1
|
Karetnikov G, Vasilyeva LA, Babayeva G, Pokrovsky VS, Skvortsov DA, Bondarenko OB. 3,4-Diarylisoxazoles-Analogues of Combretastatin A-4: Design, Synthesis, and Biological Evaluation In Vitro and In Vivo. ACS Pharmacol Transl Sci 2024; 7:384-394. [PMID: 38357282 PMCID: PMC10863432 DOI: 10.1021/acsptsci.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Focusing on the molecular docking results, a series of 3,4-diarylisoxazoles, analogues of Combretastatin A4, bearing various substituents at the fifth position of the isoxazole ring and pharmacophore groups bioisosteric to methoxy substituent at ring B, were synthesized in good yields and high regioselectivity. Depending on the substituent at C5, three approaches were chosen for the construction of isoxazole ring, including nitrosation of gem-dihalocyclopropanes, nitrile oxide synthesis, and difluoromethoxylation of isoxazolone to afford 5-haloisoxazoles, 5-unsubstituted isoxazoles, and 5-difluoromethoxyisoxazoles, respectively. Isoxazoles 43 and 45 showed selective cytotoxicity and antitubulin inhibition properties in vitro, with pharmacodynamic profiles closely related to that of CA-4. Both of them slow down tumor growth (66-74%) in mouse xenografts and slightly exceed in effectiveness Combretastatin A4-phosphate itself.
Collapse
Affiliation(s)
- Georgy
L. Karetnikov
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Lilya A. Vasilyeva
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Gulalek Babayeva
- Research
Institute of Molecular and Cellular Medicine, RUDN University, Moscow 117198, Russian
Federation
- N.N.
Blokhin Cancer Research Center, Moscow 115478, Russian Federation
| | - Vadim S. Pokrovsky
- Research
Institute of Molecular and Cellular Medicine, RUDN University, Moscow 117198, Russian
Federation
- N.N.
Blokhin Cancer Research Center, Moscow 115478, Russian Federation
| | - Dmitry A. Skvortsov
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Oksana B. Bondarenko
- Chemistry
Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Zhang S, Mo M, Lv M, Xia W, Liu K, Yu G, Yu J, Xu G, Zeng X, Cheng S, Xu B, Luo H, Meng X. Design, synthesis and bioevaluation of novel trifluoromethylquinoline derivatives as tubulin polymerization inhibitors. Future Med Chem 2023; 15:1967-1986. [PMID: 37937524 DOI: 10.4155/fmc-2023-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Aim: A series of novel trifluoromethylquinoline derivatives were designed, synthesized and evaluated for antitumor activities. Methodology: All compounds were evaluated for antiproliferative activity against four human cancer cell lines. Results: Among them, 5a, 5m, 5o and 6b exhibited remarkable antiproliferative activities against all the tested cell lines at nanomolar concentrations. Mechanism of action studies demonstrated that 6b targeted the colchicine binding site, potentially inhibiting tubulin polymerization, and further studies indicated that 6b could arrest LNCaP cells in the G2/M phase and induce cell apoptosis. Molecular docking confirmed that 6b could bind to the colchicine binding site. Conclusion: Results suggested that 6b could serve as a promising lead compound for the development of novel tubulin polymerization inhibitors and cancer therapy.
Collapse
Affiliation(s)
- Sisi Zhang
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Min Mo
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Mengfan Lv
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Wen Xia
- Guizhou Bailing Enterprise Group Pharmaceutical Co. Ltd, Anshun Guizhou, 561000, China
| | - Kun Liu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaoping Zeng
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Bixue Xu
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xueling Meng
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| |
Collapse
|
3
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
4
|
Zaki I, Moustafa AMY, Beshay BY, Masoud RE, Elbastawesy MAI, Abourehab MAS, Zakaria MY. Design and synthesis of new trimethoxylphenyl-linked combretastatin analogues loaded on diamond nanoparticles as a panel for ameliorated solubility and antiproliferative activity. J Enzyme Inhib Med Chem 2022; 37:2679-2701. [PMID: 36154552 PMCID: PMC9518609 DOI: 10.1080/14756366.2022.2116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A new series of vinyl amide-, imidazolone-, and triazinone-linked combretastatin A-4 analogues have been designed and synthesised. These compounds have been evaluated for their cytotoxic activity against MDA-MB-231 breast cancer cells. The triazinone-linked combretastatin analogues (6 and 12) exhibited the most potent cytotoxic activity, in sub-micromolar concentration compared with combretastatin A-4 as a reference standard. The results of β-tubulin polymerisation inhibition assay appear to correlate well with the ability to inhibit β-tubulin polymerisation. Additionally, these compounds were subjected to biological assays relating to cell cycle aspects and apoptosis induction. In addition, the most potent compound 6 was loaded on PEG-PCL modified diamond nanoparticles (PEG-PCL-NDs) and F4 was picked as the optimum formula. F4 exhibited enhanced solubility and release over the drug suspension. In the comparative cytotoxic activity, PEG-PCL modified F4 was capable of diminishing the IC50 by around 2.89 times for nude F4, while by 3.48 times relative to non-formulated compound 6.
Collapse
Affiliation(s)
- Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Amal M Y Moustafa
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Botros Y Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Reham E Masoud
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mohammed A I Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
5
|
Hauguel C, Ducellier S, Provot O, Ibrahim N, Lamaa D, Balcerowiak C, Letribot B, Nascimento M, Blanchard V, Askenatzis L, Levaique H, Bignon J, Baschieri F, Bauvais C, Bollot G, Renko D, Deroussent A, Prost B, Laisne MC, Michallet S, Lafanechère L, Papot S, Montagnac G, Tran C, Alami M, Apcher S, Hamze A. Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors. Eur J Med Chem 2022; 240:114573. [DOI: 10.1016/j.ejmech.2022.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
|
6
|
Synthesis of Novel Aminothiazole Derivatives as Promising Antiviral, Antioxidant and Antibacterial Candidates. Int J Mol Sci 2022; 23:ijms23147688. [PMID: 35887038 PMCID: PMC9319503 DOI: 10.3390/ijms23147688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
It is well-known that thiazole derivatives are usually found in lead structures, which demonstrate a wide range of pharmacological effects. The aim of this research was to explore the antiviral, antioxidant, and antibacterial activities of novel, substituted thiazole compounds and to find potential agents that could have biological activities in one single biomolecule. A series of novel aminothiazoles were synthesized, and their biological activity was characterized. The obtained results were compared with those of the standard antiviral, antioxidant, antibacterial and anticancer agents. The compound bearing 4-cianophenyl substituent in the thiazole ring demonstrated the highest cytotoxic properties by decreasing the A549 viability to 87.2%. The compound bearing 4-trifluoromethylphenyl substituent in the thiazole ring showed significant antiviral activity against the PR8 influenza A strain, which was comparable to the oseltamivir and amantadine. Novel compounds with 4-chlorophenyl, 4-trifluoromethylphenyl, phenyl, 4-fluorophenyl, and 4-cianophenyl substituents in the thiazole ring demonstrated antioxidant activity by DPPH, reducing power, FRAP methods, and antibacterial activity against Escherichia coli and Bacillus subtilis bacteria. These data demonstrate that substituted aminothiazole derivatives are promising scaffolds for further optimization and development of new compounds with potential influenza A-targeted antiviral activity. Study results could demonstrate that structure optimization of novel aminothiazole compounds may be useful in the prevention of reactive oxygen species and developing new specifically targeted antioxidant and antibacterial agents.
Collapse
|
7
|
Cilibrasi V, Spanò V, Bortolozzi R, Barreca M, Raimondi MV, Rocca R, Maruca A, Montalbano A, Alcaro S, Ronca R, Viola G, Barraja P. Synthesis of 2H-Imidazo[2',1':2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations. Eur J Med Chem 2022; 235:114292. [PMID: 35339838 DOI: 10.1016/j.ejmech.2022.114292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.
Collapse
Affiliation(s)
- Vincenzo Cilibrasi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia Università di Padova, Via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
8
|
Kostin RK, Marshavin AS. Pyrazoles, isoxazoles, and 1,2,3-triazoles as analogs of the natural cytostatic combretastatin A-4: efficient routes of synthesis, tubulin inhibition, and cytotoxicity. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Paidakula S, Nerella S, Kankala S, Kankala RK. Recent Trends in Tubulin-Binding Combretastatin A-4 Analogs for Anticancer Drug Development. Curr Med Chem 2021; 29:3748-3773. [PMID: 34856892 DOI: 10.2174/0929867328666211202101641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress over several decades has been evidenced in cancer therapy, there still remains a need for the development of novel and effective therapeutic strategies to treat several relapsed and intractable cancers. In this regard, tubulin protein has become one of the efficient and major targets for anticancer drug discovery. Considering the antimitotic ability, several tubulin inhibitors have been developed to act against various cancers. Among various tubulin inhibitors available, combretastatin-A4 (CA-4), a naturally occurring lead molecule, offers exceptional cytotoxicity (including the drug-resistant cell lines) and antivascular effects. Although CA-4 offers exceptional therapeutic efficacy, several new advancements have been proposed, such as the structural modification via A and B rings, as well as cis-olefinic bridging, which provide highly efficient analogs with improved tubulin-binding efficiency to meet the anticancer drug development requirements. This review systematically emphasizes the recent trends and latest developments in the anticancer drug design & discovery, using CA-4 analogs as the tubulin inhibiting agents, highlighting their structure-activity relationships (SAR) and resultant pharmacological efficacies.
Collapse
Affiliation(s)
- Suresh Paidakula
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | - Srinivas Nerella
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | - Shravankumar Kankala
- Department of Chemistry, Kakatiya University, Warangal-506009, Telangana State. India
| | | |
Collapse
|
10
|
Ngo QA, Thi THN, Pham MQ, Delfino D, Do TT. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol Divers 2021; 25:2307-2319. [PMID: 32602075 DOI: 10.1007/s11030-020-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
In our study, some newly synthesized aryl-substituted pyrazole derivatives mimicking cis-diphenylethylene scaffold of two apoptotic inducing agents celecoxib and combretastatin A-4 were found to have strong antiproliferative as well as antiinflammatory activities. Among these coxib-combretastatin hybrids, two lead compounds 8 and 6c simultaneously inhibited prostaglandin E2 (PGE2) production in LPS-activated murine macrophage RAW 264.7 cells and suppressed cell cycle progression of MCF7 cells at G2/M or G0/G1 phases, but only compound 8 induced apoptosis via caspase-3 activation. Both the lead compounds showed good docking energies with both protein targets COX-2 and tubulin in the molecule interaction modeling. The cis-diphenylethylene scaffold of celecoxib or combretastatin A-4 as well as functional groups such as the ethyl ester group and the sulfonamide could be considered as potential key features for the dual activity of studied compounds meanwhile the trimethoxybenzene remained the crucial characterization of the newly derived compounds of combretastatins.
Collapse
Affiliation(s)
- Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Domenico Delfino
- Department of Internal Medicine, Università degli Studi di Perugia, Perugia, Italy.
| | - Thi Thao Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
11
|
Wang G, Liu W, Fan M, He M, Li Y, Peng Z. Design, synthesis and biological evaluation of novel thiazole-naphthalene derivatives as potential anticancer agents and tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 36:1694-1702. [PMID: 34309466 PMCID: PMC8317958 DOI: 10.1080/14756366.2021.1958213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Anticancer properties of indole derivatives as IsoCombretastatin A-4 analogues. Eur J Med Chem 2021; 223:113656. [PMID: 34171660 DOI: 10.1016/j.ejmech.2021.113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
In this study, a variety of original ligands related to Combretastatin A-4 and isoCombretastatin A-4, able to inhibit the tubulin polymerization into microtubules, was designed, synthesized, and evaluated. Our lead compound 15d having a quinazoline as A-ring and a 2-substituted indole as B-ring separated by a N-methyl linker displayed a remarkable sub-nanomolar level of cytotoxicity (IC50 < 1 nM) against 9 human cancer cell lines.
Collapse
|
13
|
Hawash M, Kahraman DC, Cetin-Atalay R, Baytas SN. Induction of Apoptosis in Hepatocellular Carcinoma Cell Lines by Novel Indolylacrylamide Derivatives: Synthesis and Biological Evaluation. Chem Biodivers 2021; 18:e2001037. [PMID: 33713038 DOI: 10.1002/cbdv.202001037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and one of the leading causes of cancer associated death worldwide. This is due to the highly resistant nature of this malignancy and the lack of effective treatment options for advanced stage HCC patients. The hyperactivity of PI3K/Akt and Ras/Raf/MEK/ERK signaling pathways contribute to the cancer progression, survival, motility, and resistance mechanisms, and the interaction of these two pathways are responsible for the regulation of cancer cell growth and development. Therefore, it is vital to design and develop novel therapeutic options for HCC treatment targeting these hyperactive pathways. For this purpose, novel series of trans-indole-3-ylacrylamide derivatives originated from the lead compound, 3-(1H-indole-3-yl)-N-(3,4,5-trimethoxyphenyl)acrylamide, have been synthesized and analyzed for their bioactivity on cancer cells along with the lead compound. Based on the initial screening, the most potent compounds were selected to elucidate their effects on cellular signaling activity of HCC cell lines. Cell cycle analysis, immunofluorescence, and Western blot analysis revealed that lead compound and (E)-N-(4-tert-butylphenyl)-3-(1H-indole-3-yl)acrylamide induced cell cycle arrest at the G2/M phase, enhanced chromatin condensation and PARP-cleavage, addressing induction of apoptotic cell death. Additionally, these compounds decreased the activity of ERK signaling pathway, where phosphorylated ERK1/2 and c-Jun protein levels diminished significantly. Relevant to these findings, the lead compound was able to inhibit tubulin polymerization as well. To conclude, the novel trans-indole-3-ylacrylamide derivatives inhibit one of the critical pathways associated with HCC which results in cell cycle arrest and apoptosis in HCC cell lines.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.,Present address, Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, 06800, Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, 06800, Ankara, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| |
Collapse
|
14
|
Synthesis and Biological Evaluation of 2,3,4-Triaryl-1,2,4-oxadiazol-5-ones as p38 MAPK Inhibitors. Molecules 2021; 26:molecules26061745. [PMID: 33804659 PMCID: PMC8003627 DOI: 10.3390/molecules26061745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
A series of azastilbene derivatives, characterized by the presence of the 1,2,4-oxadiazole-5-one system as a linker of the two aromatic rings of stilbenes, have been prepared as novel potential inhibitors of p38 MAPK. Biological assays indicated that some of the synthesized compounds are endowed with good inhibitory activity towards the kinase. Molecular modeling data support the biological results showing that the designed compounds possess a reasonable binding mode in the ATP binding pocket of p38α kinase with a good binding affinity.
Collapse
|
15
|
Diab RT, Abdel-Sami ZK, Abdel-Aal EH, Al-Karmalawy AA, Abo-Dya NE. Design and synthesis of a new series of 3,5-disubstituted-1,2,4-oxadiazoles as potential colchicine binding site inhibitors: antiproliferative activity, molecular docking, and SAR studies. NEW J CHEM 2021; 45:21657-21669. [DOI: 10.1039/d1nj02885e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel oxadiazole candidates as potential colchicine binding site inhibitors: antiproliferative activity, molecular docking, and sar studie.
Collapse
Affiliation(s)
- Rana T. Diab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Zakaria K. Abdel-Sami
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Eatedal H. Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Nader E. Abo-Dya
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
16
|
Mirzaei S, Qayumov M, Gangi F, Behravan J, Ghodsi R. Synthesis and biological evaluation of oxazinonaphthalene-3-one derivatives as potential anticancer agents and tubulin inhibitors. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1388-1395. [PMID: 33235695 PMCID: PMC7671423 DOI: 10.22038/ijbms.2020.40845.9648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives In the present study, a new series of oxazinonaphthalene-3-one analogs was designed and synthesized as novel tubulin inhibitors. Materials and Methods The cytotoxic activity of the synthesized compounds was evaluated against four human cancer cell lines including A2780 (human ovarian carcinoma), A2780/RCIS (cisplatin resistant human ovarian carcinoma), MCF-7 (human breast cancer cells), and MCF-7/MX (mitoxantrone resistant human breast cancer cells), those compounds which demonstrated the most antiproliferative activity in the MTT test were selected to investigate their tubulin inhibition activity and their effects on cell cycle arrest (at the G2/M phase). Moreover, molecular docking studies of the selected compounds in the catalytic site of tubulin (PDB ID: 4O2B) were carried out to describe the results of biological experiments. Results Most of our compounds exhibited significant to moderate cytotoxic activity against four human cancer cell lines. Among them, Compounds 4d, 5c, and 5g, possessing trimethoxy phenyl, showed the most antiproliferative activity with IC50 values ranging from 4.47 to 52.8 μM. Conclusion The flow cytometric analysis of A2780 cancer cell line treated with compounds 4d, 5c, and 5g showed that these compounds induced cell cycle arrest at the G2/M phase. Compound 5g, the most antiproliferative compound, inhibited tubulin polymerization in a dose-dependent manner. Molecular docking studies of 5g into the colchicine-binding site of tubulin displayed a possible mode of interaction between this compound and tubulin.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maqsudjon Qayumov
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Gangi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Khelifi I, Pecnard S, Bernadat G, Bignon J, Levaique H, Dubois J, Provot O, Alami M. Synthesis and Anticancer Properties of Oxazepines Related to Azaisoerianin and IsoCoQuines. ChemMedChem 2020; 15:1571-1578. [PMID: 32485077 DOI: 10.1002/cmdc.202000197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 01/07/2023]
Abstract
In this article, we report the synthesis and biological properties of a series of novel oxazepines related to isoCA-4 having significant antitumor properties. Among them, three oxazepin-9-ol derivatives display a nanomolar or a sub-nanomolar cytotoxicity level against five human cancer cell lines (HCT116, U87, A549, MCF7, and K562). It was demonstrated that the lead compound in this series inhibits tubulin assembly with an IC50 value of 1 μM and totally arrests the cellular cycle in the G2/M phase at the low concentration of 5 nM in HCT116 and K562 cells. Molecular modeling studies perfectly corroborates these promising results.
Collapse
Affiliation(s)
- Ilhem Khelifi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Shannon Pecnard
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Jérome Bignon
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Hélène Levaique
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
18
|
Karatoprak GŞ, Küpeli Akkol E, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020; 25:E2560. [PMID: 32486408 PMCID: PMC7321081 DOI: 10.3390/molecules25112560] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Combretastatins are a class of closely related stilbenes (combretastatins A), dihydrostilbenes (combretastatins B), phenanthrenes (combretastatins C) and macrocyclic lactones (combretastatins D) found in the bark of Combretum caffrum (Eckl. & Zeyh.) Kuntze, commonly known as the South African bush willow. Some of the compounds in this series have been shown to be among the most potent antitubulin agents known. Due to their structural simplicity many analogs have also been synthesized. Combretastatin A4 phosphate is the most frequently tested compounds in preclinical and clinical trials. It is a water-soluble prodrug that the body can rapidly metabolize to combretastatin A4, which exhibits anti-tumor properties. In addition, in vitro and in vivo studies on combretastatins have determined that these compounds also have antioxidant, anti-inflammatory and antimicrobial effects. Nano-based formulations of natural or synthetic active agents such as combretastatin A4 phosphate exhibit several clear advantages, including improved low water solubility, prolonged circulation, drug targeting properties, enhanced efficiency, as well as fewer side effects. In this review, a synopsis of the recent literature exploring the combretastatins, their potential effects and nanoformulations as lead compounds in clinical applications is provided.
Collapse
Affiliation(s)
- Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey;
| | - Hilal Bardakcı
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey;
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Abolhasani A, Heidari F, Noori S, Mousavi S, Abolhasani H. Cytotoxicity Evaluation of Dimethoxy and Trimethoxy Indanonic Spiroisoxazolines Against Cancerous Liver Cells. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212796813666190926112807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
3'-(3,4-dimethoxyphenyl)-4'-(4-(methylsulfonyl)phenyl)-4'H-spiro
[indene-2,5'-isoxazol]-1(3H)-one and 4'-(4-(methylsulfonyl)phenyl)-3'-(3,4,5-trimethoxyphenyl)-
4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one compounds containing indanonic spiroisoxazoline
core are widely known for their antiproliferative activities and investigation of
tubulin binding modes.
Objective:
To evaluate the cytotoxicity effect of Dimethoxy and Trimethoxy Indanonic Spiroisoxazolines
against HepG2 cancerous liver cell line and to perform a comparison with
other known anti-liver cancer drugs.
Methods:
The evaluation of cytotoxicity of dimethoxy and trimethoxy indanonic spiroisoxazoline
compounds, Oxaliplatin, Doxorubicin, 5-fluorouracil and Cisplatin against HepG2
(hepatocellular liver carcinoma) cell line has been performed using MTT assay and analyzed
by GraphPad PRISM software (version 8.0.2).
Results:
Potent cytotoxicity effects against HepG2 cell line, comparable to Cisplatin (IC50=
0.047±0.0045 µM), Oxaliplatin (IC50= 0.0051µM), Doxorubicin (IC50= 0.0014µM) and 5-
fluorouracil (IC50= 0.0089 µM), were shown by both dimethoxy (IC50= 0.059±0.012 µM)
and trimethoxy (IC50= 0.086±0.019 µM) indanonic spiroisoxazoline compounds.
Conclusion:
In vitro biological evaluations revealed that dimethoxy and trimethoxy indanonic
spiroisoxazoline compounds are good candidates for the development of new anti-liver
cancer agents.
Collapse
Affiliation(s)
- Ahmad Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Noori
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shokoufeh Mousavi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
20
|
Wang C, Li Y, Liu T, Wang Z, Zhang Y, Bao K, Wu Y, Guan Q, Zuo D, Zhang W. Design, synthesis and evaluation of antiproliferative and antitubulin activities of 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles. Bioorg Chem 2020; 104:103909. [PMID: 33142419 DOI: 10.1016/j.bioorg.2020.103909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023]
Abstract
A series of novel 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles possessing 1,2,4-triazole as the hydrogen-bond acceptor were designed, synthesized and evaluated for their antiproliferative and tubulin polymerization inhibitory activities. Some of them exhibited moderate activities in vitro against the three cancer cell lines including SGC-7901, A549 and HeLa. Compound 6e exhibited the highest potency against the three cancer cell lines. Moreover, the tubulin polymerization experiments indicated that compound 6e could inhibit the tubulin polymerization. Immunofluorescence study and cell cycle analysis clearly revealed compound 6e could disrupt intracellular microtubule organization, arrest cell cycle at the G2/M phase. In addition, molecular docking analysis demonstrated the interaction of compound 6e at the colchicine-binding site of tubulin. These preliminary results suggested that compound 6e is a new colchicine binding site inhibitor and worthy of further investigation.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuelin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Tong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zeyu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yujing Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Kai Bao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
21
|
Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem 2020; 11:327-348. [PMID: 33479639 PMCID: PMC7580775 DOI: 10.1039/c9md00458k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The triazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules in the quest for new drugs for clinical usage. Several marketed drugs possess these versatile moieties that are used in a wide range of medical indications. This stems from the unique intrinsic properties of triazoles, which impart stability to the basic pharmacophoric unit with an added advantage of being a bioisostere of different chemical functionalities. In the last decade, the use of triazoles as bioisosteres and linkers in the development of microtubule targeting agents has been extensively investigated. The present review highlights the advances in this promising area of drug discovery and development.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
- Chemistry Department , Faculty of Science , Assiut University , 71516 Assiut , Egypt
| | - Ismail I Althagafi
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Mohammed Azam Ansari
- Department of Epidemic Disease Research , Institute of Research and Medical Consultation , Imam AbdurRahman Bin Faisal University , 34212 Dammam , Saudi Arabia
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi-110062 , India . ; ; Tel: +91 11 26059665
| |
Collapse
|
22
|
Hamze A, Alami M, Provot O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur J Med Chem 2020; 190:112110. [PMID: 32061961 DOI: 10.1016/j.ejmech.2020.112110] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Combretastatin A-4 (CA-4) is a natural anti-cancer agent isolated in 1989 from the African willow tree, Combretum caffrum. Due to its chemical simplicity, this (Z)-stilbene has been the subject of many structural modifications mainly to improve its chemical and metabolic stability. Beside a large number of synthetic analogues, isoCombretastatin A-4 (isoCA-4), has proved to be a solution of choice since this non-natural isomer of CA-4 is stable, easier to synthesize and has equivalent antitumor properties as CA-4. In this review, we will present the structure-activity relationships (SARs) around isoCA-4 since its discovery in 2007. In a first part, we will describe some alternatives to replace the phenol B-ring of isoCA-4, then we will focus on the variations made on the 1,1-ethylene double bond and then, we will evocate very recent exiting results concerning the possible replacements of the 3,4,5-trimethoxyphenyl A-ring of isoCA-4 by suitable heterocycles.
Collapse
Affiliation(s)
- Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
23
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
24
|
Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 2019; 188:112016. [PMID: 31926469 DOI: 10.1016/j.ejmech.2019.112016] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
In the last few decades, considerable progress has been made in anticancer agents development, and several new anticancer agents of natural and synthetic origin have been produced. Among heterocyclic compounds, thiazole, a 5-membered unique heterocyclic motif containing sulphur and nitrogen atoms, serves as an essential core scaffold in several medicinally important compounds. Thiazole nucleus is a fundamental part of some clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A, and epothilone. Recently, thiazole-containing compounds have been successfully developed as possible inhibitors of several biological targets, including enzyme-linked receptor(s) located on the cell membrane, (i.e., polymerase inhibitors) and the cell cycle (i.e., microtubular inhibitors). Moreover, these compounds have been proven to exhibit high effectiveness, potent anticancer activity, and less toxicity. This review presents current research on thiazoles and elucidates their biological importance in anticancer drug discovery. The findings may aid researchers in the rational design of more potent and bio-target specific anticancer drug molecules.
Collapse
|
25
|
Saravani F, Moghadam ES, Salehabadi H, Ostad S, Hamedani MP, Amanlou M, Faramarzi MA, Amini M. Synthesis, Anti-proliferative Evaluation, and Molecular Docking Studies of 3-(alkylthio)-5,6-diaryl-1,2,4-triazines as Tubulin Polymerization Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180727114216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background:
The role of microtubules in cell division and signaling, intercellular transport,
and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs.
Methods:
A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for
their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells
HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma
cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed
to insert these compounds into the crystal structure of tubulin at the colchicine binding site
to determine a probable binding model. Compound 5d as the most active compound was selected
for studying of microtubule disruption.
Results:
Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling
study revealed that some derivatives of triazine strongly bind to colchicine binding site. The
tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition
of tubulin polymerization.
Conclusion:
The cytotoxicity and molecular modeling study of the synthesized compounds with
their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives
for development of new anti-cancer agents.
Collapse
Affiliation(s)
- Farhad Saravani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hafezeh Salehabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyednasser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Pirali Hamedani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
27
|
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Curr Top Med Chem 2019; 19:1289-1304. [PMID: 31210108 DOI: 10.2174/1568026619666190618130008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Microtubules are essential for the mitotic division of cells and have been an attractive target
for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells.
In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-,
vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including
inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to
cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would
provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a
series of challenges about tubulin target druggability.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Liang Tian
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
28
|
Romagnoli R, Oliva P, Salvador MK, Camacho ME, Padroni C, Brancale A, Ferla S, Hamel E, Ronca R, Grillo E, Bortolozzi R, Rruga F, Mariotto E, Viola G. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors. Eur J Med Chem 2019; 181:111577. [PMID: 31400707 DOI: 10.1016/j.ejmech.2019.111577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
A series of 3-(3',4',5'-trimethoxyphenyl)-4-substituted 1H-pyrazole and their related 3-aryl-4-(3',4',5'-trimethoxyphenyl)-1-H-pyrazole regioisomeric derivatives, prepared as cis-rigidified combretastatin A-4 (CA-4) analogues, were synthesized and evaluated for their in vitro antiproliferative against six different cancer cell lines and, for selected highly active compounds, inhibitory effects on tubulin polymerization, cell cycle effects and in vivo potency. We retained the 3',4',5'-trimethoxyphenyl moiety as ring A throughout the present investigation, and a structure-activity relationship (SAR) information was obtained by adding electron-withdrawing (OCF3, CF3) or electron-releasing (alkyl and alkoxy) groups on the second aryl ring, corresponding to the B-ring of CA-4, either at the 3- or 4-position of the pyrazole nucleus. In addition, the B-ring was replaced with a benzo[b]thien-2-yl moiety. For many of the compounds, their activity was greater than, or comparable with, that of CA-4. Maximal activity was observed with the two regioisomeric derivatives characterized by the presence of a 4-ethoxyphenyl and a 3',4',5'-trimethoxyphenyl group at the C-3 and C-4 positions, and vice versa, of the 1H-pyrazole ring. The data showed that the 3',4',5'-trimethoxyphenyl moiety can be moved from the 3- to the 4-position of the 1H-pyrazole ring without significantly affecting antiproliferative activity. The most active derivatives bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. In vivo experiments, on an orthotopic murine mammary tumor, revealed that 4c inhibited tumor growth even at low concentrations (5 mg/kg) compared to CA-4P (30 mg/kg).
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Luigi Borsari 46, Università di Ferrara, 44121, Ferrara, Italy.
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Luigi Borsari 46, Università di Ferrara, 44121, Ferrara, Italy
| | - Maria Kimatrai Salvador
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Maria Encarnacion Camacho
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Chiara Padroni
- Aptuit, an Evotec Company, Via A. Fleming 4, 37135, Verona, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Elisabetta Grillo
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy
| | - Fatlum Rruga
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy
| | - Elena Mariotto
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128, Padova, Italy.
| |
Collapse
|
29
|
Sun XY, Zhong CY, Qiu QQ, Li ZW, Liu MY, Wang X, Jin CH. Synthesis, activity evaluation, and pro-apoptotic properties of novel 1,2,4-triazol-3-amine derivatives as potent anti-lung cancer agents. J Enzyme Inhib Med Chem 2019; 34:1210-1217. [PMID: 31286781 PMCID: PMC6691921 DOI: 10.1080/14756366.2019.1636044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, a series of 4,5-bis(substituted phenyl)-4H-1,2,4-triazol-3-amine compounds was designed, synthesised, and evaluated to determine their potential as anti-lung cancer agents. According to the results of screening of lung cancer cell lines A549, NCI-H460, and NCI-H23 in vitro, most of the synthesised compounds have potent cytotoxic activities with IC50 values ranging from 1.02 to 48.01 µM. Particularly, compound 4,5-bis(4-chlorophenyl)-4H-1,2,4-triazol-3-amine (BCTA) was the most potent anti-cancer agent, with IC50 values of 1.09, 2.01, and 3.28 µM against A549, NCI-H460, and NCI-H23 cells, respectively, meaning many-fold stronger anti-lung cancer activity than that of the chemotherapeutic agent 5-fluorouracil. We also explored the effects of BCTA on apoptosis in lung cancer cells by flow cytometry and western blotting. Our results indicated that BCTA induced apoptosis by upregulating proteins BAX, caspase 3, and PARP. Thus, the potential application of compound BCTA as a drug should be further examined.
Collapse
Affiliation(s)
- Xian-Yu Sun
- a Department of Pharmacy , College of Animal Science and Technique, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Chun-Yan Zhong
- a Department of Pharmacy , College of Animal Science and Technique, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Qing-Qing Qiu
- a Department of Pharmacy , College of Animal Science and Technique, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Zhen-Wang Li
- a Department of Pharmacy , College of Animal Science and Technique, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Mei-Yu Liu
- a Department of Pharmacy , College of Animal Science and Technique, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Xin Wang
- a Department of Pharmacy , College of Animal Science and Technique, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Cheng-Hao Jin
- b Department of Biochemistry and Molecular Biology , College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| |
Collapse
|
30
|
Synthesis and bioevaluation of diarylpyrazoles as antiproliferative agents. Eur J Med Chem 2019; 171:1-10. [DOI: 10.1016/j.ejmech.2019.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
|
31
|
Thi THN, Thi YT, Nguyen LA, Vo NB, Ngo QA. Design, Synthesis and Biological Activities of New Pyrazole Derivatives Possessing Both Coxib and Combretastatins Pharmacophores. Chem Biodivers 2019; 16:e1900108. [PMID: 30977306 DOI: 10.1002/cbdv.201900108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
In our efforts to discover novel multi-target agents having better antitumor activities than celecoxib, 21 new aryl-substituted pyrazole derivatives possessing cis-diphenylethylene scaffold were mostly synthesized by a one-pot approach to ethyl 1,4,5-triaryl-1H-pyrazole-3-carboxylates via an improved Claisen condensation - Knorr reaction sequence. The cytotoxic effects of these compounds against three human cancer cell lines HT-29, Hep-G2, MCF-7 as well as their inhibition of NO production were studied. Results showed that incorporation of the important pharmacophoric groups of two original molecules celecoxib and combretastatin A-4 in a single molecule plays an important role in determining a better biological activities of the new coxib-hybrided compounds.
Collapse
Affiliation(s)
- Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Yen Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| |
Collapse
|
32
|
Khelifi I, Naret T, Hamze A, Bignon J, Levaique H, Garcia Alvarez MC, Dubois J, Provot O, Alami M. N,N-bis-heteroaryl methylamines: Potent anti-mitotic and highly cytotoxic agents. Eur J Med Chem 2019; 168:176-188. [DOI: 10.1016/j.ejmech.2019.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|
33
|
Semenova MN, Demchuk DV, Tsyganov DV, Chernysheva NB, Samet AV, Silyanova EA, Kislyi VP, Maksimenko AS, Varakutin AE, Konyushkin LD, Raihstat MM, Kiselyov AS, Semenov VV. Sea Urchin Embryo Model As a Reliable in Vivo Phenotypic Screen to Characterize Selective Antimitotic Molecules. Comparative evaluation of Combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as Tubulin-Binding Agents. ACS COMBINATORIAL SCIENCE 2018; 20:700-721. [PMID: 30452225 DOI: 10.1021/acscombsci.8b00113] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of both novel and reported combretastatin analogues, including diarylpyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles, were synthesized via improved protocols to evaluate their antimitotic antitubulin activity using in vivo sea urchin embryo assay and a panel of human cancer cells. A systematic comparative structure-activity relationship studies of these compounds were conducted. Pyrazoles 1i and 1p, isoxazole 3a, and triazole 7b were found to be the most potent antimitotics across all tested compounds causing cleavage alteration of the sea urchin embryo at 1, 0.25, 1, and 0.5 nM, respectively. These agents exhibited comparable cytotoxicity against human cancer cells. Structure-activity relationship studies revealed that compounds substituted with 3,4,5-trimethoxyphenyl ring A and 4-methoxyphenyl ring B displayed the highest activity. 3-Hydroxy group in the ring B was essential for the antiproliferative activity in the diarylisoxazole series, whereas it was not required for potency of diarylpyrazoles. Isoxazoles 3 with 3,4,5-trimethoxy-substituted ring A and 3-hydroxy-4-methoxy-substituted ring B were more active than the respective pyrazoles 1. Of the azoles substituted with the same set of other aryl pharmacophores, diarylpyrazoles 1, 4,5-diarylisoxazoles 3, and 4,5-diaryl-1,2,3-triazoles 7 displayed similar strongest antimitotic antitubulin effect followed by 3,4-diarylisoxazoles 5, 1,5-diaryl-1,2,3-triazoles 8, and pyrroles 10 that showed the lowest activity. Introduction of the amino group into the heterocyclic core decreased the antimitotic antitubulin effect of pyrazoles, triazoles, and to a lesser degree of 4,5-diarylisoxazoles, whereas potency of the respective 3,4-diarylisoxazoles was increased.
Collapse
Affiliation(s)
- Marina N. Semenova
- N. K. Koltzov Institute of Developmental Biology RAS, 26 Vavilov Street, 119334 Moscow, Russian Federation
| | - Dmitry V. Demchuk
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Dmitry V. Tsyganov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Natalia B. Chernysheva
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alexander V. Samet
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Eugenia A. Silyanova
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Victor P. Kislyi
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Anna S. Maksimenko
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alexander E. Varakutin
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Leonid D. Konyushkin
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Mikhail M. Raihstat
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - Alex S. Kiselyov
- Genea Biocells US, Inc., Suite 210, 11099 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Victor V. Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
34
|
Zhao G, Bignon J, Levaique H, Dubois J, Alami M, Provot O. One-Pot Synthesis of 2-Styrylindoles from Ortho-Substituted Chloroenynes. J Org Chem 2018; 83:15323-15332. [DOI: 10.1021/acs.joc.8b02563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Guangkuan Zhao
- Univ. Paris-Sud,
BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue
Contre Le Cancer, F-92296 Châtenay-Malabry, France
| | - Jerôme Bignon
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS avenue de la terrasse, F-91198 Gif sur Yvette, France
| | - Helène Levaique
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS avenue de la terrasse, F-91198 Gif sur Yvette, France
| | - Joëlle Dubois
- CIBI Platform, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS avenue de la terrasse, F-91198 Gif sur Yvette, France
| | - Mouad Alami
- Univ. Paris-Sud,
BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue
Contre Le Cancer, F-92296 Châtenay-Malabry, France
| | - Olivier Provot
- Univ. Paris-Sud,
BioCIS, CNRS, University Paris-Saclay, Equipe Labellisée Ligue
Contre Le Cancer, F-92296 Châtenay-Malabry, France
| |
Collapse
|
35
|
Brown AW, Holmes T, Fisher M, Tozer GM, Harrity JPA, Kanthou C. Evaluation of Sydnone-Based Analogues of Combretastatin A-4 Phosphate (CA4P) as Vascular Disrupting Agents for Use in Cancer Therapy. ChemMedChem 2018; 13:2618-2626. [PMID: 30281922 DOI: 10.1002/cmdc.201800567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 11/10/2022]
Abstract
The combretastatins have attracted significant interest as small-molecule therapies for cancer due to their ability to function as vascular disrupting agents. We have successfully prepared a range of combretastatin analogues that are based on a novel sydnone heterocycle core, and their potential as tubulin binders has been assessed in vitro and in vivo. The most potent candidate was found to disrupt microtubules and affect cellular morphology at sub-micromolar levels. Moreover, it was found to bind reversibly to tubulin and significantly increase endothelial cell monolayer permeability, in a similar manner to combretastatin A4. Surprisingly, the compound did not exhibit efficacy in vivo, possibly due to rapid metabolism.
Collapse
Affiliation(s)
- Andrew W Brown
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.,Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Toby Holmes
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Matthew Fisher
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Gillian M Tozer
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Joseph P A Harrity
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Chryso Kanthou
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
36
|
Medicinal chemistry of vicinal diaryl scaffold: A mini review. Eur J Med Chem 2018; 162:1-17. [PMID: 30396033 DOI: 10.1016/j.ejmech.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
Abstract
The privileged structures have been widely used as a valuable template in new drug discovery. 1,2-Diaryl or vicinal diaryl is a simple scaffold found in many drugs and naturally occurring compounds. From synthetic point of view, the vicinal diaryl derivatives are easily accessible due to their facile and expedient syntheses. These scaffolds have shown numerous interesting pharmacological activities against various diseases with lot of clinical potentials. This review aims to highlight the evidence of vicinal diaryl motif as a privileged scaffold in COX-2 inhibitors and CA-4 analogs.
Collapse
|
37
|
Synthesis of 3,4-diaryl- and 4-acyl-3-arylpyrroles and study of their antimitotic activity. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2150-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Lai Q, Wang Y, Wang R, Lai W, Tang L, Tao Y, Liu Y, Zhang R, Huang L, Xiang H, Zeng S, Gou L, Chen H, Yao Y, Yang J. Design, synthesis and biological evaluation of a novel tubulin inhibitor 7a3 targeting the colchicine binding site. Eur J Med Chem 2018; 156:162-179. [DOI: 10.1016/j.ejmech.2018.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 11/29/2022]
|
39
|
Li L, Jiang S, Li X, Liu Y, Su J, Chen J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur J Med Chem 2018; 151:482-494. [PMID: 29649743 DOI: 10.1016/j.ejmech.2018.04.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Microtubules (composed of α- and β-tubulin heterodimers) play a pivotal role in mitosis and cell division, and are regarded as an excellent target for chemotherapeutic agents to treat cancer. There are four unique binding sites in tubulin to which taxanes, vinca alkaloids, laulimalide and colchicine bind respectively. While several tubulin inhibitors that bind to the taxane or vinca alkaloid binding sites have been approved by FDA, currently there are no FDA approved tubulin inhibitors targeting the colchicine binding site. Tubulin inhibitors that bind to the colchicine binding site have therapeutic advantages over taxanes and vinca alkaloids, for example, they can be administered orally, have less drug-drug interaction potential, and are less prone to develop multi-drug resistance. Typically, tubulin inhibitors that bind to the colchicine binding site bear the trimethoxyphenyl (TMP) moiety which is essential for interaction with tubulin. Over the last decade, a variety of molecules bearing the TMP moiety have been designed and synthesized as tubulin inhibitors for cancer treatment. In this review, we focus on the TMP analogs that are designed based on CA-4, indole, chalcone, colchicine and natural product scaffolds which are known to interact with the colchicine binding site in tubulin. The challenges and future direction of the TMP based tubulin inhibitors are also discussed in detail.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sibo Jiang
- College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Xiaoxun Li
- Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu 611731, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Photoresponsive azo-combretastatin A-4 analogues. Eur J Med Chem 2018; 143:1-7. [DOI: 10.1016/j.ejmech.2017.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 11/19/2022]
|
41
|
Zhang M, Liang YR, Li H, Liu MM, Wang Y. Design, synthesis, and biological evaluation of hydantoin bridged analogues of combretastatin A-4 as potential anticancer agents. Bioorg Med Chem 2017; 25:6623-6634. [DOI: 10.1016/j.bmc.2017.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
|
42
|
Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med Chem 2017; 9:1765-1794. [DOI: 10.4155/fmc-2017-0100] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The vital roles of microtubule in mitosis and cell division make it an attractive target for antitumor therapy. Colchicine binding site of tubulin is one of the most important pockets that have been focused on to design tubulin-destabilizing agents. Over the past few years, a large number of colchicine binding site inhibitors (CBSIs) have been developed inspired by natural products or synthetic origins, and many moieties frequently used in these CBSIs are structurally in common. In this review, we will classify the CBSIs into classical CBSIs and nonclassical CBSIs according to their spatial conformations and binding modes with tubulin, and highlight the privileged structures from these CBSIs in the development of tubulin inhibitors targeting the colchicine binding site.
Collapse
|
43
|
Xu Q, Bao K, Sun M, Xu J, Wang Y, Tian H, Zuo D, Guan Q, Wu Y, Zhang W. Design, synthesis and structure-activity relationship of 3,6-diaryl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines as novel tubulin inhibitors. Sci Rep 2017; 7:11997. [PMID: 28931885 PMCID: PMC5607265 DOI: 10.1038/s41598-017-10860-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/11/2017] [Indexed: 12/18/2022] Open
Abstract
A novel series of 3,6-diaryl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines were designed, synthesized and biologically evaluated as vinylogous CA-4 analogues, which involved a rigid [1,2,4]triazolo[3,4-b][1,3,4]thiadiazine scaffold to fix the configuration of (Z,E)-butadiene linker of A-ring and B-ring. Among these rigidly vinylogous CA-4 analogues, compounds 4d, 5b, 5i, 6c, 6e, 6g, 6i and 6k showed excellent antiproliferative activities against SGC-7901, A549 and HT-1080 cell lines with IC50 values at the nanomolar level. Compound 6i showed the most highly active antiproliferative activity against the three human cancer cell lines with an IC50 values of 0.011-0.015 µM, which are comparable to those of CA-4 (IC50 = 0.009-0.013 µM). Interestingly, SAR studies revealed that 3,4-methylenedioxyphenyl, 3,4-dimethoxyphenyl, 3-methoxyphenyl and 4-methoxyphenyl could replace the classic 3,4,5-trimethoxyphenyl in CA-4 structure and keep antiproliferative activity in this series of designed compounds. Tubulin polymerization experiments showed that 6i could effectively inhibit tubulin polymerization, which was corresponded with CA-4, and immunostaining experiments suggested that 6i significantly disrupted microtubule/tubulin dynamics. Furthermore, 6i potently induced cell cycle arrest at G2/M phase in SGC-7901 cells. Competitive binding assays and docking studies suggested that compound 6i binds to the tubulin perfectly at the colchicine binding site. Taken together, these results revealed that 6i may become a promising lead compound for new anticancer drugs discovery.
Collapse
Affiliation(s)
- Qile Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Kai Bao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Maolin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yueting Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Haiqiu Tian
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
44
|
Bukhari SNA, Kumar GB, Revankar HM, Qin HL. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg Chem 2017; 72:130-147. [PMID: 28460355 DOI: 10.1016/j.bioorg.2017.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 11/18/2022]
Abstract
The combretastatins are isolated from South African tree combretum caffrum kuntze. The lead compound combretastatin A-4 has displayed remarkable cytotoxic effect in a wide variety of preclinical tumor models and inhibits tubulin polymerization by interacting at colchicine binding site of microtubule. However, the structural simplicity of C A-4 is favorable for synthesis of various derivatives projected to induce rapid and selective vascular shutdown in tumors. Majority of the molecules have shown excellent antiproliferative activity and are able to inhibit tubulin polymerization as well as possible mechanisms of action have been investigated. In this review article, the synthesis and structure-activity relationships of C A-4 and immense number of its synthetic derivatives with various modifications on the A, B-rings, bridge carbons and their anti mitotic activities are discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia.
| | - Gajjela Bharath Kumar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hrishikesh Mohan Revankar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
45
|
Discovery and Optimization of Novel 5-Indolyl-7-arylimidazo[1,2-a]pyridine-8-carbonitrile Derivatives as Potent Antitubulin Agents Targeting Colchicine-binding Site. Sci Rep 2017; 7:43398. [PMID: 28240326 PMCID: PMC5327470 DOI: 10.1038/srep43398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Aiming at development of potent antitubulin agents targeting colchicine-binding site, a series of novel 5-indolyl-7-arylimidazo[1,2-a]pyridine-8-carbonitrilederivatives (5a–5v and 7a–7h) were designed based on bioisosterism and hybridization strategies. All these compounds were concisely synthesized via a three-step process and examined against five human cancer cell lines (HT-29, A549, MKN-45, MDA-MB-231 and SMMC-7721) along with a normal human cell (L02) in vitro. A structure-activity relationships (SARs) study was carried out and optimization towards this series of compounds in cellular assay resulted in the discovery of 5k, which displayed similar or better antitumor potency against the tested cancer cells with IC50 value ranging from 0.02 to 1.22 μM superior to CA-4 and Crolibulin. Significantly, a cell cycle study disclosed the ability of 5k to arrest cell cycle at the G2/M phase, and immunofluorescence assay as well as a colchicine competition assay revealed that tubulin polymerization was disturbed by 5k by binding to the colchicine site. Moreover, the molecular modeling mode showed the posture of 5k and Crolibulin was similar in the colchcine-binding pocket of tubulin as identified with the SARs and pharmacological results. Together, all these results rationalized 5k might serve as a promising lead for a novel class of antitubulin agents for cancer treatments.
Collapse
|
46
|
2,3-Diaryl-3 H-imidazo[4,5- b]pyridine derivatives as potential anticancer and anti-inflammatory agents. Acta Pharm Sin B 2017; 7:73-79. [PMID: 28119811 PMCID: PMC5237703 DOI: 10.1016/j.apsb.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/23/2022] Open
Abstract
In this study we examined the suitability of the 3H-imidazo[4,5-b]pyridine ring system in developing novel anticancer and anti-inflammatory agents incorporating a diaryl pharmacophore. Eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives retrieved from our in-house database were evaluated for their cytotoxic activity against nine cancer cell lines. The results indicated that the compounds showed moderate cytotoxic activity against MCF-7, MDA-MB-468, K562 and SaOS2 cells, with K562 being the most sensitive among the four cancer cell lines. The eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives were also evaluated for their COX-1 and COX-2 inhibitory activity in vitro. The results showed that compound 3f exhibited 2-fold selectivity with IC50 values of 9.2 and 21.8 µmol/L against COX-2 and COX-1, respectively. Molecular docking studies on the most active compound 3f revealed a binding mode similar to that of celecoxib in the active site of the COX-2 enzyme.
Collapse
|
47
|
Khelifi I, Naret T, Renko D, Hamze A, Bernadat G, Bignon J, Lenoir C, Dubois J, Brion JD, Provot O, Alami M. Design, synthesis and anticancer properties of IsoCombretaQuinolines as potent tubulin assembly inhibitors. Eur J Med Chem 2016; 127:1025-1034. [PMID: 28166995 DOI: 10.1016/j.ejmech.2016.11.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
The synthesis and evaluation of a new series of IsoCombretaQuinolines (IsoCoQuines) 2 with a 2-substituted-quinoline in place of the 3,4,5-trimethoxyphenyl ring present in isoCA-4 and CA-4 are described. Most of these compounds displayed a potent cytotoxic activity (IC50 < 10 nM) against a panel of five human cancer cell lines and inhibited tubulin assembly at a micromolar level. The most potent analogue 2b, having a 3-hydroxy-4-methoxyphenyl as B-ring, led to cell cycle arrest in G2/M phase. Docking studies indicate that 2b showed a binding mode comparable to those previously observed with quinazoline analogous (IsoCoQ) and with isoCA-4 at the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Ilhem Khelifi
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Timothée Naret
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Dolor Renko
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Abdallah Hamze
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Guillaume Bernadat
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Jérome Bignon
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Avenue de La Terrasse, F-91198 Gif sur Yvette, France
| | - Christine Lenoir
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Avenue de La Terrasse, F-91198 Gif sur Yvette, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS Avenue de La Terrasse, F-91198 Gif sur Yvette, France
| | - Jean-Daniel Brion
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Olivier Provot
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France.
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France.
| |
Collapse
|
48
|
Elmeligie S, Taher AT, Khalil NA, El-Said AH. Synthesis and cytotoxic activity of certain trisubstituted azetidin-2-one derivatives as a cis-restricted combretastatin A-4 analogues. Arch Pharm Res 2016; 40:13-24. [PMID: 27747473 DOI: 10.1007/s12272-016-0849-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
Abstract
Novel series of 1,3,4-trisubstituted azetidin-2-one derivatives 8a-p were synthesized and proposed as cytotoxic agents acting via inhibition of tubulin at the colchicine binding site. The design of the target compounds was based upon modification in the structure of the vascular targeting agent combretastatin A-4 (CA-4). The cis double bond linker in CA-4 was replaced with the azetidin-2-one ring aiming to prevent the cis/trans isomerization that suppresses the activity of CA-4, thereby enhancing its antiproliferative activity. All new compounds were investigated in vitro against MCF-7 and HCT-116 cell lines. The inhibition of tubulin polymerization by four most potent compounds 8g, 8j, 8n and 8o was also evaluated. The synthesis of the final targets was achieved adopting Staudinger reaction. Molecular modeling studies were performed to rationalize the biological results.
Collapse
Affiliation(s)
- Salwa Elmeligie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Azza T Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, Giza, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed H El-Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Giza, Egypt
| |
Collapse
|
49
|
Novel Natural Product- and Privileged Scaffold-Based Tubulin Inhibitors Targeting the Colchicine Binding Site. Molecules 2016; 21:molecules21101375. [PMID: 27754459 PMCID: PMC6273505 DOI: 10.3390/molecules21101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
Tubulin inhibitors are effective anticancer agents, however, there are many limitations to the use of available tubulin inhibitors in the clinic, such as multidrug resistance, severe side-effects, and generally poor bioavailability. Thus, there is a constant need to search for novel tubulin inhibitors that can overcome these limitations. Natural product and privileged structures targeting tubulin have promoted the discovery and optimization of tubulin inhibitors. This review will focus on novel tubulin inhibitors derived from natural products and privileged structures targeting the colchicine binding site on tubulin.
Collapse
|
50
|
Brown AW, Fisher M, Tozer GM, Kanthou C, Harrity JPA. Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4. J Med Chem 2016; 59:9473-9488. [PMID: 27690431 DOI: 10.1021/acs.jmedchem.6b01128] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combretastatins are an important class of tubulin-binding agents. Of this family, a number of compounds are potent tumor vascular disrupting agents (VDAs) and have shown promise in the clinic for cancer therapy. We have developed a modular synthetic route to combretastatin analogs based on a pyrazole core through highly regioselective alkyne cycloaddition reactions of sydnones. These compounds show modest to high potency against human umbilical vein endothelial cell proliferation. Moreover, evidence is presented that these novel VDAs have the same mode of action as CA4P and bind reversibly to β-tubulin, believed to be a key feature in avoiding toxicity. The most active compound from in vitro studies was taken forward to an in vivo model and instigated an increase in tumor cell necrosis.
Collapse
Affiliation(s)
- Andrew W Brown
- Department of Chemistry, University of Sheffield , Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.,Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Matthew Fisher
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Gillian M Tozer
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Chryso Kanthou
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield , Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|