1
|
Tefferi A. Genomics Basics: DNA Structure, Gene Expression, Cloning, Genetic Mapping, and Molecular Tests. Semin Cardiothorac Vasc Anesth 2016; 10:282-90. [PMID: 17200086 DOI: 10.1177/1089253206294343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genomics is the study of the structure and function of the human genome including genes and their surrounding DNA sequences. The over 3 billion base pairs of the human genome have now been sequenced and approximately 25 000 genes acknowledged. However, only 1% of the entire genome has been assigned to protein coding and decades more work is anticipated to define the functional relevance of noncoding DNA as well as the basis and consequences of sequence variations among individuals. For medical scientists, the focus remains on discovering both disease-causing and disease-susceptibility genes. For pharmaceutical companies, the opportunity to develop molecularly targeted therapy is not going unnoticed. For the practicing physician, the prospect of genomic medicine that incorporates molecular diagnosis and pathogenesis-targeted therapy requires basic understanding of terminology and concepts in molecular biology and the corresponding laboratory tests.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
Feinberg H, Saldanha JW, Diep L, Goel A, Widom A, Veldman GM, Weis WI, Schenk D, Basi GS. Crystal structure reveals conservation of amyloid-β conformation recognized by 3D6 following humanization to bapineuzumab. ALZHEIMERS RESEARCH & THERAPY 2014; 6:31. [PMID: 25024748 PMCID: PMC4095729 DOI: 10.1186/alzrt261] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/23/2014] [Indexed: 12/03/2022]
Abstract
Introduction Immunotherapy targeting amyloid-β peptide is under active clinical investigation for treatment of Alzheimer’s disease (AD). Among the hypotheses being investigated for impact on clinical outcome are the preferred epitope or conformation of amyloid-β to target for treatment, and the mechanism of action underlying immunotherapy. Bapineuzumab (humanized 3D6), a neo-epitope specific antibody recognizing amyloid-β1-5 with strong preference for an exposed Asp residue at the N-terminus of the peptide, has undergone advanced clinical testing for treatment of AD. Methods To gain further insight into the epitope conformation, we interrogated structural details of amino-terminal epitopes in amyloid-β using x-ray crystallography of 3D6Fab:amyloid-β complexes. Humanization of 3D6 was carried out using standard procedures integrating recombinant methods, sequence informatics, and homology modeling predictions to identify important mouse framework residues for retention in the finished humanized product. Results Here we report the crystal structure of a recombinant Fab fragment of 3D6 in complex with amyloid-β1-7 solved at 2.0 Å resolution. The N-terminus of amyloid-β is bound to 3D6 as a 310 helix. The amino-terminal Asp residue is buried deepest in the antibody binding pocket, with the Cβ atom of residue 6 visible at the entrance to the binding pocket near the surface of the antibody. We further evaluate homology model based predictions used to guide humanization of 3D6 to bapineuzumab, with actual structure of the Fab. The structure of the Fab:amyloid-β complex validates design of the humanized antibody, and confirms the amyloid-β epitope recognized by 3D6 as previously mapped by ELISA. Conclusions The conformation of amyloid-β antigen recognized by 3D6 is novel and distinct from other antibodies recognizing N-terminal epitopes. Our result provides the first report demonstrating structural conservation of antigen contact residues, and conformation of antigen recognized, between the parent murine antibody and its humanized version.
Collapse
Affiliation(s)
- Hadar Feinberg
- Departments of Structural Biology and of Molecular & Cellular Physiology, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - José W Saldanha
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Linnea Diep
- Elan Pharmaceuticals, Inc. 300 Technology Sq., Cambridge, MA 02139, USA
| | - Amita Goel
- Elan Pharmaceuticals, Inc. 300 Technology Sq., Cambridge, MA 02139, USA
| | | | | | - William I Weis
- Departments of Structural Biology and of Molecular & Cellular Physiology, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dale Schenk
- Prothena Biosciences, Inc., 650 Gateway Blvd., San Francisco, CA 94080, USA
| | - Guriqbal S Basi
- Elan Pharmaceuticals, Inc. 300 Technology Sq., Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Tefferi A, Wieben ED, Dewald GW, Whiteman DAH, Bernard ME, Spelsberg TC. Primer on medical genomics part II: Background principles and methods in molecular genetics. Mayo Clin Proc 2002; 77:785-808. [PMID: 12173714 DOI: 10.4065/77.8.785] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nucleus of every human cell contains the full complement of the human genome, which consists of approximately 30,000 to 70,000 named and unnamed genes and many intergenic DNA sequences. The double-helical DNA molecule in a human cell, associated with special proteins, is highly compacted into 22 pairs of autosomal chromosomes and an additional pair of sex chromosomes. The entire cellular DNA consists of approximately 3 billion base pairs, of which only 1% is thought to encode a functional protein or a polypeptide. Genetic information is expressed and regulated through a complex system of DNA transcription, RNA processing, RNA translation, and posttranslational and cotranslational modification of proteins. Advances in molecular biology techniques have allowed accurate and rapid characterization of DNA sequences as well as identification and quantification of cellular RNA and protein. Global analytic methods and human genetic mapping are expected to accelerate the process of identification and localization of disease genes. In this second part of an educational series in medical genomics, selected principles and methods in molecular biology are recapped, with the intent to prepare the reader for forthcoming articles with a more direct focus on aspects of the subject matter.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
In 1993, several groups, working independently, reported the successful generation of transgenic mice with yeast artificial chromosomes (YACs) using standard techniques. The transfer of these large fragments of cloned genomic DNA correlated with optimal expression levels of the transgenes, irrespective of their location in the host genome. Thereafter, other groups confirmed the advantages of YAC transgenesis and position-independent and copy number-dependent transgene expression were demonstrated in most cases. The transfer of YACs to the germ line of mice has become popular in many transgenic facilities to guarantee faithful expression of transgenes. This technique was rapidly exported to livestock and soon transgenic rabbits, pigs and other mammals were produced with YACs. Transgenic animals were also produced with bacterial or P1-derived artificial chromosomes (BACs/PACs) with similar success. The use of YACs, BACs and PACs in transgenesis has allowed the discovery of new genes by complementation of mutations, the identification of key regulatory sequences within genomic loci that are crucial for the proper expression of genes and the design of improved animal models of human genetic diseases. Transgenesis with artificial chromosomes has proven useful in a variety of biological, medical and biotechnological applications and is considered a major breakthrough in the generation of transgenic animals. In this report, we will review the recent history of YAC/BAC/PAC-transgenic animals indicating their benefits and the potential problems associated with them. In this new era of genomics, the generation and analysis of transgenic animals carrying artificial chromosome-type transgenes will be fundamental to functionally identify and understand the role of new genes, included within large pieces of genomes, by direct complementation of mutations or by observation of their phenotypic consequences.
Collapse
Affiliation(s)
- P Giraldo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Madrid, Spain
| | | |
Collapse
|
5
|
Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 2000; 97:722-7. [PMID: 10639146 PMCID: PMC15397 DOI: 10.1073/pnas.97.2.722] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of a human chromosome or its fragment as a vector for animal transgenesis may facilitate functional studies of large human genomic regions. We describe here the generation and analysis of double trans-chromosomic (Tc) mice harboring two individual human chromosome fragments (hCFs). Two transmittable hCFs, one containing the Ig heavy chain locus (IgH, approximately 1.5 Mb) and the other the kappa light chain locus (Igkappa, approximately 2 Mb), were introduced into a mouse strain whose endogenous IgH and Igkappa loci were inactivated. In the resultant double-Tc/double-knockout mice, substantial proportion of the somatic cells retained both hCFs, and the rescue in the defect of Ig production was shown by high level expression of human Ig heavy and kappa chains in the absence of mouse heavy and kappa chains. In addition, serum expression profiles of four human Ig gamma subclasses resembled those seen in humans. They mounted an antigen-specific human antibody response upon immunization with human serum albumin, and human serum albumin-specific human monoclonal antibodies with various isotypes were obtained from them. These results represent a generation of mice with "humanized" loci by using the transmittable hCFs, which suggest that the Tc technology may allow for the humanization of over megabase-sized, complex loci in mice or other animals. Such animals may be useful not only for studying in vivo functions of the human genome but also for obtaining various therapeutic products.
Collapse
Affiliation(s)
- K Tomizuka
- Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Miyahara-cho 3, Takasaki-shi, Gunma 370-1295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, Gallo ML, Louie DM, Lee DV, Erickson KL, Luna J, Roy CM, Abderrahim H, Kirschenbaum F, Noguchi M, Smith DH, Fukushima A, Hales JF, Klapholz S, Finer MH, Davis CG, Zsebo KM, Jakobovits A. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 1997; 15:146-56. [PMID: 9020839 DOI: 10.1038/ng0297-146] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We constructed two megabase-sized YACs containing large contiguous fragments of the human heavy and kappa (kappa) light chain immunoglobulin (Ig) loci in nearly germline configuration, including approximately 66 VH and 32 V kappa genes. We introduced these YACs into Ig-inactivated mice and observed human antibody production which closely resembled that seen in humans in all respects, including gene rearrangement, assembly, and repertoire. Diverse Ig gene usage together with somatic hypermutation enables the mice to generate high affinity fully human antibodies to multiple antigens, including human proteins. Our results underscore the importance of the large Ig fragments with multiple V genes for restoration of a normal humoral immune response. These mice are likely to be a valuable tool for the generation of therapeutic antibodies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibody Affinity
- Antibody Diversity
- Antibody Formation
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Chromosomes, Artificial, Yeast/genetics
- ErbB Receptors/immunology
- Gene Rearrangement, B-Lymphocyte
- Genes, Immunoglobulin
- Humans
- Hybridomas/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin kappa-Chains/biosynthesis
- Immunoglobulin kappa-Chains/genetics
- Interleukin-8/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Species Specificity
- Transgenes
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- M J Mendez
- Abgenix, Inc., Fremont, California 94555, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brüggemann M, Neuberger MS. Strategies for expressing human antibody repertoires in transgenic mice. IMMUNOLOGY TODAY 1996; 17:391-7. [PMID: 8783501 DOI: 10.1016/0167-5699(96)10025-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Repertoires of human antibodies can be created in transgenic mice carrying human immunoglobulin-gene loci in germline configuration. These 'transloci', introduced either as miniloci or as almost locus-sized regions, undergo rearrangement and hypermutation in mouse lymphoid tissue. Here, Marianne Brüggemann and Michael Neuberger review the use of such mice for raising antigen-specific human monoclonal antibodies, as well as their exploitation for studying regulatory aspects of antibody repertoire formation.
Collapse
Affiliation(s)
- M Brüggemann
- Dept of Development and Genetics, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
8
|
Abstract
Advances in yeast artificial chromosome (YAC) technologies over the past decade have enabled the precise identification and manipulation of large genomic regions (>100 kb) of DNA. Introduction of YACs into the mouse germline has now been accomplished through transfection of mouse embryonic stem cells as well as through pronuclear microinjection, allowing the efficient transfer defined genomic loci into mice. YAC transgenics will have a profound impact on the development of transgenic mice as bioreactors and as models of human disease, and on the functional analysis of higher order genomic structure.
Collapse
Affiliation(s)
- B T Lamb
- Department of Gynecology and Obsterics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2501, USA
| | | |
Collapse
|