1
|
Shaaban M, Abdel-Razek AS, Previtali V, Clausen MH, Gotfredsen CH, Laatsch H, Ding L. Sulochrins and alkaloids from a fennel endophyte Aspergillus sp. FVL2. Nat Prod Res 2023; 37:1310-1320. [PMID: 34865573 DOI: 10.1080/14786419.2021.2005054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The fungal endophyte Aspergillus sp. strain FVL2, isolated from the traditional medicinal fennel plant, Foeniculum vulgare, was investigated for secondary metabolites. Fermentation on rice medium followed by chromatographic separation delivered three new natural products, 7-demethyl-neosulochrin (1), fumigaclavine I (3) and N-benzoyl-tryptophan (6) together with further 14 known metabolites, 1-O-methyl-sulochrin-4'-sulfate, questin, laccaic acid, isorhodoptilometrin, fumigaclavine A, fumigaclavine C, fumitremorgin C, fumigaquinazoline C, tryptoquivaline J, trypacidin, 3'-O-demethyl-sulochrin, 1-O-methyl-sulochrin, protocatechuic acid, and vermelone. The chemical structures of the new metabolites were determined by NMR spectroscopy and ESI HR mass spectrometry. For fumigaclavine I, we observed the partial deuterium transfer from the solvent to the enol form with a remarkable high stereo selectivity. The discovery of the new seco-anthraquinone 7-demethyl-neosulochrin (1) revealed a second type of ring cleavage by a questin oxygenase. The discovery of diverse secondary metabolites broadens the chemical space of Aspergillus.
Collapse
Affiliation(s)
- Mohamed Shaaban
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, Giza, Egypt
| | - Ahmed S Abdel-Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Viola Previtali
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Denmark
| | - Mads Hartvig Clausen
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Denmark
| | | | - Hartmut Laatsch
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Xu Y, Liu W, Wu D, He W, Zuo M, Wang D, Fu P, Wang L, Zhu W. Sulfur-Containing Phenolic Compounds from the Cave Soil-Derived Aspergillus fumigatus GZWMJZ-152. JOURNAL OF NATURAL PRODUCTS 2022; 85:433-440. [PMID: 35107296 DOI: 10.1021/acs.jnatprod.1c01158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Six new sulfur-containing phenolic compounds (1-6) and their putative metabolic precursors (7-9) were isolated from the cave soil-derived fungus Aspergillus fumigatus GZWMJZ-152. Compound 1 represents an unusual benzophenone-diketopiperazine hybrid via a thioether linker, while compound 2 contains a naturally rare sulfoxide group. Both compounds 2 and 3 were initially isolated as racemic mixtures and then purified as the enantiomerically pure (+)-2, (-)-2, (+)-3, and (-)-3, respectively. Their structures, including absolute configurations, were elucidated by spectroscopic analysis, X-ray diffraction, and the calculations of electronic circular dichroism. The antioxidant activity of compounds 1-9 was evaluated based on oxygen radical absorbance capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and the protective effect on the PC12 cell line against H2O2-induced damage. Compounds 5-7 and 9 showed radical-scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals with the IC50 values of 3.45 ± 0.02, 23.73 ± 0.08, 18.90 ± 0.16, and 17.27 ± 0.15 μM, respectively. Compounds (±)-2, 4, 7, and 8 exhibited potent antioxidant capacity with oxygen radical absorbance capacity values of 1.73 ± 0.13, 1.65 ± 0.03, 6.14 ± 0.35, and 1.55 ± 0.04 μmol TE/μmol, respectively. Compounds (±)-2 and (±)-3 also exhibited protective effects on oxidative injury of PC12 cells induced by H2O2.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wen Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Wenwen He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Mingxing Zuo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Dongyang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Peng Fu
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
3
|
Case-Control Study of Nodding Syndrome in Acholiland: Urinary Multi-Mycotoxin Screening. Toxins (Basel) 2021; 13:toxins13050313. [PMID: 33925470 PMCID: PMC8145943 DOI: 10.3390/toxins13050313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
This case-control study adds to the growing body of knowledge on the medical, nutritional, and environmental factors associated with Nodding Syndrome (NS), a seizure disorder of children and adolescents in northern Uganda. Past research described a significant association between NS and prior history of measles infection, dependence on emergency food and, at head nodding onset, subsistence on moldy maize, which has the potential to harbor mycotoxins. We used LC-MS/MS to screen for current mycotoxin loads by evaluating nine analytes in urine samples from age-and-gender matched NS cases (n = 50) and Community Controls (CC, n = 50). The presence of the three mycotoxins identified in the screening was not significantly different between the two groups, so samples were combined to generate an overall view of exposure in this community during the study. Compared against subsequently run standards, α-zearalenol (43 ± 103 µg/L in 15 samples > limit of quantitation (LOQ); 0 (0/359) µg/L), T-2 toxin (39 ± 81 µg/L in 72 samples > LOQ; 0 (0/425) µg/L) and aflatoxin M1 (4 ± 10 µg/L in 15 samples > LOQ; 0 (0/45) µg/L) were detected and calculated as the average concentration ± SD; median (min/max). Ninety-five percent of the samples had at least one urinary mycotoxin; 87% were positive for two of the three compounds detected. While mycotoxin loads at NS onset years ago are and will remain unknown, this study showed that children with and without NS currently harbor foodborne mycotoxins, including those associated with maize.
Collapse
|
4
|
Throckmorton K, Lim FY, Kontoyiannis DP, Zheng W, Keller NP. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environ Microbiol 2015; 18:246-59. [PMID: 26242966 DOI: 10.1111/1462-2920.13007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/17/2023]
Abstract
Filamentous fungi are renowned for the production of bioactive secondary metabolites. Typically, one distinct metabolite is generated from a specific secondary metabolite cluster. Here, we characterize the newly described trypacidin (tpc) cluster in the opportunistic human pathogen Aspergillus fumigatus. We find that this cluster as well as the previously characterized endocrocin (enc) cluster both contribute to the production of the spore metabolite endocrocin. Whereas trypacidin is eliminated when only tpc cluster genes are deleted, endocrocin production is only eliminated when both the tpc and enc non-reducing polyketide synthase-encoding genes, tpcC and encA, respectively, are deleted. EncC, an anthrone oxidase, converts the product released from EncA to endocrocin as a final product. In contrast, endocrocin synthesis by the tpc cluster likely results from incomplete catalysis by TpcK (a putative decarboxylase), as its deletion results in a nearly 10-fold increase in endocrocin production. We suggest endocrocin is likely a shunt product in all related non-reducing polyketide synthase clusters containing homologues of TpcK and TpcL (a putative anthrone oxidase), e.g. geodin and monodictyphenone. This finding represents an unusual example of two physically discrete secondary metabolite clusters generating the same natural product in one fungal species by distinct routes.
Collapse
Affiliation(s)
- Kurt Throckmorton
- Department of Genetics, University of Wisconsin - Madison, Madison, WI, USA
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Weifa Zheng
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, USA.,Key Laboratory for Biotechnology, Jiangsu Normal University, Xuzhou, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
5
|
Wang FW, Ye YH, Ding H, Chen YX, Tan RX, Song YC. Benzophenones fromGuignardiasp. IFB-E028, an Endophyte onHopea hainanensis. Chem Biodivers 2010; 7:216-20. [DOI: 10.1002/cbdv.200800353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Wang FW, Hou ZM, Wang CR, Li P, Shi DH. Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9720-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
|
8
|
Liu JY, Song YC, Zhang Z, Wang L, Guo ZJ, Zou WX, Tan RX. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J Biotechnol 2005; 114:279-87. [PMID: 15522437 DOI: 10.1016/j.jbiotec.2004.07.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 07/29/2004] [Accepted: 07/30/2004] [Indexed: 11/17/2022]
Abstract
Aspergillus fumigatus CY018 was recognized as an endophytic fungus for the first time in the leaf of Cynodon dactylon. By bioassay-guided fractionation, the EtOAc extract of a solid-matrix steady culture of this fungus afforded two new metabolites, named asperfumoid (1) and asperfumin (2), together with six known bioactive compounds including monomethylsulochrin, fumigaclavine C, fumitremorgin C, physcion, helvolic acid and 5alpha,8alpha-epidioxy-ergosta-6,22-diene-3beta-ol as well as other four known compounds ergosta-4,22-diene-3beta-ol, ergosterol, cyclo(Ala-Leu) and cyclo(Ala-Ile). Through detailed spectroscopic analyses including HRESI-MS, homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC), the structures of asperfumoid and asperfumin were established to be spiro-(3-hydroxyl-2,6-dimethoxyl-2,5-diene-4-cyclohexone-(1,3')-5'-methoxyl-7'-methyl-(1'H, 2'H, 4'H)-quinoline-2',4'-dione) and 5-hydroxyl-2-(6-hydroxyl-2-methoxyl-4-methylbenzoyl)-3,6-dimethoxyl-benzoic methyl ester, respectively. All of the 12 isolates were subjected to in vitro bioactive assays against three human pathogenic fungi Candida albicans, Tricophyton rubrum and Aspergillus niger. As a result, asperfumoid, fumigaclavine C, fumitremorgin C, physcion and helvolic acid were shown to inhibit C. albicans with MICs of 75.0, 31.5, 62.5, 125.0 and 31.5 microg/mL, respectively.
Collapse
Affiliation(s)
- J Y Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|