1
|
Mohamed Ahmed MS, Alfraiji RA, Attaby FA, Abdallah ZA. Synthesis, Antimicrobial Evaluation, DFT, in Silico-Docking, and ADMET Investigations of Novel Chromene-Based 2,4-Thiazolidinediones. Chem Biodivers 2024; 21:e202401095. [PMID: 39007423 DOI: 10.1002/cbdv.202401095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Three series of thiazolidinedione (TZD) derivatives (5a-f, 7a-f, and 9a-f) were prepared efficiently. Afterward, the synthesized candidates' antibacterial efficacy against both gram-positive and gram-negative bacteria was assessed. Compounds 7c, 7d, and 7f had values comparable to that of ampicillin, a reference antibiotic, whereas compounds 5c, 5d, and 7e exhibited the greatest values (23.0±1.0, 27.7±0.6, and 20.0±1.0, respectively) against gram-positive bacteria (Staphylococcus aureus). The optimal structure of the produced molecules was determined by DFT computing. To assess the binding energy and elucidate the interaction between the potential candidates and different proteins, in silico docking is employed. ADMET analysis to assess the synthesized compounds' toxicity, metabolism, excretion, distribution, and absorption.
Collapse
Affiliation(s)
| | - Redhab Aj Alfraiji
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Chemistry Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Fawzy A Attaby
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Zeinab A Abdallah
- Chemisry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Sinicropi MS, Ceramella J, Vanelle P, Iacopetta D, Rosano C, Khoumeri O, Abdelmohsen S, Abdelhady W, El-Kashef H. Novel Thiazolidine-2,4-dione-trimethoxybenzene-thiazole Hybrids as Human Topoisomerases Inhibitors. Pharmaceuticals (Basel) 2023; 16:946. [PMID: 37513858 PMCID: PMC10384675 DOI: 10.3390/ph16070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a complex and heterogeneous disease and is still one of the leading causes of morbidity and mortality worldwide, mostly as the population ages. Despite the encouraging advances made over the years in chemotherapy, the development of new compounds for cancer treatments is an urgent priority. In recent years, the design and chemical synthesis of several innovative hybrid molecules, which bring different pharmacophores on the same scaffold, have attracted the interest of many researchers. Following this strategy, we designed and synthetized a series of new hybrid compounds that contain three pharmacophores, namely trimethoxybenzene, thiazolidinedione and thiazole, and tested their anticancer properties on two breast cancer (MCF-7 and MDA-MB-231) cell lines and one melanoma (A2058) cell line. The most active compounds were particularly effective against the MCF-7 cells and did not affect the viability of the normal MCF-10A cells. Docking simulations indicated the human Topoisomerases I and II (hTopos I and II) as possible targets of these compounds, the inhibitory activity of which was demonstrated by the mean of direct enzymatic assays. Particularly, compound 7e was proved to inhibit both the hTopo I and II, whereas compounds 7c,d blocked only the hTopo II. Finally, compound 7e was responsible for MCF-7 cell death by apoptosis. The reported results are promising for the further design and synthesis of other analogues potentially active as anticancer tools.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Patrice Vanelle
- Aix Marseille University, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Omar Khoumeri
- Aix Marseille University, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France
| | - Shawkat Abdelmohsen
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Wafaa Abdelhady
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Faculty of Pharmacy, Sphinx University, New Assiut 71684, Egypt
| |
Collapse
|
3
|
Bireddy SR, Konkala VS, Godugu C, Dubey PK. A Review on the Synthesis and Biological Studies of 2,4-Thiazolidinedione Derivatives. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x17666200221123633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,4-Thiazolidinediones are versatile scaffolds with a unique structural feature of hydrogen
bonding donor and the hydrogen bonding acceptor region. This review deals with the synthesis of
various bio-active 2,4-thiazolidinedione derivatives. It is presented on the basis of the linker variations
at 3rd & 5th positions of 2,4-thizolidinediones. Biological evaluations of various derivatives thus
prepared and toxicity studies on the respective products as given by various researchers/ Research
groups have been described.
Collapse
Affiliation(s)
- Srinivasa Reddy Bireddy
- Department of Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad-500 075, India
| | - Veera Swamy Konkala
- Department of Chemistry, Jawaharlal Nehru Technological University, College of Engineering, Kukatpally, Hyderabad- 500 085, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Educational Research Balanagar, Hyderabad-500 037, India
| | - Pramod Kumar Dubey
- Department of Chemistry, Jawaharlal Nehru Technological University, College of Engineering, Kukatpally, Hyderabad- 500 085, India
| |
Collapse
|
4
|
Karumanchi SK, Atmakuri LR, Mandava VBR, Rajala S. Synthesis and Hypoglycemic and Anti-inflammatory Activity Screening of Novel Substituted 5-[Morpholino(Phenyl)Methyl]-Thiazolidine-2,4-Diones and Their Molecular Docking Studies. Turk J Pharm Sci 2020; 16:380-391. [PMID: 32454740 DOI: 10.4274/tjps.galenos.2018.82612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/01/2022]
Abstract
Objectives The aim was the synthesis of novel substituted 5-[morpholino(phenyl)methyl]-thiazolidine-2,4-diones and screening for their in vivo hypoglycemic activity and in vitro anti-inflammatory activity, as well as molecular docking studies to find out active potential lead molecules. Materials and Methods Substituted aromatic aldehydes, thiazolidine-2,4-dione, and morpholine on Mannich reaction gave the title compounds. They were characterized by physical and spectral methods. In vivo hypoglycemic activity was examined in alloxan induced Wistar albino rats by tail tipping method. In vitro anti-inflammatory activity was tested by human red blood cell (HRBC) membrane stabilization and protein denaturation. Using AutoDock, molecular docking studies were carried out to find out the best fit ligands. Results Series of substituted 5-[morpholino(phenyl)methyl]-thiazolidine-2,4-diones were synthesized and chemically they were confirmed by spectral techniques. Acute toxic studies of in vivo hypoglycemic activity results revealed that compounds 4c, 4h, and 4n exhibited good activity at 35 mg/kg body weight. Chronic toxic study results indicated that compounds 4h and 4n exhibited good activity at 70 mg/kg body weight. Anti-inflammatory activity results indicated the highest inhibition was shown by compounds 4k and 4f at 500 μg/mL in HRBC membrane stabilization. In protein denaturation, the highest inhibition was shown by compound 4k at 500 μg/mL. In molecular docking studies, compounds 4h and 4n exhibited higher binding affinity at PPARγ receptor protein and compound 4k exhibited higher binding affinity at COX-1 and COX-2 actives sites. Conclusion Microwave irradiation produced high yield in short reaction times. The presence of electron releasing groups at the para position of the phenyl ring may give the ability to produce hypoglycemic activity and the presence of electron withdrawing groups at the para position of the phenyl ring causes anti-inflammatory activity. The results showed that some compounds exhibited good hypoglycemic and anti-inflammatory activities. Compounds 4h and 4n exhibited higher binding affinity at PPARγ receptor protein and compound 4k exhibited higher binding affinity at COX isoenzymes' active sites in molecular docking studies.
Collapse
Affiliation(s)
- Srikanth Kumar Karumanchi
- V. V. Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Gudlavalleru, Andhra Pradesh, India
| | - Lakshmana Rao Atmakuri
- V. V. Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Gudlavalleru, Andhra Pradesh, India
| | | | - Srikala Rajala
- Sree Vidyanikethan College of Pharmacy, Department of Pharmaceutical Chemistry, Tirupati, Andhra Pradesh, India
| |
Collapse
|
5
|
Buemi MR, Gitto R, Ielo L, Pannecouque C, De Luca L. Inhibition of HIV-1 RT activity by a new series of 3-(1,3,4-thiadiazol-2-yl)thiazolidin-4-one derivatives. Bioorg Med Chem 2020; 28:115431. [DOI: 10.1016/j.bmc.2020.115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/19/2023]
|
6
|
Synthesis, docking, in vitro
and in vivo
antidiabetic activity of pyrazole-based 2,4-thiazolidinedione derivatives as PPAR-γ modulators. Arch Pharm (Weinheim) 2018; 351:e1700223. [DOI: 10.1002/ardp.201700223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/07/2022]
|
7
|
Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg Chem 2017; 73:24-36. [DOI: 10.1016/j.bioorg.2017.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 11/23/2022]
|
8
|
Naim MJ, Alam MJ, Ahmad S, Nawaz F, Shrivastava N, Sahu M, Alam O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur J Med Chem 2017; 129:218-250. [DOI: 10.1016/j.ejmech.2017.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
|
9
|
Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur J Med Chem 2016; 126:879-893. [PMID: 27988463 DOI: 10.1016/j.ejmech.2016.12.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
Abstract
Thiazolidinediones a class of drug, that provided a major breakthrough in the management of type 2 diabetes since 1990. Following the discovery of PPARs, TZDs were the first class to be reported as PPARγ modulators. This review is an attempt to summarize the chemical modifications around TZDs in past two decades to obtain a potent antidiabetic molecule. TZDs literature were initially dominated by their hypoglycemic & hypolipidemic activities, later PPARγ activity was also been incorporated. Moreover, in some cases, both benzyl and benzylidene derivatives were reported in the same manuscript for the sake of comparison. We thought of presenting the review on the basis of the variation in the linker region. Optimal linker at the time of discovery of the Ciglitazone was oxymethyl and it went on to evolve as oxyethyl (Pioglitazone) and oxyethylamino (Rosiglitazone). Few attempts were made to restrict the flexibility of the linker by introducing the cyclic structures and were summarized immediately after the respective linker class.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India.
| |
Collapse
|
10
|
Nazreen S, Alam MS, Hamid H, Yar MS, Dhulap A, Alam P, Pasha MAQ, Bano S, Alam MM, Haider S, Kharbanda C, Ali Y, Pillai K. Design, Synthesis, and Biological Evaluation of Thiazolidine-2,4-dione Conjugates as PPAR-γ Agonists. Arch Pharm (Weinheim) 2015; 348:421-32. [DOI: 10.1002/ardp.201400280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/21/2015] [Accepted: 02/27/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Syed Nazreen
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Mohammad Sarwar Alam
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Hinna Hamid
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi India
| | - Abhijeet Dhulap
- CSIR Unit for Research and Development of Information Products; Pune India
| | - Perwez Alam
- Functional Genomics Unit; CSIR-Institute of Genomics & Integrative Biology; Delhi India
| | | | - Sameena Bano
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | | | - Saqlain Haider
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Chetna Kharbanda
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Yakub Ali
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Kolakappi Pillai
- Department of Pharmacology, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi India
| |
Collapse
|
11
|
Bahare RS, Ganguly S, Choowongkomon K, Seetaha S. Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2,4-thiazolidinediones. ACTA ACUST UNITED AC 2015; 23:6. [PMID: 25617150 PMCID: PMC4308940 DOI: 10.1186/s40199-014-0086-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/20/2014] [Indexed: 12/02/2022]
Abstract
Background Structural modifications of thiazolidinediones at 3rd and 5th position have exhibited significant biological activities. In view of the facts, and based on in silico studies carried out on thiazolidine-2,4-diones as HIV-1- RT inhibitors, a novel series of 2,4-thiazolidinedione analogs have been designed and synthesized. Methods Title compounds were prepared by the reported method. Conformations of the structures were assigned on the basis of results of different spectral data. The assay of HIV-1 RT was done as reported by Silprasit et al. Antimicrobial activity was determined by two fold serial dilution method. Docking study was performed for the highest active compounds by using Glide 5.0. Results The newly synthesized compounds were evaluated for their HIV-1 RT inhibitory activity. Among the synthesized compounds, compound 24 showed significant HIV-1 RT inhibitory activity with 73% of inhibition with an IC50 value of 1.31 μM. Compound 10 showed highest activity against all the bacterial strains. A molecular modeling study was carried out in order to investigate the possible interactions of the highest active compounds 24, 10 and 4 with the non nucleoside inhibitory binding pocket(NNIBP) of RT, active site of GlcN-6-P synthase and cytochrome P450 14-α-sterol demethylase from Candida albicans (Candida P450DM) as the target receptors respectively using the Extra Precision (XP) mode of Glide software. Conclusion A series of novel substituted 2-(5-benzylidene-2,4-dioxothiazolidin-3-yl)-N-(phenyl)propanamides (4–31) have been synthesized and evaluated for their HIV-1 RT inhibitory activity, antibacterial and antifungal activities. Some of the compounds have shown significant activity. Molecular docking studies showed very good interaction.
Collapse
Affiliation(s)
- Radhe Shyam Bahare
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| | | | | | | |
Collapse
|
12
|
Nazreen S, Alam MS, Hamid H, Yar MS, Dhulap A, Alam P, Pasha M, Bano S, Alam MM, Haider S, Kharbanda C, Ali Y, Pillai K. Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg Med Chem Lett 2014; 24:3034-42. [DOI: 10.1016/j.bmcl.2014.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
13
|
Sindhu J, Singh H, Khurana JM. A green, multicomponent, regio- and stereo-selective 1,3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400. Mol Divers 2014; 18:345-55. [PMID: 24577732 DOI: 10.1007/s11030-014-9505-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/13/2014] [Indexed: 12/19/2022]
Abstract
A series of novel dispiropyrrolidine-linked 1,2,3-triazole derivatives have been prepared by one-pot, four-component protocol that employed 5-arylidene-3-(prop-2-ynyl)thiazolidine-2,4-dione, isatin, sarcosine and substituted azides using Cu(I) generated in situ as catalyst in PEG-400 as a highly efficient and green media. This is the first report of a four-component reaction involving a classical Huisgen reaction, in which the two dipolar moieties (substituted azides and in situ generated azomethine ylides) react with acetylenic and olefinic dipolarophiles, respectively. The 1,3-dipolar cycloaddition proceeds in a highly regio- and stereo-selective manner. This methodology can be an ideal tool for the preparation of biologically important five-membered heterocyclic compounds in one pot.
Collapse
Affiliation(s)
- Jayant Sindhu
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | | |
Collapse
|
14
|
Avupati VR, Yejella RP, Akula A, Guntuku GS, Doddi BR, Vutla VR, Anagani SR, Adimulam LS, Vyricharla AK. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg Med Chem Lett 2012; 22:6442-50. [PMID: 22981328 DOI: 10.1016/j.bmcl.2012.08.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/13/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
Abstract
A series of some novel 2,4-thiazolidinediones (TZDs) (2a-x) have been synthesized and characterized by FTIR, (1)H NMR, (13)C NMR and LC mass spectral analysis. All the synthesized compounds were evaluated for their cytotoxicity, antimicrobial and in vivo antihyperglycemic activities. Among the tested compounds for cytotoxicity using Brine Shrimp Lethality assay, compound 2t ((Z)-5-(4-((E)-3-oxo-3-(thiophen-2-yl)prop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited significant inhibitory activity at ED(50) value 4.00±0.25 μg/mL and this level of activity was comparable to that of the reference drug podophyllotoxin with ED(50) value 3.61±0.17 μg/mL. Antimicrobial activity was screened using agar well diffusion assay method against selected Gram-positive, Gram-negative and fungal strains and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. From the results of antimicrobial activity compound 2s ((Z)-5-(4-((E)-3-(3,5-bis(benzyloxy)phenyl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) was found to be the most active against all the tested strains of microorganisms with MIC value 16 μg/mL. In vivo antihyperglycemic effect of twenty four TZDs (2a-x) at different doses 10, 30 and 50mg/kg b.w (oral) were assessed using percentage reduction of plasma glucose (PG) levels in streptozotocin-induced type II diabetic rat models. From the results, the novel compound 2x ((Z)-5-(4-((E)-3-(9H-fluoren-2-yl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited considerably potent blood glucose lowering activity than that of the standard drug rosiglitazone and it could be a remarkable starting point to evaluate structure-activity relationships and to develop new lead molecules with potential cytotoxicity, antimicrobial and antihyperglycemic activities. In addition molecular docking studies were carried out against PPARγ molecular target using Molegro Virtual Docker v 4.0 to accomplish preliminary confirmation of the observed in vivo antihyperglycemic activity.
Collapse
Affiliation(s)
- Vasudeva Rao Avupati
- Pharmaceutical Chemistry Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Modulation of PPAR subtype selectivity. Part 2: Transforming PPARα/γ dual agonist into α selective PPAR agonist through bioisosteric modification. Bioorg Med Chem Lett 2011; 21:628-32. [DOI: 10.1016/j.bmcl.2010.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 12/17/2022]
|
16
|
Pingali H, Jain M, Shah S, Zaware P, Makadia P, Pola S, Thube B, Patel D, Patil P, Priyadarshini P, Suthar D, Shah M, Giri S, Patel P. Design and synthesis of novel bis-oximinoalkanoic acids as potent PPARα agonists. Bioorg Med Chem Lett 2010; 20:1156-61. [DOI: 10.1016/j.bmcl.2009.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/16/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
17
|
Pingali H, Jain M, Shah S, Patil P, Makadia P, Zaware P, Sairam KV, Jamili J, Goel A, Patel M, Patel P. Modulation of PPAR receptor subtype selectivity of the ligands: Aliphatic chain vs aromatic ring as a spacer between pharmacophore and the lipophilic moiety. Bioorg Med Chem Lett 2008; 18:6471-5. [DOI: 10.1016/j.bmcl.2008.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/11/2008] [Accepted: 10/14/2008] [Indexed: 11/28/2022]
|
18
|
Pingali H, Jain M, Shah S, Basu S, Makadia P, Goswami A, Zaware P, Patil P, Godha A, Giri S, Goel A, Patel M, Patel H, Patel P. Discovery of a highly orally bioavailable c-5-[6-(4-Methanesulfonyloxyphenyl)hexyl]-2-methyl-1,3-dioxane-r-2-carboxylic acid as a potent hypoglycemic and hypolipidemic agent. Bioorg Med Chem Lett 2008; 18:5586-90. [DOI: 10.1016/j.bmcl.2008.08.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/24/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
19
|
Pingali H, Jain M, Shah S, Makadia P, Zaware P, Goel A, Patel M, Giri S, Patel H, Patel P. Design and synthesis of novel oxazole containing 1,3-Dioxane-2-carboxylic acid derivatives as PPAR α/γ dual agonists. Bioorg Med Chem 2008; 16:7117-27. [DOI: 10.1016/j.bmc.2008.06.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 12/21/2022]
|
20
|
Sekhar BC. Cyclic 1,3-diones and their derivatives-As versatile reactive intermediates in the syntheses of condensed fused ring heterocyles. J Heterocycl Chem 2004. [DOI: 10.1002/jhet.5570410601] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Bast A, Haenen GRMM. Pharmaceutical Compounds with Antioxidant Activity. DEVELOPMENTS IN CARDIOVASCULAR MEDICINE 2000. [DOI: 10.1007/978-94-011-4375-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|