1
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Lopez Quezada L, Li K, McDonald SL, Nguyen Q, Perkowski AJ, Pharr CW, Gold B, Roberts J, McAulay K, Saito K, Somersan Karakaya S, Javidnia PE, Porras de Francisco E, Amieva MM, Dı́az SP, Mendoza Losana A, Zimmerman M, Liang HPH, Zhang J, Dartois V, Sans S, Lagrange S, Goullieux L, Roubert C, Nathan C, Aubé J. Dual-Pharmacophore Pyrithione-Containing Cephalosporins Kill Both Replicating and Nonreplicating Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:1433-1445. [PMID: 31184461 DOI: 10.1021/acsinfecdis.9b00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The historical view of β-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a β-lactamase inhibitor. However, most antimycobacterial β-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 β-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a β-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A β-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent β-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Andrew J. Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Cameron W. Pharr
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Kathrine McAulay
- Center for Global Health, Weill Cornell Medicine, 402 East 67th Street, New York, New York 10065, United States
- Les Centres GHESKIO, 33, Boulevard Harry Truman, Port-au-Prince, Haiti
| | - Kohta Saito
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Selin Somersan Karakaya
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Prisca Elis Javidnia
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Esther Porras de Francisco
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Manuel Marin Amieva
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Palomo Dı́az
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Alfonso Mendoza Losana
- Diseases of the Developing World (DDW), Tres Cantos Medicine Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Hsin-Pin Ho Liang
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Jun Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Veronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, 225 Warren Street, Newark, New Jersey 07013, United States
| | - Stéphanie Sans
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Sophie Lagrange
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Laurent Goullieux
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Christine Roubert
- Evotec ID (Lyon), SAS, 1541, Avenue Marcel Merieux, Marcy l’Etoile 69280, France
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|