Jacobsen BM, Schittone SA, Richer JK, Horwitz KB. Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology.
Mol Endocrinol 2004;
19:574-87. [PMID:
15563544 DOI:
10.1210/me.2004-0287]
[Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone receptors (PRs) are prognostic markers in breast cancers irrespective of the patient's progestational status. However, there are two PR isoforms, PR-A and PR-B, that are equimolar in the normal breast but dysregulated in advanced disease. Postmenopausal, tamoxifen-treated patients with estrogen receptor (ER)-positive, PR-A-rich tumors have much faster disease recurrence than patients with PR-B-rich tumors. To study the mechanisms we engineered ER+ breast cancer cells that express each PR isoform under control of an inducible promoter. We identified 79 genes regulated by progesterone (P), mainly by PR-B, and 51 genes regulated without progesterone, mainly by PR-A. Only nine genes were regulated with and without ligand, leading to definition of three classes: I) genes regulated only by liganded PR; II) genes regulated only by unliganded PR; III) genes regulated by both. Unliganded PR-A and PR-B differentially regulate genes that coordinate extracellular signaling pathways and influence tumor cell biology. Indeed, in the absence of P, compared with ER+/PR-B+ or PR- cells, ER+, PR-A+ cells exhibit an aggressive phenotype, are more adhesive to an extracellular matrix, and are more migratory. Additionally, unliganded PR-A and PR-B both inhibit cell growth and provoke resistance to Taxol-induced apoptosis. We propose that PR-A:PR-B ratios, even in the absence of P, influence the biology and treatment response of ER+ tumors, that PR-A isoforms are functionally dominant in P-deficient states, and that PR-A rich tumors are especially aggressive.
Collapse