1
|
Campagnaro GD, de Koning HP. Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. Med Res Rev 2020; 40:1679-1714. [PMID: 32144812 DOI: 10.1002/med.21667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Purines and pyrimidines are essential nutrients for any cell. Most organisms are able to synthesize their own purines and pyrimidines, but this ability was lost in protozoans that adapted to parasitism, leading to a great diversification in transporter activities in these organisms, especially for the acquisition of amino acids and nucleosides from their hosts throughout their life cycles. Many of these transporters have been shown to have sufficiently different substrate affinities from mammalian transporters, making them good carriers for therapeutic agents. In this review, we summarize the knowledge obtained on purine and pyrimidine activities identified in protozoan parasites to date and discuss their importance for the survival of these parasites and as drug carriers, as well as the perspectives of developments in the field.
Collapse
Affiliation(s)
- Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| |
Collapse
|
2
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
3
|
Campagnaro GD, Alzahrani KJ, Munday JC, De Koning HP. Trypanosoma brucei bloodstream forms express highly specific and separate transporters for adenine and hypoxanthine; evidence for a new protozoan purine transporter family? Mol Biochem Parasitol 2018; 220:46-56. [DOI: 10.1016/j.molbiopara.2018.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
|
4
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
5
|
Sayé M, Fargnoli L, Reigada C, Labadie GR, Pereira CA. Evaluation of proline analogs as trypanocidal agents through the inhibition of a Trypanosoma cruzi proline transporter. Biochim Biophys Acta Gen Subj 2017; 1861:2913-2921. [PMID: 28844978 DOI: 10.1016/j.bbagen.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. METHODS Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. RESULTS The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC50 values between 30 and 40μM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. CONCLUSIONS It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. GENERAL SIGNIFICANCE The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease.
Collapse
Affiliation(s)
- Melisa Sayé
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía Fargnoli
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Chantal Reigada
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudio A Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Prati F, Goldman-Pinkovich A, Lizzi F, Belluti F, Koren R, Zilberstein D, Bolognesi ML. Quinone-amino acid conjugates targeting Leishmania amino acid transporters. PLoS One 2014; 9:e107994. [PMID: 25254495 PMCID: PMC4177859 DOI: 10.1371/journal.pone.0107994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/22/2014] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1–15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.
Collapse
Affiliation(s)
- Federica Prati
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Federica Lizzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Roni Koren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
7
|
Characterization of a melamino nitroheterocycle as a potential lead for the treatment of human african trypanosomiasis. Antimicrob Agents Chemother 2014; 58:5747-57. [PMID: 25022590 DOI: 10.1128/aac.01449-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential.
Collapse
|
8
|
Klee N, Wong PE, Baragaña B, Mazouni FE, Phillips MA, Barrett MP, Gilbert IH. Selective delivery of 2-hydroxy APA to Trypanosoma brucei using the melamine motif. Bioorg Med Chem Lett 2010; 20:4364-6. [PMID: 20615694 PMCID: PMC2935964 DOI: 10.1016/j.bmcl.2010.06.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022]
Abstract
Trypanosoma brucei, the parasite that causes human African trypanosomiasis, is auxotrophic for purines and has specialist nucleoside transporters to import these metabolites. In particular, the P2 aminopurine transporter can also selectively accumulate melamine derivatives. In this Letter, we report the coupling of the melamine moiety to 2-hydroxy APA, a potent ornithine decarboxylase inhibitor, with the aim of selectively delivering this compound to the parasite. The best compound described here shows an increased in vitro trypanocidal activity compared with the parent.
Collapse
Affiliation(s)
- Nina Klee
- Division of Biological Chemistry and Drug Discovery, College of Life Science, University of Dundee, Sir James Black Centre, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
10
|
Wenzel IN, Wong PE, Maes L, Müller TJJ, Krauth-Siegel RL, Barrett MP, Davioud-Charvet E. Unsaturated Mannich bases active against multidrug-resistant Trypanosoma brucei brucei strains. ChemMedChem 2009; 4:339-51. [PMID: 19219843 DOI: 10.1002/cmdc.200800360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A series of unsaturated Mannich bases possessing two electrophilic sites was recently identified as irreversible inhibitors of trypanothione reductase from Trypanosoma cruzi. New derivatives were synthesized by modifying the substitution pattern on the aromatic ring and by incorporating the melamine motif of melarsoprol. Their affinity to P2 transporter and their trypanocidal properties have been studied using three strains expressing various purine transporters. While the melamine derivatives showed some affinity to the P2 transporter, unsaturated Mannich bases without the melamine motif showed excellent potencies against pentamidine-resistant strains of T. brucei brucei suggesting alternative drug uptake routes. The Michael acceptor properties of the three most active compounds towards glutathione correlated with the observed trypanocidal activities.
Collapse
Affiliation(s)
- I Nicole Wenzel
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Chollet C, Baliani A, Wong PE, Barrett MP, Gilbert IH. Targeted delivery of compounds to Trypanosoma brucei using the melamine motif. Bioorg Med Chem 2009; 17:2512-23. [PMID: 19250832 DOI: 10.1016/j.bmc.2009.01.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/21/2009] [Accepted: 01/25/2009] [Indexed: 11/29/2022]
Abstract
There is an urgent need for the development of new drugs for the treatment of human African trypanosomiasis. The causative organism, Trypanosoma brucei, has been shown to have some unusual plasma membrane transporters, in particular the P2 aminopurine transporter and related permeases, which have been used for the selective targeting of trypanocidal compounds to the organism. In this paper, we report the addition of melamine-based P2-targeting motifs to three different classes of compound in order to try and improve activity through increased selective uptake. The classes reported here are fluoroquinolones, difluoromethylornithine and artesunate derivatives.
Collapse
Affiliation(s)
- Constance Chollet
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
12
|
Barrett MP, Gilbert IH. Targeting of toxic compounds to the trypanosome's interior. ADVANCES IN PARASITOLOGY 2006; 63:125-83. [PMID: 17134653 DOI: 10.1016/s0065-308x(06)63002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs can be targeted into African trypanosomes by exploiting carrier proteins at the surface of these parasites. This has been clearly demonstrated in the case of the melamine-based arsenical and the diamidine classes of drug that are already in use in the treatment of human African trypanosomiasis. These drugs can enter via an aminopurine transporter, termed P2, encoded by the TbAT1 gene. Other toxic compounds have also been designed to enter via this transporter. Some of these compounds enter almost exclusively through the P2 transporter, and hence loss of the P2 transporter leads to significant resistance to these particular compounds. It now appears, however, that some diamidines and melaminophenylarsenicals may also be taken up by other routes (of yet unknown function). These too may be exploited to target new drugs into trypanosomes. Additional purine nucleoside and nucleobase transporters have also been subverted to deliver toxic agents to trypanosomes. Glucose and amino acid transporters too have been investigated with a view to manipulating them to carry toxins into Trypanosoma brucei, and recent work has demonstrated that aquaglyceroporins may also have considerable potential for drug-targeting. Transporters, including those that carry lipids and vitamins such as folate and other pterins also deserve more attention in this regard. Some drugs, for example suramin, appear to enter via routes other than plasma-membrane-mediated transport. Receptor-mediated endocytosis has been proposed as a possible way in for suramin. Endocytosis also appears to be crucial in targeting natural trypanocides, such as trypanosome lytic factor (TLF) (apolipoprotein L1), into trypanosomes and this offers an alternative means of selectively targeting toxins to the trypanosome's interior. Other compounds may be induced to enter by increasing their capacity to diffuse over cell membranes; in this case depending exclusively on selective activity within the cell rather than selective uptake to impart selective toxicity. This review outlines studies that have aimed to exploit trypanosome nutrient uptake routes to selectively carry toxins into these parasites.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
13
|
Al-Salabi MI, Wallace LJM, Lüscher A, Mäser P, Candlish D, Rodenko B, Gould MK, Jabeen I, Ajith SN, de Koning HP. Molecular interactions underlying the unusually high adenosine affinity of a novel Trypanosoma brucei nucleoside transporter. Mol Pharmacol 2006; 71:921-9. [PMID: 17185380 DOI: 10.1124/mol.106.031559] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei encodes a relatively high number of genes of the equilibrative nucleoside transporter (ENT) family. We report here the cloning and in-depth characterization of one T. brucei brucei ENT member, TbNT9/AT-D. This transporter was expressed in Saccharomyces cerevisiae and displayed a uniquely high affinity for adenosine (Km = 0.068 +/- 0.013 microM), as well as broader selectivity for other purine nucleosides in the low micromolar range, but was not inhibited by nucleobases or pyrimidines. This selectivity profile is consistent with the P1 transport activity observed previously in procyclic and long-slender bloodstream T. brucei, apart from the 40-fold higher affinity for adenosine than for inosine. We found that, like the previously investigated P1 activity of long/slender bloodstream trypanosomes, the 3'-hydroxy, 5'-hydroxy, N3, and N7 functional groups contribute to transporter binding. In addition, we show that the 6-position amine group of adenosine, but not the inosine 6-keto group, makes a major contribution to binding (DeltaG0 = 12 kJ/mol), explaining the different Km values of the purine nucleosides. We further found that P1 activity in procyclic and long-slender trypanosomes is pharmacologically distinct, and we identified the main gene encoding this activity in procyclic cells as NT10/AT-B. The presence of multiple P1-type nucleoside transport activities in T. brucei brucei facilitates the development of nucleoside-based treatments for African trypanosomiasis and would delay the onset of uptake-related drug resistance to such therapy. We show that both TbNT9/AT-D and NT10/AT-B transport a range of potentially therapeutic nucleoside analogs.
Collapse
Affiliation(s)
- Mohammed I Al-Salabi
- Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stewart ML, Boussard C, Brun R, Gilbert IH, Barrett MP. Interaction of monobenzamidine-linked trypanocides with the Trypanosoma brucei P2 aminopurine transporter. Antimicrob Agents Chemother 2006; 49:5169-71. [PMID: 16304196 PMCID: PMC1315980 DOI: 10.1128/aac.49.12.5169-5171.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single benzamidine group-carrying compounds were shown to interact with the Trypanosoma brucei P2 aminopurine transporter. Replacement of the amidine with a guanidine group decreased affinity. Trypanocidal activity was evident, but compounds were equally toxic against trypanosomes lacking the P2 transporter, which indicates additional uptake routes for monobenzamidine-derived compounds.
Collapse
Affiliation(s)
- Mhairi L Stewart
- University of Glasgow, Institute of Biomedical and Life Sciences, Division of Infection & Immunity, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol Rev 2005; 29:987-1020. [PMID: 16040150 DOI: 10.1016/j.femsre.2005.03.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/10/2023] Open
Abstract
Purine salvage is an essential function for all obligate parasitic protozoa studied to date and most are also capable of efficient uptake of preformed pyrimidines. Much progress has been made in the identification and characterisation of protozoan purine and pyrimidine transporters. While the genes encoding protozoan or metazoan pyrimidine transporters have yet to be identified, numerous purine transporters have now been cloned. All protozoan purine transporter-encoding genes characterised to date have been of the Equilibrative Nucleoside Transporter family conserved in a great variety of eukaryote organisms. However, these protozoan transporters have been shown to be sufficiently different from mammalian transporters to mediate selective uptake of therapeutic agents. Recent studies are increasingly addressing the structure and substrate recognition mechanisms of these vital transport proteins.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
16
|
Stewart ML, Bueno GJ, Baliani A, Klenke B, Brun R, Brock JM, Gilbert IH, Barrett MP. Trypanocidal activity of melamine-based nitroheterocycles. Antimicrob Agents Chemother 2004; 48:1733-8. [PMID: 15105128 PMCID: PMC400563 DOI: 10.1128/aac.48.5.1733-1738.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of nitroheterocyclic compounds were designed with linkages to melamine or benzamidine groups that are known substrates of the P2 aminopurine and other transporters in African trypanosomes of the brucei group. Several compounds showed in vitro trypanotoxicity with 50% inhibitory concentrations in the submicromolar range. Although most compounds interacted with the P2 transporter, as judged by their ability to inhibit adenosine transport via this carrier, uptake through this route was not necessary for activity since TbAT1-null mutant parasites, deficient in this transporter, retained sensitivity to these drugs. One compound, a melamine-linked nitrofuran, also showed pronounced activity against parasites in mice. Studies into the mode of action of this compound indicated that neither reductive, nor oxidative, stress were related to its trypanocidal activity ruling out a genotoxic effect in T. brucei, distinguishing it from some other, mammalian cell toxic, trypanocidal nitroheterocycles.
Collapse
Affiliation(s)
- Mhairi L Stewart
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Soulère L, Sturm JC, Núñez-Vergara LJ, Hoffmann P, Périé J. Synthesis, electrochemical, and spectroscopic studies of novel S-nitrosothiols. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00694-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Abstract
Sleeping sickness is an increasing problem in many parts of sub-Saharan Africa. The problems are compounded by the lack of new medication, and the increasing resistance against traditional drugs such as melarsoprol, berenil and isometamidium. Over the last few years, much progress has been made in understanding how drug action, and the development of resistance, is related to the mechanisms by which the parasite ingests the drugs. In some cases novel transporters have been identified. In other cases, transporters do not appear to be involved in drug uptake, and selectivity must lie with other parasite features, such as a specific target or activation of the drug. Lessons learned from studying the uptake of drugs currently in use may assist the design of a much needed new generation of trypanocides.
Collapse
Affiliation(s)
- H P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
19
|
Abstract
Sleeping sickness is resurgent in Africa. Adverse side-effects and drug-resistance are undermining the few drugs currently licensed for use against this disease, which is caused by parasitic protozoa of the Trypanosoma brucei group. Pentamidine and suramin are used before parasites become manifest in the central nervous system, after which the organic arsenical melarsoprol is used. Eflornithine is also useful in late-stage disease. A mode of action has been elucidated only for the ornithine decarboxylase inhibitor eflornithine. Both uptake and potential intracellular targets need to be considered when contemplating modes of action. The melaminophenyl arsenicals are accumulated via an unusual amino-purine transporter termed P2, which also seems to have a role in the uptake of the diamidine class of drugs to which pentamidine belongs. Since loss of this transporter leads to drug-resistance, other uptake mechanisms also need to be considered in generating novel trypanocides. Some nitroheterocyclic drugs have prolific activity against trypanosomes, although the fact that they are mutagenic in Ames' tests is acting as a barrier to further development. New drugs are urgently needed and the advent of genome sequencing and target validation using genetic modification will hopefully accelerate this process.
Collapse
Affiliation(s)
- H Denise
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, The Anderson College, 56 Dumbarton Rd., Glasgow G11 6NU, Scotland, UK
| | | |
Collapse
|
20
|
Abstract
Problems associated with the current therapies of sleeping sickness include toxicity, resistance and a lack of a guaranteed supply. However, no new formulations are close to gaining a licence for clinical use and relatively few compounds have been shown to be effective in experimental systems. Many potentially good biochemical targets for drugs have been identified. Some of these have been validated and lead compounds have been developed. However, the biology of trypanosomes means that various pharmacological demands must be met in developing new trypanocides for clinical use. Foremost among these problems is the blood-brain barrier, across which trypanocides must cross to reach parasites in the cerebrospinal fluid.The principal problem, however, relates not to biological difficulties, which are technically surmountable, but to economics. Put simply, most representatives of the pharmaceutical industry believe that selling drugs to the victims of sleeping sickness will not yield sufficient income to justify expenses needed for the development of novel reagents. Only when this economic barrier can be lowered will new drugs emerge for use against sleeping sickness.
Collapse
Affiliation(s)
- Michael P. Barrett
- Institute of Biomedical and Life Sciences, Division of Infection & Immunity, The University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Abstract
African trypanosomes live free in the bloodstream and central nervous system of mammalian hosts and also within the midgut of the tsetse fly vectors which transmit them. The parasite plasma membrane represents the interface between both hosts and parasite, and trypanosomes accumulate many essential metabolites via specific transport processes. L-Methionine uptake by procyclic and bloodstream forms of Trypanosoma brucei has been measured and shown to be mediated by a transporter presenting similar characteristics in both forms of the parasite. The carrier shows, in both forms, a relatively high affinity for methionine (Km ca. 30 microM). The effect of inhibitors of ion gradients across the membrane indicated that the uptake process is likely to be dependent upon a proton motive force. Various methionine analogues were tested against the transporter and these have demonstrated that the recognition depends on the motif common to all amino acids, and an electronegative group at the position of the sulphur atom separated from the alpha-carbon atom by a two carbon spacer.
Collapse
Affiliation(s)
- M P Hasne
- IBLS, Division of Infection and Immunity, University of Glasgow, UK
| | | |
Collapse
|
22
|
Affiliation(s)
- M Hasne
- IBLS, Division of Infection and Immunity, The University of Glasgow, Glasgow, UK
| | | |
Collapse
|
23
|
Soulère L, Hoffmann P, Bringaud F, Périé J. Synthesis and uptake of nitric oxide-releasing drugs by the P2 nucleoside transporter in Trypanosoma equiperdum. Bioorg Med Chem Lett 2000; 10:1347-50. [PMID: 10890161 DOI: 10.1016/s0960-894x(00)00233-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A series of S-nitrosothiols, structurally related to the NO*-donor S-nitroso-N-acetylpenicillamine, and of organic nitrate esters that contain amidine groups which specify a recognition via the trypanosomal purine transporter P2, were synthesized and tested for their ability to inhibit the uptake of [2-(3)H]adenosine on Trypanosoma equiperdum.
Collapse
Affiliation(s)
- L Soulère
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique-ESA-CNRS 5068, Université de Toulouse III, France
| | | | | | | |
Collapse
|
24
|
|
25
|
de Koning HP, MacLeod A, Barrett MP, Cover B, Jarvis SM. Further evidence for a link between melarsoprol resistance and P2 transporter function in African trypanosomes. Mol Biochem Parasitol 2000; 106:181-5. [PMID: 10743623 DOI: 10.1016/s0166-6851(99)00206-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- H P de Koning
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | | | | | | | |
Collapse
|
26
|
de Koning HP, Watson CJ, Sutcliffe L, Jarvis SM. Differential regulation of nucleoside and nucleobase transporters in Crithidia fasciculata and Trypanosoma brucei brucei. Mol Biochem Parasitol 2000; 106:93-107. [PMID: 10743614 DOI: 10.1016/s0166-6851(99)00203-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The regulation of the activity of purine transporters in two protozoan species, Crithidia fasciculata and Trypanosoma brucei brucei, was investigated in relation to purine availability and growth cycle. In C. fasciculata, two high-affinity purine nucleoside transporters were identified. The first, designated CfNT1, displayed a K(m) of 9.4 +/- 2.8 microM for adenosine and was inhibited by pyrimidine nucleosides as well as adenosine analogues; a second C. fasciculata nucleoside transporter (CfNT2) recognized inosine (K(m) = 0.38 +/- 0.06 microM) and guanosine but not adenosine. The activity of both transporters increased in cells at mid-logarithmic growth, as compared to cells in the stationary phase, and was also stimulated 5-15-fold following growth in purine-depleted medium. These increased rates were due to increased Vmax values (K(m) remained unchanged) and inhibited by cycloheximide (10 microM). In the procyclic forms of T. b. brucei, adenosine transport by the P1 transporter was upregulated by purine starvation but only after 48 h, whereas hypoxanthine transport was maximally increased after 24 h. The latter effect was due to the expression of an additional hypoxanthine transporter, H2, that is normally absent from procyclic forms of T. b. brucei and was characterised by its high affinity for hypoxanthine (K(m) approximately 0.2 microM) and its sensitivity to inhibition by guanosine. The activity of the H1 hypoxanthine transporter (K(m) approximately 10 microM) was unchanged. These results show that regulation of the capacity of the purine transporters is common in different protozoa, and that, in T. b. brucei, various purine transporters are under differential control.
Collapse
Affiliation(s)
- H P de Koning
- Research School of Biosciences, University of Kent at Canterbury, UK.
| | | | | | | |
Collapse
|
27
|
Soulère L, Hoffmann P, Bringaud F, Périé J. Uptake of NO-releasing drugs by the P2 nucleoside transporter in trypanosomes. Braz J Med Biol Res 1999; 32:1447-52. [PMID: 10559847 DOI: 10.1590/s0100-879x1999001100016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO.) has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO. can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2.- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-). ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO.-releasing compounds. In this way, the rate of formation of peroxynitrite from NO. and O2.- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO.-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO.-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.
Collapse
Affiliation(s)
- L Soulère
- Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
28
|
Sanchez MA, Ullman B, Landfear SM, Carter NS. Cloning and functional expression of a gene encoding a P1 type nucleoside transporter from Trypanosoma brucei. J Biol Chem 1999; 274:30244-9. [PMID: 10514517 DOI: 10.1074/jbc.274.42.30244] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside transporters are likely to play a central role in the biochemistry of the parasite Trypanosoma brucei, since these protozoa are unable to synthesize purines de novo and must salvage them from their hosts. Furthermore, nucleoside transporters have been implicated in the uptake of antiparasitic and experimental drugs in these and other parasites. We have cloned the gene for a T. brucei nucleoside transporter, TbNT2, and shown that this permease is related in sequence to mammalian equilibrative nucleoside transporters. Expression of the TbNT2 gene in Xenopus oocytes reveals that the permease transports adenosine, inosine, and guanosine and hence has the substrate specificity of the P1 type nucleoside transporters that have been previously characterized by uptake assays in intact parasites. TbNT2 mRNA is expressed in bloodstream form (mammalian host stage) parasites but not in procyclic form (insect stage) parasites, indicating that the gene is developmentally regulated during the parasite life cycle. Genomic Southern blots suggest that there are multiple genes related in sequence to TbNT2, implying the existence of a family of nucleoside transporter genes in these parasites.
Collapse
Affiliation(s)
- M A Sanchez
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | | | |
Collapse
|
29
|
Mäser P, Sütterlin C, Kralli A, Kaminsky R. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 1999; 285:242-4. [PMID: 10398598 DOI: 10.1126/science.285.5425.242] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug resistance of pathogens is an increasing problem whose underlying mechanisms are not fully understood. Cellular uptake of the major drugs against Trypanosoma brucei spp., the causative agents of sleeping sickness, is thought to occur through an unusual, so far unidentified adenosine transporter. Saccharomyces cerevisiae was used in a functional screen to clone a gene (TbAT1) from Trypanosoma brucei brucei that encodes a nucleoside transporter. When expressed in yeast, TbAT1 enabled adenosine uptake and conferred susceptibility to melaminophenyl arsenicals. Drug-resistant trypanosomes harbor a defective TbAT1 variant. The molecular identification of the entry route of trypanocides opens the way to approaches for diagnosis and treatment of drug-resistant sleeping sickness.
Collapse
Affiliation(s)
- P Mäser
- Swiss Tropical Institute, CH-4002 Basel, Switzerland. Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
30
|
Baldwin SA, Mackey JR, Cass CE, Young JD. Nucleoside transporters: molecular biology and implications for therapeutic development. MOLECULAR MEDICINE TODAY 1999; 5:216-24. [PMID: 10322314 DOI: 10.1016/s1357-4310(99)01459-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The uptake of nucleosides (or nucleobases) is essential for nucleic acid synthesis in many human cell types and in parasitic organisms that cannot synthesize nucleotides de novo. The transporters responsible are also the route of entry for many cytotoxic nucleoside analogues used in cancer and viral chemotherapy. Moreover, by regulating adenosine concentrations in the vicinity of its cell-surface receptors, nucleoside transporters profoundly affect neurotransmission, vascular tone and other processes. The recent molecular characterization of two families of human nucleoside transporters has provided new insights into the mechanisms of natural nucleoside and drug uptake and into future developments of improved therapies.
Collapse
Affiliation(s)
- S A Baldwin
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK LS2 9JT.
| | | | | | | |
Collapse
|
31
|
Barrett MP, Fairlamb AH. The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:136-40. [PMID: 10322334 DOI: 10.1016/s0169-4758(99)01414-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resistance to currently used drugs is a serious problem in most fields of antimicrobial chemotherapy. Crossresistance between two of the major classes of drug used in the treatment of African trypanosomiasis, the melaminophenyl arsenicals and diamidines is easily selected in the laboratory. Here, Mike Barrett and Alan Fairlamb outline the mechanism underlying this crossresistance, which appears to arise as a result of alterations in an unusual adenosine transporter involved in the uptake of these drugs.
Collapse
Affiliation(s)
- M P Barrett
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|