1
|
Mukherjee S, Kuang Z, Ghosh S, Detroja R, Carmi G, Tripathy S, Barash D, Frenkel-Morgenstern M, Nevo E, Li K. Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis. BIOLOGY 2022; 11:biology11081110. [PMID: 35892966 PMCID: PMC9331176 DOI: 10.3390/biology11081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The microevolutionary dynamics of soil bacteria under microclimatic differences are largely unexplored in contrast to our improving knowledge of their vast diversity. In this study, we performed a comparative metagenomic analysis of two sharply divergent rocks and soil types at the Evolution Plateau (EP) in eastern Upper Galilee, Israel. We have identified the significant differences in bacterial taxonomic diversity, functions, and patterns of RNA-based gene regulation between the bacteria from two different soil types. Furthermore, we have identified several species with a significant genetic divergence of the same species between the two soil types, highlighting the soil bacteria’s incipient sympatric speciation. Abstract Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.
Collapse
Affiliation(s)
- Sumit Mukherjee
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
- Correspondence: (S.M.); (K.L.)
| | - Zhuoran Kuang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
| | - Samrat Ghosh
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Sucheta Tripathy
- Computational Genomics Laboratory, Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata 700054, India; (S.G.); (S.T.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201009, India
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel;
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (R.D.); (G.C.); (M.F.-M.)
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3498838, Israel;
| | - Kexin Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730050, China;
- Correspondence: (S.M.); (K.L.)
| |
Collapse
|
2
|
Leehan JD, Nicholson WL. The Spectrum of Spontaneous Rifampin Resistance Mutations in the Bacillus subtilis rpoB Gene Depends on the Growth Environment. Appl Environ Microbiol 2021; 87:e0123721. [PMID: 34495706 PMCID: PMC8552901 DOI: 10.1128/aem.01237-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
Results from previous investigations into spontaneous rifampin resistance (Rifr) mutations in the Bacillus subtilis rpoB gene suggested that the spectrum of mutations depends on the growth environment. However, these studies were limited by low sample numbers, allowing for the potential distortion of the data by the presence of "jackpot" mutations that may have arisen early in the growth of a population. Here, we addressed this issue by performing fluctuation analyses to assess both the rate and spectrum of Rifr mutations in two distinct media: LB, a complete laboratory medium, and SMMAsn, a minimal medium utilizing l-asparagine as the sole carbon source. We cultivated 60 separate populations under each growth condition and determined the mutation rate to Rifr to be slightly but significantly higher in LB cultures. We then sequenced the relevant regions of rpoB to map the spectrum of Rifr mutations under each growth condition. We found a distinct spectrum of mutations in each medium; LB cultures were dominated by the H482Y mutation (27/53 or 51%), whereas SMMAsn cultures were dominated by the S487L mutation (24/51 or 47%). Furthermore, we found through competition experiments that the relative fitness of the S487L mutant was significantly higher in SMMAsn than in LB medium. We therefore conclude that both the spectrum of Rifr mutations in the B. subtilis rpoB gene and the fitness of resulting mutants are influenced by the growth environment. IMPORTANCE The rpoB gene encodes the beta subunit of RNA polymerase, and mutations in rpoB are key determinants of resistance to the clinically important antibiotic rifampin. We show here that the spectrum of mutations in Bacillus subtilis rpoB depends on the medium in which the cells are cultivated. The results show that the growth environment not only plays a role in natural selection and fitness but also influences the probability of mutation at particular bases within the target gene.
Collapse
Affiliation(s)
- Joss D. Leehan
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, Florida, USA
| | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, Florida, USA
| |
Collapse
|
3
|
Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016; 99:420-437. [PMID: 28742481 PMCID: PMC10365484 DOI: 10.3184/003685016x14811202974921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Collapse
Affiliation(s)
| | - Marina M. Bogue
- Natural Science (Microbiology) from Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Hammerl JA, Freytag B, Lanka E, Appel B, Hertwig S. The pYV virulence plasmids of Yersinia pseudotuberculosis and Y. pestis contain a conserved DNA region responsible for the mobilization by the self-transmissible plasmid pYE854. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:433-438. [PMID: 23760829 DOI: 10.1111/j.1758-2229.2012.00353.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic Yersinia strains possess a 70 kb virulence plasmid which can be transmitted to other strains by conjugation systems expressed by co-resident plasmids. We isolated a 720 bp fragment of the Yersinia pseudotuberculosis virulence plasmid p1340 that mediated mobilization of the vector pIV2 by the self-transmissible plasmid pYE854. The p1340 mobilization region contains the resolvase gene tnpR and its proposed resolution site res. Both elements are required for mobilization. Plasmid transfer was associated with the formation of co-integrates in which res was fused to pYE854 fragments by short nucleotide stretches similarly present within res. blast searches and PCR experiments revealed the presence of the mobilization region in the virulence plasmids of other Y. pseudotuberculosis and Y. pestis strains but not in pYV of Yersinia enterocolitica.
Collapse
Affiliation(s)
- Jens A Hammerl
- Bundesinstitut für Risikobewertung, D-12277 Berlin, Germany Max-Planck-Institut für Molekulare Genetik, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
5
|
Naturally occurring motility-defective mutants of Salmonella enterica serovar Enteritidis isolated preferentially from nonhuman rather than human sources. Appl Environ Microbiol 2011; 77:7740-8. [PMID: 21926214 DOI: 10.1128/aem.05318-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonellosis represents a worldwide health problem because it is one of the major causes of food-borne disease. Although motility is postulated as an important Salmonella virulence attribute, there is little information about variation in motility in natural isolates. Here we report the identification of a point mutation (T551 → G) in motA, a gene essential for flagellar rotation, in several Salmonella enterica serovar Enteritidis field isolates. This mutation results in bacteria that can biosynthesize structurally normal but paralyzed flagella and are impaired in their capacity to invade human intestinal epithelial cells. Introduction of a wild-type copy of motA into one of these isolates restored both motility and cell invasiveness. The motA mutant triggered higher proinflammatory transcriptional responses than an aflagellate isolate in differentiated Caco-2 cells, suggesting that the paralyzed flagella are able to signal through pattern recognition receptors. A specific PCR was designed to screen for the T551 → G mutation in a collection of 266 S. Enteritidis field isolates from a nationwide epidemic, comprising 194 from humans and 72 from other sources. We found that 72 of the 266 (27%) isolates were nonmotile, including 24.7% (48/194) of human and 33.3% (24/72) of food isolates. Among nonmotile isolates, 15 carried the T551 → G mutation and, significantly, 13 were recovered from food, including 7 from eggs, but only 2 were from human sources. These results suggest that the presence of paralyzed flagella may impair the ability of S. Enteritidis to cause disease in the human host but does not prevent its ability to colonize chickens and infect eggs.
Collapse
|
6
|
Stoebel DM, Hokamp K, Last MS, Dorman CJ. Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS Genet 2009; 5:e1000671. [PMID: 19798444 PMCID: PMC2744996 DOI: 10.1371/journal.pgen.1000671] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 09/02/2009] [Indexed: 11/18/2022] Open
Abstract
The RpoS sigma factor protein of Escherichia coli RNA polymerase is the master transcriptional regulator of physiological responses to a variety of stresses. This stress response comes at the expense of scavenging for scarce resources, causing a trade-off between stress tolerance and nutrient acquisition. This trade-off favors non-functional rpoS alleles in nutrient-poor environments. We used experimental evolution to explore how natural selection modifies the regulatory network of strains lacking RpoS when they evolve in an osmotically stressful environment. We found that strains lacking RpoS adapt less variably, in terms of both fitness increase and changes in patterns of transcription, than strains with functional RpoS. This phenotypic uniformity was caused by the same adaptive mutation in every independent population: the insertion of IS10 into the promoter of the otsBA operon. OtsA and OtsB are required to synthesize the osmoprotectant trehalose, and transcription of otsBA requires RpoS in the wild-type genetic background. The evolved IS10 insertion rewires expression of otsBA from RpoS-dependent to RpoS-independent, allowing for partial restoration of wild-type response to osmotic stress. Our results show that the regulatory networks of bacteria can evolve new structures in ways that are both rapid and repeatable. Escherichia coli, like all bacteria, expresses distinct sets of genes in response to different environmental challenges. One protein, RpoS, is a central part of the cellular response that brings about these changes in gene expression. Despite the importance of this protein in response to some kinds of stresses, strains that lack a functional RpoS protein are found at appreciable frequency in nature. We sought to understand how these strains evolve to compensate for the lack of RpoS function. We evolved E. coli with and without RpoS in a stressful environment in the lab, and found that strains without RpoS evolved in a uniform and repeatable manner. This was true in terms of how much their fitness increased or in terms of how genes were expressed to compensate for the lack of RpoS. These patterns had a simple cause. A mobile genetic element moved position in the genome, allowing for the transcription of a pair of key genes. The same element moved to the same place in each of our replicate experiments, causing the repeatable change in fitness and gene expression. We conclude that E. coli can rapidly compensate for the lack of RpoS by evolving novel mechanisms to control patterns of gene expression.
Collapse
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology and Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Michael S. Last
- UC Toxic Substance Research and Teaching Program, University of California Davis, Davis, California, United States of America
| | - Charles J. Dorman
- Department of Microbiology and Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
- * E-mail:
| |
Collapse
|
7
|
Fong SS, Joyce AR, Palsson BØ. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 2006; 15:1365-72. [PMID: 16204189 PMCID: PMC1240078 DOI: 10.1101/gr.3832305] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Laboratory evolution can be used to address fundamental questions about adaptation to selection pressures and, ultimately, the process of evolution. In this study, we investigated the reproducibility of growth phenotypes and global gene expression states during adaptive evolution. The results from parallel, replicate adaptive evolution experiments of Escherichia coli K-12 MG1655 grown on either lactate or glycerol minimal media showed that (1) growth phenotypes at the endpoint of evolution are convergent and reproducible; (2) endpoints of evolution have different underlying gene expression states; and (3) the evolutionary gene expression response involves a large number of compensatory expression changes and a smaller number of adaptively beneficial expression changes common across evolution strains. Gene expression changes initially showed a large number of differentially expressed genes in response to an environmental change followed by a return of most genes to a baseline expression level, leaving a relatively small set of differentially expressed genes at the endpoint that varied between evolved populations.
Collapse
Affiliation(s)
- Stephen S Fong
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA
| | | | | |
Collapse
|
8
|
Abstract
Comparative biochemistry demonstrates that the metabolites, complex biochemical networks, enzymes and regulatory mechanisms essential to all living cells are conserved in amazing detail throughout evolution. Thus, in order to evolve, an organism must overcome new adverse conditions without creating different but equally dangerous alterations in its ongoing successful metabolic relationship with its environment. Evidence suggests that stable long-term acquisitive evolution results from minor increases in mutation rates of genes related to a particular stress, with minimal disturbance to the balanced and resilient metabolism critical for responding to an unpredictable environment. Microorganisms have evolved specific biochemical feedback mechanisms that direct mutations to genes derepressed by starvation or other stressors in their environment. Transcription of the activated genes creates localized supercoiling and DNA secondary structures with unpaired bases vulnerable to mutation. The resulting mutants provide appropriate variants for selection by the stress involved, thus accelerating evolution with minimal random damage to the genome. This model has successfully predicted mutation frequencies in genes of E. coli and humans. Stressed cells observed in the laboratory over hundreds of generations accumulate mutations that also arise by this mechanism. When this occurs in repair-deficient mutator strains with high rates of random mutation, the specific stress-directed mutations are also enhanced.
Collapse
Affiliation(s)
- Barbara E Wright
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
9
|
Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W. Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol 2003; 48:429-41. [PMID: 12675802 DOI: 10.1046/j.1365-2958.2003.t01-1-03436.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This work provides evidence that, during transcription, the mutability (propensity to mutate) of a base in a DNA secondary structure depends both on the stability of the structure and on the extent to which the base is unpaired. Zuker's DNA folding computer program reveals the most probable stem-loop structures (SLSs) and negative energies of folding (-DeltaG) for any given nucleotide sequence. We developed an interfacing program that calculates (i) the percentage of folds in which each base is unpaired during transcription; and (ii) the mutability index (MI) for each base, expressed as an absolute value and defined as -follows: MI = (% total folds in which the base is unpaired) x (highest -DeltaG of all folds in which it is unpaired). Thus, MIs predict the relative mutation or reversion frequencies of unpaired bases in SLSs. MIs for 16 mutable bases in auxotrophs, selected during starvation in derepressed genes, are compared with 70 background mutations in lacI and ebgR that were not derepressed during mutant selection. All the results are consistent with the location of known mutable bases in SLSs. Specific conclusions are: (i) Of 16 mutable bases in transcribing genes, 87% have higher MIs than the average base of the sequence analysed, compared with 50% for the 70 background mutations. (ii) In 15 of the mutable bases of transcribing genes, the correlation between MIs and relative mutation frequencies determined experimentally is good. There is no correlation for 35 mutable bases in the lacI gene. (iii) In derepressed auxotrophs, 100% of the codons containing the mutable bases are within one codon's length of a stem, compared with 53% for the background mutable bases in lacI. (iv) The data suggest that environmental stressors may cause as well as select mutations in derepressed genes. The implications of these results for evolution are discussed.
Collapse
Affiliation(s)
- Barbara E Wright
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | | | | | | |
Collapse
|
10
|
Seoane A, Sánchez E, García-Lobo JM. Tandem amplification of a 28-kilobase region from the Yersinia enterocolitica chromosome containing the blaA gene. Antimicrob Agents Chemother 2003; 47:682-8. [PMID: 12543678 PMCID: PMC151765 DOI: 10.1128/aac.47.2.682-688.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 10/15/2002] [Accepted: 11/14/2002] [Indexed: 11/20/2022] Open
Abstract
Most Yersinia enterocolitica strains are resistant to beta-lactam antibiotics due to the production of one or two chromosomally encoded beta-lactamases. Strain Y56 is a Y. enterocolitica O:3 serotype natural isolate that is resistant to moderate amounts of penicillins and that produces a single class A beta-lactamase. To select mutants with increased levels of resistance to beta-lactam antibiotics, strain Y56 was grown on plates containing increasing amounts of ampicillin, and variants resistant to up to 500 micro g of ampicillin per ml were obtained. Chromosomal DNA from hyperresistant isolates was analyzed by Southern hybridization with a blaA-specific probe to detect gene rearrangements. The use of pulsed-field gel electrophoresis revealed that the increase in the resistance level correlated with the amplification in tandem of a DNA fragment of about 28 kb containing the blaA gene. The phenotype of these isolates was not stable, and they recovered the basal low resistance level when the ampicillin used for selection was withdrawn from the growth medium. This loss of resistance was followed by the recovery of the original chromosomal structure. To understand this amplification process, the 28-kb amplification unit was cloned, and the ends were sequenced. The analysis of these sequences did not reveal the presence of either repeats or transposable elements to explain this process. However, we found short sequences similar to some DNA gyrase target sequences that have been described. In addition, we observed that the frequency of appearance of ampicillin-hyperresistant isolates by amplification of the blaA locus was lowered in the presence of the gyrase inhibitor novobiocin. These findings suggest that the DNA gyrase could be involved in this amplification event.
Collapse
Affiliation(s)
- Asunción Seoane
- Departamento de Biología Molecular, Unidad Asociada al CIB, CSIC, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, 3901-Santander, Spain
| | | | | |
Collapse
|
11
|
Oda Y, Vries YP, Forney LJ, Gottschal JC. Acquisition of the ability for Rhodopseudomonas palustris to degrade chlorinated benzoic acids as the sole carbon source. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00891.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Abstract
A basic principle of genetics is that the likelihood that a particular mutation occurs is independent of its phenotypic consequences. The concept of adaptive mutation seemed to challenge this principle with the discoveries of mutations stimulated by stress, some of which allow adaptation to the stress. The emerging mechanisms of adaptive genetic change cast evolution, development and heredity into a new perspective, indicating new models for the genetic changes that fuel these processes.
Collapse
Affiliation(s)
- S M Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
| |
Collapse
|
13
|
Abstract
Salmonella enterica serovar Enteritidis is the cause of the food-borne salmonellosis pandemic in humans, in part because it has the unique ability to contaminate eggs without causing discernible illness in the birds infected. The infection route to humans involves colonization, survival and multiplication of the pathogen in the hen house environment, the bird and, finally, the egg. This review highlights the stages of transmission and discusses evidence that altered bacterial growth patterns and specific cell surface characteristics contribute to the adaptation of S. enteritidis to these diverse environments.
Collapse
Affiliation(s)
- J Guard-Petter
- US Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
14
|
Massey RC, Bowe F, Sheehan BJ, Dougan G, Dorman CJ. The virulence plasmid of Salmonella typhimurium contains an autoregulated gene, rlgA, that codes for a resolvase-like DNA binding protein. Plasmid 2000; 44:24-33. [PMID: 10873524 DOI: 10.1006/plas.2000.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The virulence plasmid of Salmonella typhimurium contains a gene, rlgA, that shows strong homology to several reported resolvase-like proteins. This gene maps 5 kb upstream of spv locus, the major virulence determinant on the plasmid. Regulation of rlgA was studied using a lacZ transcriptional reporter fusion. The rlgA gene was found to be repressed at the level of transcription by its own product and to be expressed maximally in the late exponential phase of growth. The transcription start site of the rlgA gene was determined and the RlgA binding site was mapped and found to overlap with the transcription initiation signals. A derivative of the virulence plasmid was constructed with a knockout mutation in rlgA. This mutation did not alter the stability of the virulence plasmid nor did it affect the ability of S. typhimurium to cause systemic disease in mice.
Collapse
Affiliation(s)
- R C Massey
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Republic of Ireland
| | | | | | | | | |
Collapse
|
15
|
Mahajan SK, Narayana Rao AVSS, Bhattacharjee SK. Stationary-state mutagenesis inEscherichia coli: A model. J Genet 2000. [DOI: 10.1007/bf02715869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|