1
|
Kaddah MMY, Billig S, Oehme R, Birkemeyer C. Bio-activation of simeprevir in liver microsomes and characterization of its glutathione conjugates by liquid chromatography coupled to ultrahigh-resolution quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021; 1645:462095. [PMID: 33857675 DOI: 10.1016/j.chroma.2021.462095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Liquid chromatography coupled to a triple quadrupole and, alternatively, to an ultrahigh-resolution quadrupole time-of-flight (UHR-QqTOF) mass spectrometers was used to collect qualitative and quantitative information from incubations of the anti-hepatitis C drug simeprevir with human and rat liver microsomes, respectively, supplemented with NADPH and glutathione. For this, different chromatographic methods using two different chromatographic columns, Kinetex® 2.6 µm C18 (50 × 3 mm) and Atlantis T3 (100 Å, 3 µm, 4.6 mm × 150 mm), have been employed. For determination and structural characterization of the reactive metabolites, we used information obtained from high-resolution mass spectrometry, namely accurate mass data to calculate the elemental composition, accurate MS/MS fragmentation patterns for confirmation of structural proposals, and the high mass spectral resolution to eliminate false-positive peaks. In this study, the use of high-resolution mass spectrometry (HR-MS) enabled the identification of 19 simeprevir metabolites generated by O- respectively N-demethylation, oxidation, dehydrogenation, hydrolysis, and formation of glutathione conjugates. The in silico study provides insights into the sites of simeprevir most amenable to reactions involving cytochrome P450. The developed methods have been successfully applied to analyze simeprevir and its metabolites simultaneously; based on this data, potential metabolic pathways of simeprevir are discussed. In general, the obtained results demonstrate that simeprevir is susceptible to form reactive simeprevir-glutathione adducts and cyclopropansulfonamide, which may explain the implication of simeprevir in idiosyncratic adverse drug reactions (IADRs) or hepatotoxicity.
Collapse
Affiliation(s)
- Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Susan Billig
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| | - Ramona Oehme
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry, Faculty of Chemistry and Mineralogy, University of Leipzig, Linnèstr. 3, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Kalgutkar AS, Ryder TF, Walker GS, Orr STM, Cabral S, Goosen TC, Lapham K, Eng H. Reactive Metabolite Trapping Studies on Imidazo- and 2-Methylimidazo[2,1-b]thiazole-Based Inverse Agonists of the Ghrelin Receptor. Drug Metab Dispos 2013; 41:1375-88. [DOI: 10.1124/dmd.113.051839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
3
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
4
|
Teffera Y, Choquette D, Liu J, Colletti AE, Hollis LS, Lin MHJ, Zhao Z. Bioactivation of Isothiazoles: Minimizing the Risk of Potential Toxicity in Drug Discovery. Chem Res Toxicol 2010; 23:1743-52. [DOI: 10.1021/tx100208k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yohannes Teffera
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| | - Deborah Choquette
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| | - Jingzhou Liu
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| | - Adria E. Colletti
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| | - L. Steven Hollis
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| | - Min-Hwa Jasmine Lin
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| | - Zhiyang Zhao
- Department of Pharmacokinetics and Drug Metabolism, and Department of Chemical Research and Discovery, Amgen, Inc., Cambridge, Massachusetts 02142
| |
Collapse
|
5
|
Langdon SR, Ertl P, Brown N. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization. Mol Inform 2010; 29:366-85. [PMID: 27463193 DOI: 10.1002/minf.201000019] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/01/2010] [Indexed: 11/09/2022]
Abstract
Bioisosteric replacement and scaffold hopping are twin methods used in drug design to improve the synthetic accessibility, potency and drug like properties of a compound and to move into novel chemical space. Bioisosteric replacement involves swapping functional groups of a molecule with other functional groups that have similar biological properties. Scaffold hopping is the replacement of the core framework of a molecule with another scaffold that will improve the properties of the molecule or to find similar potent compounds that exist in novel chemical space. This review outlines the key concepts, importance and challenges of both methods using examples and comparisons of techniques available for finding bioisosteric replacements and scaffold hops. There are many methods available for bioisosteric replacement and scaffold hopping, all with their own advantages and disadvantages. Drug design projects would benefit from a combination of these methods to retrieve diverse and complimentary results. Continuing progress in these fields will allow further validation of both methods as well as the accumulation of knowledge on bioisosteres and possible scaffold replacements.
Collapse
Affiliation(s)
- Sarah R Langdon
- In Silico Medicinal Chemistry, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK phone/fax: +44 (0) 20 8722 4033/+44 (0) 20 8722 4205
| | - Peter Ertl
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Nathan Brown
- In Silico Medicinal Chemistry, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK phone/fax: +44 (0) 20 8722 4033/+44 (0) 20 8722 4205.
| |
Collapse
|
6
|
Vu CB, Bemis JE, Disch JS, Ng PY, Nunes JJ, Milne JC, Carney DP, Lynch AV, Smith JJ, Lavu S, Lambert PD, Gagne DJ, Jirousek MR, Schenk S, Olefsky JM, Perni RB. Discovery of Imidazo[1,2-b]thiazole Derivatives as Novel SIRT1 Activators. J Med Chem 2009; 52:1275-83. [DOI: 10.1021/jm8012954] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chi B. Vu
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Jean E. Bemis
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Jeremy S. Disch
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Pui Yee Ng
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Joseph J. Nunes
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Jill C. Milne
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - David P. Carney
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Amy V. Lynch
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Jesse J. Smith
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Siva Lavu
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Philip D. Lambert
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - David J. Gagne
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Michael R. Jirousek
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Simon Schenk
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Jerrold M. Olefsky
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| | - Robert B. Perni
- Sirtris Pharmaceuticals, 200 Technology Square, Cambridge, Massachusetts 02139
| |
Collapse
|
7
|
Reddy VBG, Karanam BV, Gruber WL, Wallace MA, Vincent SH, Franklin RB, Baillie TA. Mechanistic studies on the metabolic scission of thiazolidinedione derivatives to acyclic thiols. Chem Res Toxicol 2005; 18:880-8. [PMID: 15892582 DOI: 10.1021/tx0500373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiazolidinedione (TZD) derivatives have been reported to undergo metabolic activation of the TZD ring to produce reactive intermediates. In the case of troglitazone, it was proposed that a P450-mediated S-oxidation leads to TZD ring scission and the formation of a sulfenic acid intermediate, which may be trapped as a GSH conjugate. In the present study, we employed a model compound {denoted MRL-A, (+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethoxy)phenyl]methyl]benzamide} to investigate the mechanism of TZD ring scission. When MRL-A was incubated with monkey liver microsomes (or recombinant P450 3A4 and NADPH-P450 reductase) in the presence of NADPH and oxygen, the major products of TZD ring scission were the free thiol metabolite (M2) and its dimer (M3). Furthermore, a GSH conjugate of M2 (M4) also was formed when the incubation mixture was supplemented with GSH. Experiments with isolated M2 suggested that this metabolite was unstable and underwent spontaneous autooxidation to M3. A qualitatively similar metabolite profile was observed when MRL-A was incubated with recombinant P450 3A4 and cumene hydroperoxide. Because an oxygen atom is transferred to MRL-A under these conditions, these data suggested that S-oxidation alone may result in TZD ring scission and formation of M2 via a sulfenic acid intermediate. Also, because the latter incubation mixture did not contain any reducing agents, the formation of M2 may have occurred due to disproportionation of the sulfenic acid. When NADPH was added to the incubation mixture containing P450 3A4 and cumene hydroperoxide, the formation of M3 increased, suggesting that the sulfenic acid was reduced to M2 by NADPH and subsequently underwent dimerization to yield M3 (vide supra). When NADPH was replaced by GSH, the formation of M4 increased, consistent with reduction of the sulfenic acid by GSH. In summary, these results suggest that the TZD ring in MRL-A is activated by an initial P450-mediated S-oxidation step followed by spontaneous scission of the TZD ring to a putative sulfenic acid intermediate; the latter species then undergoes reduction to the free thiol by GSH, NADPH, and/or disproportionation. Finally, the thiol may dimerize to the corresponding disulfide or, in the presence of S-adenosylmethionine, form the stable S-methyl derivative.
Collapse
Affiliation(s)
- Vijay Bhasker G Reddy
- Department of Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kalgutkar AS, Soglia JR. Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol 2005; 1:91-142. [PMID: 16922655 DOI: 10.1517/17425255.1.1.91] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Investigations into the role of bioactivation in the pathogenesis of xenobiotic-induced toxicity have been a major area of research since the link between reactive metabolites and carcinogenesis was first reported in the 1930s. Circumstantial evidence suggests that bioactivation of relatively inert functional groups to reactive metabolites may contribute towards certain drug-induced adverse reactions. Reactive metabolites, if not detoxified, can covalently modify essential cellular targets. The identity of the susceptible biomacromolecule(s), and the physiological consequence of its covalent modification, will dictate the resulting toxicological response (e.g., covalent modification of DNA by reactive intermediates derived from procarcinogens that potentially leads to carcinogenesis). The formation of drug-protein adducts often carries a potential risk of clinical toxicities that may not be predicted from preclinical safety studies. Animal models used to reliably predict idiosyncratic drug toxicity are unavailable at present. Furthermore, considering that the frequency of occurrence of idiosyncratic adverse drug reactions (IADRs) is fairly rare (1 in 1000 to 1 in 10,000), it is impossible to detect such phenomena in early clinical trials. Thus, the occurrence of IADRs during late clinical trials or after a drug has been released can lead to an unanticipated restriction in its use and even in its withdrawal. Major themes explored in this review include a comprehensive cataloguing of bioactivation pathways of functional groups commonly utilised in drug design efforts with appropriate strategies towards detection of corresponding reactive intermediates. Several instances wherein replacement of putative structural alerts in drugs associated with IADRs with a latent functionality eliminates the underlying liability are also presented. Examples of where bioactivation phenomenon in drug candidates can be successfully abrogated via iterative chemical interventions are also discussed. Finally, appropriate strategies that aid in potentially mitigating the risk of IADRs are explored, especially in circumstances in which the structural alert is also responsible for the primary pharmacology of the drug candidate and cannot be replaced.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pfizer Global Research & Development, Pharmacokinetics, Dynamics and Metabolism Department, Groton, CT 06340, USA.
| | | |
Collapse
|
9
|
|
10
|
Affiliation(s)
- J J Talley
- G.D. Searle, Division of Monsanto, St. Louis, MO 63198, USA
| |
Collapse
|
11
|
Synthesis of (4-chlorophenyl)-(1-oxo-1λ4-benzo[b]thien-2-yl)methanone and study of its reactivity towards sulfur- and oxygen-containing nucleophiles. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)00929-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|