structure of the new isonitrile was elucidated spectroscopically. In addition, anomalous multiplicities in the NMR spectra of some isolated isonitriles were observed and are reported here. The four isonitriles were strongly active against Plasmodium falciparum K1 with IC50 in a range of 0.09–1.07 μmol/L. Except for 1, which was cytotoxic against both MCF-7 and fibroblast cell lines, the other three diterpenes showed no significant cytotoxicity against either targeted cell lines. On the other hand, the steroidal peroxides 5 and 6, which were less active in the antimalarial bioassay (IC50 values of 6.28 and 7.13 µmol/L, respectively), were strongly cytotoxic against MCF-7 (IC50 values of 0.025 and 0.003 µmol/L, respectively), with very little toxicity against human fibroblasts.
Collapse
Affiliation(s)
- Chatchai Wattanapiromsakul
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Naphatson Chanthathamrongsiri
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Somchai Bussarawit
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Supreeya Yuenyongsawad
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Anuchit Plubrukarn
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Khanit Suwanborirux
- Marine Natural Products Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
- Marine Biology Research Center, Cape Panwa, Phuket 93000, Thailand
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi (BNPME), Department of Pharmacognosy, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update. Life Sci 2007; 80:813-28. [PMID: 17157328 DOI: 10.1016/j.lfs.2006.11.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
Digestion of hemoglobin in the food vacuole of the malaria parasite produces very high quantities of redox active toxic free heme. Hemozoin (beta-hematin) formation is a unique process adopted by Plasmodium sp. to detoxify free heme. Hemozoin formation is a validated target for most of the well-known existing antimalarial drugs and considered to be a suitable target to develop new antimalarials. Here we discuss the possible mechanisms of free heme detoxification in the malaria parasite and the mechanistic details of compounds, which offer antimalarial activity by inhibiting hemozoin formation. The chemical nature of new antimalarial compounds showing antimalarial activity through the inhibition of hemozoin formation has also been incorporated, which may help to design future antimalarials with therapeutic potential against multi-drug resistant malaria.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
18
|
Laurent D, Pietra F. Antiplasmodial marine natural products in the perspective of current chemotherapy and prevention of malaria: a review. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:433-47. [PMID: 16565802 DOI: 10.1007/s10126-006-6100-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/09/2006] [Indexed: 05/08/2023]
Abstract
The difficulty of obtaining an antimalarial vaccine along traditional lines, because of the highly adaptive character of the malaria parasite, prompts a ceaseless need for new drugs. To this end, marine organisms have been explored recently, as reviewed in this article within the perspective of clinically available antimalarial drugs and promising candidates. Most promising are tetrahydropyrrolo[1,2-alpha]pyrimidinium, bis-indole, and C(11)-N(5) alkaloids from sponges; pyridoacridone and decahydroquinoline alkaloids from ascidians; and pyrrole alkaloids from fungi, as well as polycyclic polyketides, norditerpene, and polyketide endoperoxides, terpene isonitriles, and, particularly, mixed-biogenesis alpha-galactosyl ceramides from sponges. The first and the latter classes of agents best fulfill the requirements for combinatorial synthesis in providing a wide variety of compounds for high-throughput screening and toxicity tests. These results came largely from nonprofit organizations, a trend that we foresee will continue. However, partnership with the pharmaceutical industry was and is needed to bring candidate drugs to the clinic. In any event, success will not be achieved without political plans to make the results of technology easily available to poor populations.
Collapse
Affiliation(s)
- Dominique Laurent
- IRD (Institut de Recherche pour le Développement), UMR152 IRD-Université Paul Sabatier Toulouse III, Centre de Nouméa, BP A5, 98848, Nouméa, Nouvelle-Calédonie.
| | | |
Collapse
|
19
|
Porcheddu A, Giacomelli G, Salaris M. Microwave-Assisted Synthesis of Isonitriles: A General Simple Methodology. J Org Chem 2005; 70:2361-3. [PMID: 15760232 DOI: 10.1021/jo047924f] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] A facile conversion of formamides to isonitriles under very mild conditions and microwave irradiation is described. This simple and efficient method has been applied for the synthesis of both aliphatic and aromatic isonitriles in high yields.
Collapse
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Chimica, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari.
| | | | | |
Collapse
|