1
|
Wang Z, Deng M, Xu W, Li C, Zheng Z, Li J, Liao L, Zhang Q, Bian Y, Li R, Miao J, Wang K, Yin Y, Li Y, Zhou X, Hou G. DKK3 as a diagnostic marker and potential therapeutic target for sarcopenia in chronic obstructive pulmonary disease. Redox Biol 2024; 78:103434. [PMID: 39571512 PMCID: PMC11617289 DOI: 10.1016/j.redox.2024.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
Sarcopenia, characterized by the progressive loss of muscle mass and function, significantly affects patients with chronic obstructive pulmonary disease (COPD) and worsens their morbidity and mortality. The pathogenesis of muscle atrophy in patients with COPD involves complex mechanisms, including protein imbalance and mitochondrial dysfunction, which have been identified in the muscle tissues of patients with COPD. DKK3 (Dickkopf-3) is a secreted glycoprotein involved in the process of myogenesis. However, the role of DKK3 in the regulation of muscle mass is largely unknown. This study investigated the role of DKK3 in COPD-related sarcopenia. DKK3 was found to be overexpressed in cigarette smoking-induced muscle atrophy and in patients with COPD. Importantly, plasma DKK3 levels in COPD patients with sarcopenia were significantly higher than those without sarcopenia, and plasma DKK3 levels could effectively predict sarcopenia in patients with COPD based on two independent cohorts. Mechanistically, DKK3 is secreted by skeletal muscle cells that acts in autocrine and paracrine manners and interacts with the cell surface-activated receptor cytoskeleton-associated protein 4 (CKAP4) to induce mitochondrial dysfunction and myotube atrophy. The inhibition of DKK3 by genetic ablation prevented cigarette smoking-induced skeletal muscle dysfunction. These results suggest that DKK3 is a potential target for the diagnosis and treatment of sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Zilin Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingming Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Weidong Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chang Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ziwen Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiaye Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liwei Liao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiding Bian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ruixia Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jinrui Miao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yanxia Li
- Respiratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Hou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Piña J, Raju R, Roth D, Winchester E, Padilla C, Iben J, Faucz F, Cotney J, D’Souza R. Spatial Multi-omics Reveals the Role of the Wnt Modulator, Dkk2, in Palatogenesis'. J Dent Res 2024; 103:1412-1420. [PMID: 38910391 PMCID: PMC11653329 DOI: 10.1177/00220345241256600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Multiple genetic and environmental etiologies contribute to the pathogenesis of cleft palate, which is the most common of the inherited disorders of the craniofacial complex. Insights into the molecular mechanisms regulating osteogenic differentiation and patterning in the palate during embryogenesis are limited and needed for the development of innovative diagnostics and cures. This study used the Pax9-/- mouse model with a consistent phenotype of cleft secondary palate to investigate the role of Pax9 in the process of palatal osteogenesis. Although prior research has identified the upregulation of Wnt pathway modulators Dkk1 and Dkk2 in Pax9-/- palate mesenchyme, limitations of spatial resolution and technology restricted a more robust analysis. Here, data from single-nucleus transcriptomics and chromatin accessibility assays validated by in situ highly multiplex targeted single-cell spatial profiling technology suggest a distinct relationship between Pax9+ and osteogenic populations. Loss of Pax9 results in spatially restricted osteogenic domains bounded by Dkk2, which normally interfaces with Pax9 in the mesenchyme. Moreover, the loss of Pax9 leads to a disruption in the normal osteodifferentiaion of palatal osteogenic mesenchymal cells. These results suggest that Pax9-dependent Wnt signaling modulators influence osteogenic programming during palate formation, potentially contributing to the observed cleft palate phenotype.
Collapse
Affiliation(s)
- J.O. Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - R. Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - D.M. Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- School of Dentistry, University of Alberta, Edmonton, AB, CA, USA
| | - E.W. Winchester
- University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - C. Padilla
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - F.R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J.L. Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - R.N. D’Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Iwanowska M, Kochman M, Szatko A, Zgliczyński W, Glinicki P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int J Mol Sci 2024; 25:11639. [PMID: 39519190 PMCID: PMC11546563 DOI: 10.3390/ijms252111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrinopathy, predominantly caused by a single parathyroid adenoma that is responsible for the excessive secretion of parathyroid hormone (PTH)-the hallmark of disease. Excess of this hormone causes remarkable changes in bone metabolism, including an increased level of bone remodeling with a predominance of bone resorption. Those changes lead to deterioration of bone structure and density, especially in cortical bone. The main treatment for PHPT is surgical removal of the adenoma, which normalizes PTH levels and terminates the progression of bone disease and leads to its regeneration. However, because not all the patients are suitable candidates for surgery, alternative therapies are needed. Current non-surgical treatments targeting bone disease secondary to PHPT include bisphosphonates and denosumab. Those antiresorptives prevent further bone loss, but they lack the ability to regenerate already degraded bone. There is ongoing research to find targeted drugs capable of halting resorption alongside stimulating bone formation. This review presents the advancements in understanding the molecular mechanisms responsible for bone disease in PHPT and assesses the efficacy of new potential therapeutic approaches (e.g., allosteric inhibitors of the PTH receptor, V-ATPase, or cathepsin inhibitors) aimed at mitigating bone loss and enhancing bone regeneration in affected patients.
Collapse
Affiliation(s)
- Mirella Iwanowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
4
|
Wang Y, Hang K, Wu X, Ying L, Wang Z, Ling Z, Hu H, Pan Z, Zou X. SLAMF8 regulates osteogenesis and adipogenesis of bone marrow mesenchymal stem cells via S100A6/Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2024; 15:349. [PMID: 39380096 PMCID: PMC11462740 DOI: 10.1186/s13287-024-03964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The inflammatory microenvironment plays an essential role in bone healing after fracture. The signaling lymphocytic activation molecule family (SLAMF) members deeply participate in inflammatory response and make a vast difference. METHODS We identified SLAMF8 in GEO datasets (GSE129165 and GSE176086) and co-expression analyses were performed to define the relationships between SLAMF8 and osteogenesis relative genes (RUNX2 and COL1A1). In vitro, we established SLAMF8 knockdown and overexpression mouse bone marrow mesenchymal stem cells (mBMSCs) lines. qPCR, Western blot, ALP staining, ARS staining, Oil Red O staining and Immunofluorescence analyses were performed to investigate the effect of SLAMF8 in mBMSCs osteogenesis and adipogenesis. In vivo, mice femoral fracture model was performed to explore the function of SLAMF8. RESULTS SLAMF8 knockdown significantly suppressed the expression of osteogenesis relative genes (RUNX2, SP7 and COL1A1), ALP activity and mineral deposition, but increased the expression of adipogenesis relative genes (PPARγ and C/EBPα). Additionally, SLAMF8 overexpression had the opposite effects. The role SLAMF8 played in mBMSCs osteogenic and adipogenic differentiation were through S100A6 and Wnt/β-Catenin signaling pathway. Moreover, SLAMF8 overexpression mBMSCs promoted the healing of femoral fracture. CONCLUSIONS SLAMF8 promotes osteogenesis and inhibits adipogenesis of mBMSCs via S100A6 and Wnt/β-Catenin signaling pathway. SLAMF8 overexpression mBMSCs effectively accelerate the healing of femoral fracture in mice.
Collapse
Affiliation(s)
- Yibo Wang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Kai Hang
- Department of Orthopaedics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xiaoyong Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, China
| | - Li Ying
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Zhongxiang Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhijun Pan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, China.
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Lee SB, Lee JW, Lee H, Lee KJ, Hwang HW, Shin HT, Byun JW, Shin J, Choi GS. Dickkopf-related Protein 2 Promotes Hair Growth by Upregulating the Wnt/β-catenin Signaling Pathway in Human Dermal Papilla Cells. Ann Dermatol 2024; 36:292-299. [PMID: 39343756 PMCID: PMC11439980 DOI: 10.5021/ad.23.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Wnt/β-catenin signaling pathway is crucial for the development, initiation, and growth of hair follicles (HFs). The Dickkopf-related protein (DKK) gene family encodes secreted proteins modulating the Wnt/β-catenin signaling pathway. Studies have reported that DKK1 promotes the regression of HFs and serves as a pathogenic mediator in male pattern baldness. However, the role of DKK2 on human hair growth has not yet been explored. OBJECTIVE This study investigates direct effect of DKK2 on hair growth using human dermal papilla cell (DPC) cultures and ex vivo human HF organ cultures. METHODS To elucidate the effect of DKK2 on hair growth, we examined the effect of recombinant human DKK2 (rhDKK2) treatment on cell viability, expression of mRNA and protein related to the Wnt/β-catenin signaling pathway, and cell growth in cultured human DPCs. We also performed ex vivo organ culture of HFs with rhDKK2 and measured changes in hair shaft length for 8 days. RESULTS Treatment with rhDKK2 led to a dose-dependent rise in the proliferation of human DPCs (p<0.05), reaching levels comparable to those induced by 1 μM minoxidil. Moreover, rhDKK2 increased the expression of Wnt/β-catenin target genes, phosphorylated extracellular signal-regulated kinase, and cyclin-D1; it also increased the BAX-to-Bcl-2 ratio and downregulated the bone morphogenetic protein 2 gene. In human HF organ cultures, relative to the control treatment, rhDKK2 treatment significantly increased hair shaft elongation (p<0.01). CONCLUSION Our results indicate that rhDKK2 could promote hair growth by facilitating the proliferation of human DPCs through activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Seon Bok Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Jae Won Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Hyemin Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Kyung-Ju Lee
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Hye Won Hwang
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Hyun-Tae Shin
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Ji Won Byun
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Jeonghyun Shin
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea
| | - Gwang Seong Choi
- Department of Dermatology, Inha University School of Medicine, Incheon, Korea.
| |
Collapse
|
6
|
Sada R, Yamamoto H, Matsumoto S, Harada A, Kikuchi A. Newly developed humanized anti-CKAP4 antibody suppresses pancreatic cancer growth by inhibiting DKK1-CKAP4 signaling. Cancer Sci 2024; 115:3358-3369. [PMID: 39118263 PMCID: PMC11447883 DOI: 10.1111/cas.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a cell surface receptor for Dickkopf 1 (DKK1), a secreted protein. The DKK1-CKAP4 pathway is activated in various malignant tumors, including pancreatic, lung, esophageal, and liver cancers, to promote tumor growth. Thus, CKAP4 has been expected to represent a novel molecular target of cancer therapy. Recombinant mouse anti-CKAP4 antibodies were generated based on an original mouse antibody (3F11-2B10) and inhibited DKK1-CKAP4 signaling and xenograft tumor formation induced by pancreatic cancer cells, which was comparable with 3F11-2B10. From the 3F11-2B10 nucleotide sequence, humanized anti-CKAP4 antibody (Hv1Lt1) was subsequently developed. The binding affinity of Hv1Lt1 for CKAP4 was superior to that of 3F11-2B10. Hv1Lt1 inhibited DKK1 binding to CKAP4, AKT activity, and sphere formation of pancreatic cancer cells, which was comparable with 3F11-2B10. Hv1Lt1 also suppressed xenograft tumor formation induced by human pancreatic cancer cells and tumor growth in murine cancer models, in which murine pancreatic cancer organoids were orthotopically transplanted into the pancreas. In resected tumor samples from mice treated with Hv1Lt1, anti-tumor immune reactions were modulated and cytotoxic T cells were highly infiltrated in the tumor microenvironment. Additionally, combination of Hv1Lt1 and other chemotherapy drugs exhibited stronger effects compared with monotherapy. These results suggest that Hv1Lt1 represents a promising anti-cancer therapy.
Collapse
Affiliation(s)
- Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Health Care Sciences, Jikei University of Health Care Sciences, Osaka, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Akikazu Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
7
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
8
|
Kawaue H, Rojasawasthien T, Dusadeemeelap C, Matsubara T, Kokabu S, Addison WN. PI15, a novel secreted WNT-signaling antagonist, regulates chondrocyte differentiation. Connect Tissue Res 2024; 65:237-252. [PMID: 38739041 DOI: 10.1080/03008207.2024.2349818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE/AIM OF STUDY During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.
Collapse
Affiliation(s)
- Hiroka Kawaue
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Oral Functional Development, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chirada Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
9
|
Choi N, Hwang J, Kim DY, Kim J, Song SY, Sung J. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif 2024; 57:e13562. [PMID: 37991164 PMCID: PMC10905327 DOI: 10.1111/cpr.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have shown efficacy in promoting hair growth, while DKK1 inhibits the WNT pathway, which is associated with hair loss. Our study focused on investigating the expression of DKK1 in alopecia areata (AA), a condition characterised by significant increases in the DKK1 levels in human and mouse ASCs. Treatment of interferon-γ increased the expression of DKK1 via STAT3 phosphorylation in ASCs. Treatment with recombinant DKK1 resulted in a decrease of cell growth in outer root sheath cells, whereas the use of a DKK1 neutralising antibody promoted hair growth. These results indicate that ASCs secrete DKK1, playing a crucial role in the progression and development of AA. Consequently, we generated DKK1 knockout (KO) ASCs using the Crispr/Cas9 system and evaluated their hair growth-promoting effects in an AA model. The DKK1 KO in ASCs led to enhanced cell motility and reduced cellular senescence by activating the WNT signalling pathway, while it reduced the expression of inflammatory cytokines by inactivating the NF-kB pathway. As expected, the intravenous injection of DKK1-KO-ASCs in AA mice, and the treatment with a conditioned medium derived from DKK1-KO-ASCs in hair organ culture proved to be more effective compared with the use of naïve ASCs and their conditioned medium. Overall, these findings suggest that DKK1 represents a novel therapeutic target for treating AA, and cell therapy using DKK1-KO-ASCs demonstrates greater efficiency.
Collapse
Affiliation(s)
| | | | - Doo Yeong Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| | - Jino Kim
- New Hair Plastic Surgery ClinicSeoulSouth Korea
| | - Seung Yong Song
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive SurgeryYonsei University College of MedicineSeoulSouth Korea
| | - Jong‐Hyuk Sung
- Epi Biotech Co., Ltd.IncheonSouth Korea
- College of Pharmacy, Yonsei Institute of Pharmaceutical SciencesYonsei UniversityIncheonSouth Korea
| |
Collapse
|
10
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Shen Y, Xie Q, Wang Y, Liang J, Jiang C, Liu X, Wang Y, Hu C. Design, synthesis and anti-osteosarcoma activity study of novel pyrido[2,3-d]pyrimidine derivatives by inhibiting DKK1-Wnt/β-catenin pathway. Bioorg Chem 2023; 141:106848. [PMID: 37716273 DOI: 10.1016/j.bioorg.2023.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Osteosarcoma is a common primary malignant bone tumor in adolescents. Wnt/β-catenin has been proved to play a pro-oncogenic role and was overactivated in osteosarcoma. Therefore, this pathway has become an interesting therapeutic target for osteosarcoma. Herein we report the design, synthesis and biological activities of a series of novel pyrido[2,3-d]pyrimidine derivatives based on our previous work. Among these, the representative compound 2-{[1,3-dimethyl-7-(4-methylpiperazin-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl]amino}-N-[4-(trifluoromethoxy)phenyl]acetamide (7m) has exhibited good antiproliferative activity towards 143B and MG63 cells with good selectivity over non-cancerous HSF cells. In the assay of Ca2+ concentration, the compound 7m increased the intracellular Ca2+ concentration in 143B cells. In addition, the expression of DKK1 increased, and that of p-β-catenin decreased by 7m treatment. Finally, the Hoechst 33,342 staining, Annexin-FITC/PI staining and mitochondrial fluorescence staining have clearly demonstrated that compound 7m induced apoptosis in 143B cells.
Collapse
Affiliation(s)
- Yanni Shen
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Xie
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Orthopaedics, General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Yiling Wang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Jianhui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuilu Jiang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China
| | - Xiaoping Liu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, China.
| |
Collapse
|
12
|
Yang F, Ruixin Y, Xiaochun M, Fan Z, Junbin L, Pengmei D, Guoyan J. Extremely hair follicle density is associated with a significantly different cecal microbiota in rex rabbits. Exp Dermatol 2023; 32:1361-1370. [PMID: 37160722 DOI: 10.1111/exd.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
It has become increasingly clear that gut microbiota and skin are interconnected since the discovery of the 'gut-brain-skin' axis. Hair follicles (HFs) are skin microorganisms, but few studies have investigated their relationship to gut microbiota. Hence, we hypothesize that HFs have a close relationship with the gut, similarly to what was reported for the skin. Using rex rabbits as an animal model, one hundred healthy half-sibling rex rabbits were selected for the experiment, and 16 s rRNA gene sequencing was performed on the cecal microbiota of nine rabbits with the extremely high (HS) and low (LS) hair density (n = 9 per group) to determine differences between the composition and function of these communities. In comparison with the LS group, several alpha diversity index values were significantly lower in the HS group, although the higher variation in species composition in the HS group. Additionally, species diversity and abundance differed significantly in the cecum microbiota of HS and LS rabbits. Further, primary and secondary HF density was significantly correlated with the families Muribaculaceae and Bacteroidaceae, and genera Blautia, Bacteroides and Desulfovibrio. In particular, Muribaculaceae, Bacteroidaceae, Blautia and Bacteroides may support the development of HFs. Moreover, the expression of WNT4, WNT10a, WNT10b, CTNNB1 (β-catenin) and LEF1 in the skin was significantly higher in the HS group compared with the LS group. Altogether, the results of this study suggest that the extremely high density of HF in rabbits is associated with a significantly different microbiota diversity and community structure, and the Wnt/β-catenin signalling pathway was activated in the HS group. Thus, key bacteria may promote the development of HF.
Collapse
Affiliation(s)
- Feng Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yang Ruixin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ma Xiaochun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhang Fan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liu Junbin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Pengmei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Guoyan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Yin X, Liu X, Xiao X, Yi K, Chen W, Han C, Wang L, Li Y, Liu J. Human neural stem cells repress glioma cell progression in a paracrine manner by downregulating the Wnt/β-catenin signalling pathway. FEBS Open Bio 2023; 13:1772-1788. [PMID: 37410396 PMCID: PMC10476570 DOI: 10.1002/2211-5463.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neural stem cells (NSCs) play crucial roles in neurological disorders and tissue injury repair through exerting paracrine effects. However, the effects of NSC-derived factors on glioma progression remain unclear. This study aimed to evaluate the effects of human NSC-conditioned medium (NSC-CM) on the behaviour of glioma cells using an in vitro co-culture system. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays revealed that NSC-CM inhibited glioma cell proliferation and growth in a fetal bovine serum (FBS)-independent manner. In addition, our wound-healing assay demonstrated that NSC-CM repressed glioma cell migration, while results from transwell and 3D spheroid invasion assays indicated that NSC-CM also reduced the invasion capacity of glioma cells. Flow cytometry showed that NSC-CM prevented cell cycle progression from the G1 to S phase and promoted apoptosis. Western blotting was used to show that the expression of Wnt/β-catenin pathway-related proteins, including β-catenin, c-Myc, cyclin D1, CD44 and Met, was remarkably decreased in NSC-CM-treated glioma cells. Furthermore, the addition of a Wnt/β-catenin pathway activator, CHIR99021, significantly induced the expression of β-catenin and Met and increased the proliferative and invasive capabilities of control medium-treated glioma cells but not those of NSC-CM-treated glioma cells. The use of enzyme-linked immunosorbent assays (ELISA) revealed the secretion of some antitumour factors in human and rat NSCs, including interferon-α and dickkopf-1. Our data suggest that NSC-CM partially inhibits glioma cell progression by downregulating Wnt/β-catenin signalling. This study may serve as a basis for developing future antiglioma therapies based on NSC derivatives.
Collapse
Affiliation(s)
- Xiaolin Yin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Xiumei Liu
- Dalian Innovation Institute of Stem Cell and Precision MedicineChina
| | - Xiangyi Xiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Kaiyu Yi
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Weigong Chen
- Dalian Innovation Institute of Stem Cell and Precision MedicineChina
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityChina
| |
Collapse
|
14
|
Doucet D, Brubaker C, Turner D, Gregory CA. Factors affecting the role of canonical Wnt inhibitor Dickkopf-1 in cancer progression. Front Oncol 2023; 13:1114822. [PMID: 37007131 PMCID: PMC10050559 DOI: 10.3389/fonc.2023.1114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundThe canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has the capacity to modulate homeostasis between canonical and non-canonical Wnt pathways and also signal independently of Wnt. The specific effects of Dkk-1 activity on tumor physiology are therefore unpredictable with examples of Dkk-1 serving as either a driver or suppressor of malignancy. Given that Dkk-1 blockade may serve as a potential treatment for some types of cancer, we questioned whether it is possible to predict the role of Dkk-1 on tumor progression based on the tissue origin of the tumor.MethodsOriginal research articles that described Dkk-1 in terms a tumor suppressor or driver of cancer growth were identified. To determine the association between tumor developmental origin and the role of Dkk-1, a logistic regression was performed. The Cancer Genome Atlas database was interrogated for survival statistics based on tumor Dkk-1 expression.ResultsWe report that Dkk-1 is statistically more likely to serve as a suppressor in tumors arising from the ectoderm (p = 0.0198) or endoderm (p = 0.0334) but more likely to serve as a disease driver in tumors of mesodermal origin (p = 0.0155). Survival analyses indicated that in cases where Dkk-1 expression could be stratified, high Dkk-1 expression is usually associated with poor prognosis. This in part may be due to pro-tumorigenic role Dkk-1 plays on tumor cells but also through its influence on immunomodulatory and angiogenic processes in the tumor stroma.ConclusionDkk-1 has a context-specific dual role as a tumor suppressor or driver. Dkk-1 is significantly more likely to serve as a tumor suppressor in tumors arising from ectoderm and endoderm while the converse is true for mesodermal tumors. Patient survival data indicated high Dkk-1 expression is generally a poor prognostic indicator. These findings provide further support for the importance of Dkk-1 as a therapeutic cancer target in some cases.
Collapse
Affiliation(s)
- Dakota Doucet
- Medical Sciences Program, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Connor Brubaker
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Donald Turner
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
- *Correspondence: Carl A. Gregory,
| |
Collapse
|
15
|
Park M, Cho JH, Moon B, Kim JH, Kim JA. CDK9 inhibitors downregulate DKK1 expression to suppress the metastatic potential of HCC cells. Genes Genomics 2023; 45:285-293. [PMID: 36662391 DOI: 10.1007/s13258-022-01351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated expression of Dickkopf-1 (DKK1) is frequently observed in hepatocellular carcinoma (HCC) patients with poor clinical outcomes. Several reports indicating the functional involvement of DKK1 in HCC progression have suggested DKK1 as a promising therapeutic target for HCC. OBJECTIVE In this study, to develop an efficient way to target DKK1, we assessed the effect of CDK9 inhibitors on DKK1 expression linked to metastatic movement of HCC. METHODS The expression of DKK1 in CDK9 inhibitor-treated HCC cells was measured by western blot, ELISA and quantitative real-time reverse transcription PCR. Wound healing assay, migration assay, invasion assay and western blot were examined to evaluate the functional role of DKK1 in CDK9 inhibitors-treated HCC. RESULTS Inactivation of CDK9 either by a catalytic inhibitor being clinically evaluated or by a specific CDK9 protein degrader largely downregulated DKK1 expression at the transcript and protein levels. In addition, CDK9 inhibitors suppressed the migration and invasion of HCC cells. We observed that ectopic high expression of DKK1 at least partially reversed the defects in metastatic movement of HCC cells mediated by CDK9 inhibitors. We further discovered that the DKK1-nuclear β-catenin axis associated with the metastatic potential of HCC cells was impaired by CDK9 inhibitors. CONCLUSION Taken together, our findings suggest that CDK9 inhibitors are potent tools to target DKK1, which can suppress the metastatic progression of HCC.
Collapse
Affiliation(s)
- Mijin Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
16
|
Extracellular Vesicles Derived from Three-Dimensional-Cultured Human Umbilical Cord Blood Mesenchymal Stem Cells Prevent Inflammation and Dedifferentiation in Pancreatic Islets. Stem Cells Int 2023; 2023:5475212. [PMID: 36860546 PMCID: PMC9970714 DOI: 10.1155/2023/5475212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
It is unclear whether extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) have a direct protective effect on pancreatic islets. In addition, whether culturing MSCs in three dimensions (3D) instead of a monolayer (2D) can induce changes in the cargo of EVs that facilitate the polarization of macrophages into an M2 phenotype has not been investigated. We sought to determine whether EVs from MSCs cultured in 3D can prevent inflammation and dedifferentiation in pancreatic islets and, if so, whether the protective effect is superior to that of EVs from 2D MSCs. Human umbilical cord blood- (hUCB-) MSCs cultured in 3D were optimized according to cell density, exposure to hypoxia, and cytokine treatment based on the ability of the hUCB-MSC-derived EVs to induce the M2 polarization of macrophages. Islets isolated from human islet amyloid polypeptide (hIAPP) heterozygote transgenic mice were cultured in serum-deprived conditions with hUCB-MSC-derived EVs. EVs derived from 3D hUCB-MSCs had more abundant microRNAs involved in M2 polarization of macrophages and had an enhanced M2 polarization ability on macrophages, which was optimized when the 3D culture condition was 2.5 × 104 cells per spheroid without preconditioning with hypoxia and cytokine exposure. When islets isolated from hIAPP heterozygote transgenic mice were cultured in serum-deprived conditions with hUCB-MSC-derived EVs, the EVs derived from 3D hUCB-MSCs suppressed the expression of proinflammatory cytokines and caspase-1 in pancreatic islets and increased the proportion of M2-polarized islet-resident macrophages. They improved glucose-stimulated insulin secretion, reduced the expression of Oct4 and NGN3, and induced the expression of Pdx1 and FoxO1. The greater suppression of IL-1β, NLRP3 inflammasome, caspase-1, and Oct4 and induction of Pdx1 and FoxO1 were found in islets cultured with the EVs derived from 3D hUCB-MSCs. In conclusion, EVs derived from 3D hUCB-MSCs optimized for M2 polarization attenuated nonspecific inflammation and preserved β-cell identity of pancreatic islets.
Collapse
|
17
|
Feng B, Pei J, Gu S. Wnt7b: Is It an Important Factor in the Bone Formation Process after Calvarial Damage? J Clin Med 2023; 12:jcm12030800. [PMID: 36769446 PMCID: PMC9917507 DOI: 10.3390/jcm12030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/25/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Previous studies found that Wnt7b played a unique and indispensable role in the process of osteoblast differentiation and could accelerate the repair of bone loss. However, what is the role of Wnt7B in osteogenesis? Is it possible to increase the expression of Wnt7b to promote the repair of skull defects? This study intends to provide the basic data for the application of Wnt7b in the treatment of craniomaxillofacial bone repair. METHODS A calvarial defect mouse model that could induce Wnt7b overexpression was established. Three days after the operation, the mice in each group were intraperitoneally injected with tamoxifen (TAM) or oil eight times every other day. There were three groups. The TAMc group (R26Wnt7b/Wnt7b) was injected with tamoxifen. The Oil group (3.2 kb Col1-Cre-ERT2; R26Wnt7b/Wnt7b) was injected with oil. The TAM group (3.2 kb Col1-Cre-ERT2; R26Wnt7b/Wnt7b) was injected with tamoxifen. Four weeks after the surgery, micro-CT scanning was utilized to observe new bone formation and compare the ability to form new bone around the defect area. RESULTS Four weeks after the operation, bone healing conditions were measured by using micro-CT scanning. The defect area of the TAM group was smaller than that of the other groups. Similarly, the bone volume fraction (BV/TV) significantly increased (p < 0.05), the trabecular number (Tb.N) increased, and the trabecular separation (Tb.Sp) decreased. CONCLUSIONS Wnt7b participates in the bone formation process after calvarial damage, indicating the important role of Wnt7b in osteogenesis.
Collapse
Affiliation(s)
- Bo Feng
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
- National Center for Stomatology, Shanghai 200125, China
- National Clinical Research Center for Oral Diseases, Shanghai 200125, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
- Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Jun Pei
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
- National Center for Stomatology, Shanghai 200125, China
- National Clinical Research Center for Oral Diseases, Shanghai 200125, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
- Shanghai Research Institute of Stomatology, Shanghai 200125, China
- Department of Pediatric Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
- National Center for Stomatology, Shanghai 200125, China
- National Clinical Research Center for Oral Diseases, Shanghai 200125, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
- Shanghai Research Institute of Stomatology, Shanghai 200125, China
- Correspondence: ; Fax: +86-021-53315201
| |
Collapse
|
18
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
19
|
Wnt signaling and the regulation of pluripotency. Curr Top Dev Biol 2023; 153:95-119. [PMID: 36967203 DOI: 10.1016/bs.ctdb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The role of Wnt signaling in stem cells has been mired in seemingly contradictory findings. On one hand, Wnt has been heralded as a self-renewal factor. On the other hand, Wnt's association with differentiation and lineage commitment is indisputable. This apparent contradiction is particularly evident in pluripotent stem cells, where Wnt promotes self-renewal as well as differentiation. To resolve this discrepancy one must delve into fundamental principles of pluripotency and gain an appreciation for the concept of pluripotency states, which exist in a continuum with intermediate metastable states, some of which have been stabilized in vitro. Wnt signaling is a critical regulator of transitions between pluripotent states. Here, we will discuss Wnt's roles in maintaining pluripotency, promoting differentiation, as well as stimulating reprogramming of somatic cells to an induced pluripotent state.
Collapse
|
20
|
Velloso I, Han W, He X, Abreu JG. The role of Wnt signaling in Xenopus neural induction. Curr Top Dev Biol 2023; 153:229-254. [PMID: 36967196 DOI: 10.1016/bs.ctdb.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Development of the central nervous system in amphibians has called attention from scientists for over a century. Interested in the matter of embryonic inductions, Hans Spemann and Hilde Mangold found out that the dorsal blastopore lip of the salamander's embryo has organizer properties. Such an ectopic graft could induce structures in the host embryo, including a neural tube overlying the notochord of a perfect secondary body axis. A couple of decades later, the frog Xenopus laevis emerged as an excellent embryological experimental model and seminal concepts involving embryonic inductions began to be revealed. The so-called primary induction is, in fact, a composition of signaling and inductive events that are triggered as soon as fertilization takes place. In this regard, since early 1990s an intricate network of signaling pathways has been built. The Wnt pathway, which began to be uncovered in cancer biology studies, is crucial during the establishment of two signaling centers in Xenopus embryogenesis: Nieuwkoop center and the blastula chordin noggin expression center (BCNE). Here we will discuss the historical events that led to the discovery of those centers, as well as the molecular mechanisms by which they operate. This chapter highlights the cooperation of both signaling centers with potential to be further explored in the future. We aim to address the essential morphological transformation during gastrulation and neurulation as well as the role of Wnt signaling in patterning the organizer and the neural plate.
Collapse
Affiliation(s)
- Ian Velloso
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wonhee Han
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xi He
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jose G Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Choi RB, Hoggatt AM, Horan DJ, Rogers EZ, Hong JM, Robling AG. Targeting Sclerostin and Dkk1 at Optimized Proportions of Low-Dose Antibody Achieves Similar Skeletal Benefits to Higher-Dose Sclerostin Targeting in the Mature Adult and Aged Skeleton. Aging Dis 2022; 13:1891-1900. [PMID: 36465166 PMCID: PMC9662273 DOI: 10.14336/ad.2022.0315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
Age-associated low bone mass disease is a growing problem in the US. Development of osteoanabolic therapies for treating skeletal fragility has lagged behind anti-catabolic therapies, but several bone-building molecules are clinically available. We reported previously that antibody-based neutralization of the Lrp5/Lrp6 inhibitor Dkk1 has minimal effects on bone gain, but can potentiate the already potent osteoanabolic effects of sclerostin inhibition (another Lrp5/Lrp6 inhibitor highly expressed by osteocytes). In this communication, we test whether an optimized ratio of sclerostin and Dkk1 antibodies (Scl-mAb and Dkk1-mAb, respectively), administered at low doses, can maintain the same bone-building effects as higher dose Scl-mAb, in adult (6 months of age) and aged (20 months of age) wild-type mice. A 3:1 dose of Scl-mAb:Dkk1-mAb at 12.5 mg/kg was equally efficacious as 25 mg/kg of Scl-mAb in both age groups, using radiographic (DXA, µCT), biomechanical, (3-point bending tests), and histological (fluorochrome-based bone formation parameters) outcome measures. For some bone properties, including trabecular thickness and bone mineral density in the spine, and endocortical bone formation rates in the femur, the 3:1 treatment was associated with significantly improved skeletal properties compared to twice the dose of Scl-mAb. Cortical porosity in aged mice was also reduced by both Scl-mAb and low-dose 3:1 treatment. Overall, both treatments were efficacious in the mature adult (6 mo.) and aged (20 mo.) skeletons, suggesting Wnt targeting is a viable strategy for improving skeletal fragility in the very old. Further, the data suggest that low dose of combination therapy can be at least equally efficacious as higher doses of Scl-mAb monotherapy.
Collapse
Affiliation(s)
- Roy B. Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - April M. Hoggatt
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Emily Z. Rogers
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Jung Min Hong
- Division of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, USA.
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA.,Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.,Correspondence should be addressed to: Dr. Alexander G. Robling, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. .
| |
Collapse
|
22
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
23
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
24
|
Hung PH, Hsu YC, Chen TH, Ho C, Lin CL. The Histone Demethylase Inhibitor GSK-J4 Is a Therapeutic Target for the Kidney Fibrosis of Diabetic Kidney Disease via DKK1 Modulation. Int J Mol Sci 2022; 23:ijms23169407. [PMID: 36012674 PMCID: PMC9409090 DOI: 10.3390/ijms23169407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) can cause inflammation and fibrosis, in addition to being the main complication of diabetes. Among many factors, epigenetic alterations in aberrant histone modifications play a key role in causing DKD. In this study, the mechanism of GSK-J4, a histone demethylase KDM6A inhibitor, was evaluated in streptozotocin-induced diabetic mice. It was confirmed that GSK-J4, via dickkopf-1 (DKK1) modulation, could significantly reduce proteinuria and glomerulosclerosis in diabetic mice. The mRNA accumulation levels of DKK1, TGF-β1, fibronectin, and collagen IV were significantly elevated in diabetic mice. In contrast, the mRNA accumulations of those genes were significantly reduced in diabetic mice treated with GSK-J4 compared to those in diabetic mice, relatively speaking. The protein accumulation levels of fibronectin and collagen IV were significantly elevated in diabetic mice. Furthermore, GSK-J4 attenuated the high glucose-induced expression of profibrotic factors in mesangial cells via DKK1. In conclusion, our study provides a novel strategy to eliminate fibrosis in the kidneys of DKD mice. Using GSK-J4 reduces DKK1 expression, thereby ameliorating renal insufficiency, glomerulosclerosis morphological abnormalities, inflammation, and fibrosis in diabetic mice.
Collapse
Affiliation(s)
- Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
- Department of Applied Life Science and Health, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333423, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| |
Collapse
|
25
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
26
|
Y KN, Perumalsamy NK, Warrier S, Perumalsamy LR, Dharmarajan A. Wnt antagonist as therapeutic targets in ovarian cancer. Int J Biochem Cell Biol 2022; 145:106191. [PMID: 35272015 PMCID: PMC7616886 DOI: 10.1016/j.biocel.2022.106191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022]
Abstract
Ovarian cancer is a fatal malignancy in women with a low survival rate that demands new therapeutic paradigms. Cancer cells acquire various exclusive alterations to proliferate, invade, metastasize, and escape cell death, acting independently of growth-inducing or growth-inhibiting signals. The nature of cellular signaling in tumorigenesis is interwoven. Wnt signaling is an evolutionarily conserved signaling cascade that has been shown to regulate ovarian cancer pathogenesis. The molecular mechanism of Wnt signaling underlying the development of ovarian cancer, drug resistance, and relapse is not completely understood. Extracellularly secreted Wnt signaling inhibitors are crucial regulators of ovarian cancer tumorigenesis and malignant properties of cancer stem cells. Wnt inhibitors arbitrated modifications affecting Wnt pathway proteins on the cell membranes, in the cytoplasm, and in the nucleus have been shown to span essential contributions in the initiation, progression, and chemoresistance of ovarian cancer. Although many extrinsic inhibitors developed targeting the downstream components of the Wnt signaling pathway, investigating the molecular mechanisms of endogenous secreted inhibitors might substantiate prognostic or therapeutic biomarkers development. Given the importance of Wnt signaling in ovarian cancer, more systematic studies combined with clinical studies are requisite to probe the precise mechanistic interactions of Wnt antagonists in ovarian cancer. This review outlines the latest progress on the Wnt antagonists and ovarian cancer-specific regulators such as micro-RNAs, small molecules, and drugs regulating these Wnt antagonists in ovarian tumourigenesis.
Collapse
Affiliation(s)
- Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India
| | - Naveen Kumar Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India.
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra Institute of Higher Education and Research (DU), Tamil Nadu 600116, India; Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
27
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
28
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
29
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
30
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
31
|
LRP6 Receptor Plays Essential Functions in Development and Human Diseases. Genes (Basel) 2022; 13:genes13010120. [PMID: 35052459 PMCID: PMC8775365 DOI: 10.3390/genes13010120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
LRP6 is a member of the low-density lipoprotein receptor superfamily of cell-surface receptors. It is required for the activation of the Wnt/β-catenin signalling pathway. LRP6 is detected in different tissue types and is involved in numerous biological activities such as cell proliferation, specification, metastatic cancer, and embryonic development. LRP6 is essential for the proper development of different organs in vertebrates, such as Xenopus laevis, chickens, and mice. In human, LRP6 overexpression and mutations have been reported in multiple complex diseases including hypertension, atherosclerosis, and cancers. Clinical studies have shown that LRP6 is involved in various kinds of cancer, such as bladder and breast cancer. Therefore, in this review, we focus on the structure of LRP6 and its interactions with Wnt inhibitors (DKK1, SOST). We also discuss the expression of LRP6 in different model systems, with emphasis on its function in development and human diseases.
Collapse
|
32
|
Samanta S, Mahata R, Santra MK. The Cross-Talk between Epigenetic Gene Regulation and Signaling Pathways Regulates Cancer Pathogenesis. Subcell Biochem 2022; 100:427-472. [PMID: 36301502 DOI: 10.1007/978-3-031-07634-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer begins due to uncontrolled cell division. Cancer cells are insensitive to the signals that control normal cell proliferation. This uncontrolled cell division is due to the accumulation of abnormalities in different factors associated with the cell division, including different cyclins, cell cycle checkpoint inhibitors, and cellular signaling. Cellular signaling pathways are aberrantly activated in cancer mainly due to epigenetic regulation and post-translational regulation. In this chapter, the role of epigenetic regulation in aberrant activation of PI3K/AKT, Ras, Wnt, Hedgehog, Notch, JAK/STAT, and mTOR signaling pathways in cancer progression is discussed. The role of epigenetic regulators in controlling the upstream regulatory proteins and downstream effector proteins responsible for abnormal cellular signaling-mediated cancer progression is covered in this chapter. Similarly, the role of signaling pathways in controlling epigenetic gene regulation-mediated cancer progression is also discussed. We have tried to ascertain the current status of potential epigenetic drugs targeting several epigenetic regulators to prevent different cancers.
Collapse
Affiliation(s)
- Snigdha Samanta
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rumpa Mahata
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind Road, Pune, Maharashtra, India.
| |
Collapse
|
33
|
Chen W, Jiang J, Wang Y, Feng G, Fei Y, Cheng S, Lin S. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs)-Derived miR-200c Regulates Wingless-Related Integration Site (Wnt)/ β-Catenin Signaling in Prostate Cancer by Targeting Cortactin (CTTN). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are an integral part of cancer microenvironment. We intend to clarify BMSC-derived exosomes’ role in prostate cancer. The exosomes miR-200c secreted by BMSCs were identified by electron microscopy. The mice tumor model was used
to explore the role of miR-200c’s in tumor mice. Cell invasion was assessed by transwell assay and Wnt/β-catenin expression was measured by western blot. Exosomes miR-200c derived from BMSCs promoted tumor cell invasion and activated Wnt/β-catenin signaling. miR-200c
targets CTTN-mediated cell signal transduction, and blocking CTTN expression can suppression miR-200c-mediated Wnt/β-catenin signal transduction and inhibit cell invasion. In conclusion, miR-200c regulates CTTN, thereby inducing Wnt/β-catenin signaling to enhance tumor
growth.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430033, China
| | - Juan Jiang
- Department of Urology, The No. 1 Hospital of Wuhan, Wuhan, Hubei, 430000, China
| | - Yu Wang
- Department of Urology, The No. 1 Hospital of Wuhan, Wuhan, Hubei, 430000, China
| | - Gang Feng
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430033, China
| | - Yan Fei
- Department of Oncology, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430033, China
| | - Shigang Cheng
- Department of Surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Song Lin
- Department of Surgery, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| |
Collapse
|
34
|
Dahlmann M, Monks A, Harris ED, Kobelt D, Osterland M, Khaireddine F, Herrmann P, Kemmner W, Burock S, Walther W, Shoemaker RH, Stein U. Combination of Wnt/β-Catenin Targets S100A4 and DKK1 Improves Prognosis of Human Colorectal Cancer. Cancers (Basel) 2021; 14:cancers14010037. [PMID: 35008201 PMCID: PMC8750436 DOI: 10.3390/cancers14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metastasis is directly linked to colorectal cancer (CRC) patient survival. Wnt signaling through β-catenin plays a key role. Metastasis-inducing S100A4 is a Wnt/β-catenin target gene and a prognostic biomarker for CRC and other cancer types. We aimed to identify S100A4-dependent expression alterations to better understand CRC progression and metastasis for improved patient survival. S100A4-induced transcriptome arrays, confirmatory studies in isogenic CRC cell lines with defined β-catenin genotypes, and functional metastasis studies were performed. S100A4-regulated transcriptome examination revealed the transcriptional cross-regulation of metastasis-inducing S100A4 with Wnt pathway antagonist Dickkopf-1 (DKK1). S100A4 overexpression down-regulated DKK1, S100A4 knock-down increased DKK1. Recombinant DKK1 reduced S100A4 expression and S100A4-mediated cell migration. In xenografted mice, systemic S100A4-shRNA application increased intratumoral DKK1. The inverse correlation of S100A4 and DKK1 was confirmed in five independent publicly available CRC expression datasets. Combinatorial analysis of S100A4 and DKK1 in two additional independent CRC patient cohorts improved prognosis of overall and metastasis-free survival. The newly discovered transcriptional cross-regulation of Wnt target S100A4 and Wnt antagonist DKK1 is predominated by an S100A4-induced Wnt signaling feedback loop, increasing cell motility and metastasis risk. S100A4 and DKK1 combination improves the identification of CRC patients at high risk.
Collapse
Affiliation(s)
- Mathias Dahlmann
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Anne Monks
- Molecular Pharmacology Laboratory, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21702, USA; (A.M.); (E.D.H.)
| | - Erik D. Harris
- Molecular Pharmacology Laboratory, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21702, USA; (A.M.); (E.D.H.)
| | - Dennis Kobelt
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Marc Osterland
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Fadi Khaireddine
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Pia Herrmann
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Wolfgang Kemmner
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Susen Burock
- Charité Comprehensive Cancer Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Invalidenstraße 80, 10117 Berlin, Germany;
| | - Wolfgang Walther
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Robert H. Shoemaker
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, Building 440, Frederick, MD 21702, USA;
| | - Ulrike Stein
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
- German Cancer Consortium, 69121 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
35
|
Signalling dynamics in embryonic development. Biochem J 2021; 478:4045-4070. [PMID: 34871368 PMCID: PMC8718268 DOI: 10.1042/bcj20210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
In multicellular organisms, cellular behaviour is tightly regulated to allow proper embryonic development and maintenance of adult tissue. A critical component in this control is the communication between cells via signalling pathways, as errors in intercellular communication can induce developmental defects or diseases such as cancer. It has become clear over the last years that signalling is not static but varies in activity over time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic phenotypes, such as transient activation, signal ramping or oscillations, occurring in a cell type- and stage-dependent manner. In cells, such dynamics can exert various functions that allow organisms to develop in a robust and reproducible way. Here, we focus on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types and organisms, including the periodic segmentation of vertebrate embryos, and are often dysregulated in cancer. We will discuss how biochemical processes influence their dynamics and how these impact on cellular behaviour within multicellular systems.
Collapse
|
36
|
Conde J, Ruiz-Fernandez C, Francisco V, Scotece M, Gómez R, Lago F, Gonzalez-Gay MA, Pino J, Mobasheri A, Gualillo O. Dickkopf-3 (DKK3) Signaling in IL-1α-Challenged Chondrocytes: Involvement of the NF-κB Pathway. Cartilage 2021; 13:925S-934S. [PMID: 32532182 PMCID: PMC8804835 DOI: 10.1177/1947603520933328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is an age-related biomechanical and low-grade inflammometabolic disease of the joints and one of the costliest and disabling forms of arthritis. Studies on matrix-degrading enzymes such as metalloproteases, which are implicated in the increased catabolism of extracellular matrix, are of paramount relevance. DKK3 is a member of DKK family and is best known for its role in cancer. Although there is some information about the participation of DKK3 in cartilage pathophysiology and on metalloproteases regulation, in particular, little is known about DKK3 signaling mechanisms. Thus, the aim of this study is to explore how DKK3 regulates matrix metalloproteinase-13 (MMP-13) expression. DESIGN Gene, protein expression and protein phosphorylation in primary human chondrocytes and ATDC5 mouse cells were assessed by RT-qPCR and Western blot analysis. Further studies on DKK3 activity were performed by targeting DKK3 gene with a specific siRNA. RESULTS DKK3 expression was found to be higher in OA human chondrocytes than healthy cells, being its expression decreased in interleukin-1α (IL-1α)-stimulated cells. DKK3 knockdown increased the induction of MMP-13 elicited by IL-1α in human and mouse chondrocytes and after the analysis of different signalling pathways, we observed that NF-κB pathway was involved in the regulation of MMP-13 expression by DKK3. CONCLUSIONS Herein we have demonstrated, for the first time, that DKK3 gene silencing exacerbated NF-κB activation, resulting in an increased IL-1α-driven induction of MMP-13. Our results further confirm that DKK3 may play a protective role in OA by attenuating NF-κB activation and the subsequent production of metalloproteases.
Collapse
Affiliation(s)
- Javier Conde
- SERGAS (Servizo Galego de Saude) and
IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab
(Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago
University Clinical Hospital, Santiago de Compostela, Spain,Javier Conde, The NEIRID Lab, Santiago
University Clinical Hospital, Building C, Level-2, Door 9, Santiago de
Compostela, 15706, Spain.
| | - Clara Ruiz-Fernandez
- SERGAS (Servizo Galego de Saude) and
IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab
(Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago
University Clinical Hospital, Santiago de Compostela, Spain
| | - Vera Francisco
- SERGAS (Servizo Galego de Saude) and
IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab
(Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago
University Clinical Hospital, Santiago de Compostela, Spain
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and
IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab
(Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago
University Clinical Hospital, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Laboratory,
Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela,
Spain
| | - Francisca Lago
- Molecular and Cellular Cardiology Group,
SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de
Santiago), Santiago University Clinical Hospital, Santiago de Compostela,
Spain
| | - Miguel Angel Gonzalez-Gay
- Epidemiology, Genetics and
Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de
Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Santander,
Spain
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude) and
IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab
(Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago
University Clinical Hospital, Santiago de Compostela, Spain
| | - Ali Mobasheri
- Department of Regenerative Medicine,
State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and
IDIS (Instituto de Investigación Sanitaria de Santiago), the NEIRID Lab
(Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago
University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
37
|
Giralt I, Gallo-Oller G, Navarro N, Zarzosa P, Pons G, Magdaleno A, Segura MF, Sábado C, Hladun R, Arango D, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Dickkopf-1 Inhibition Reactivates Wnt/β-Catenin Signaling in Rhabdomyosarcoma, Induces Myogenic Markers In Vitro and Impairs Tumor Cell Survival In Vivo. Int J Mol Sci 2021; 22:12921. [PMID: 34884726 PMCID: PMC8657544 DOI: 10.3390/ijms222312921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/β-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to β-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.
Collapse
Affiliation(s)
- Irina Giralt
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Gabriel Gallo-Oller
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Natalia Navarro
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Patricia Zarzosa
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Guillem Pons
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Ainara Magdaleno
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Miguel F. Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Constantino Sábado
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Diego Arango
- Group of Molecular Oncology, IRB Lleida, 25198 Lleida, Spain;
| | - José Sánchez de Toledo
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| | - Lucas Moreno
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Soledad Gallego
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (C.S.); (R.H.)
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (I.G.); (G.G.-O.); (N.N.); (P.Z.); (G.P.); (A.M.); (M.F.S.); (J.S.d.T.); (L.M.)
| |
Collapse
|
38
|
Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol 2021; 125:55-65. [PMID: 34801396 DOI: 10.1016/j.semcdb.2021.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Dickkopf1 (DKK1) was originally identified as a secreted protein that antagonizes Wnt signaling. Although DKK1 is essential for the developmental process, its functions in postnatal and adult life are unclear. However, evidence is accumulating that DKK1 is involved in tumorigenesis in a manner unrelated to Wnt signaling. In addition, recent studies have revealed that DKK1 may control immune reactions, although the relationship of this to Wnt signaling is unknown. Other DKK family members, DKK2-4, are likely to have their own functions. Here, we review the possible novel functions of DKKs. We summarize the characteristics of receptors of DKKs and the signaling mechanisms through DKKs and their receptors, provide evidence showing that DKKs are involved in tumor aggressiveness independently of Wnt signaling, and emphasize promising cancer therapies targeting DKKs and receptors. Lastly, we discuss various physiological and pathological processes controlled by DKKs.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan.
| | - Shinji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Ryota Sada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
39
|
A highly predictive autoantibody-based biomarker panel for prognosis in early-stage NSCLC with potential therapeutic implications. Br J Cancer 2021; 126:238-246. [PMID: 34728792 PMCID: PMC8770460 DOI: 10.1038/s41416-021-01572-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant therapies. METHODS We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative machine-learning algorithm. RESULTS We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%. CONCLUSIONS We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.
Collapse
|
40
|
Song JW, Zhu J, Wu XX, Tu T, Huang JQ, Chen GZ, Liang LY, Zhou CH, Xu X, Gong LY. GOLPH3/CKAP4 promotes metastasis and tumorigenicity by enhancing the secretion of exosomal WNT3A in non-small-cell lung cancer. Cell Death Dis 2021; 12:976. [PMID: 34671013 PMCID: PMC8528870 DOI: 10.1038/s41419-021-04265-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is the main cause of mortality associated with non-small-cell lung cancer (NSCLC), accounting for up to 70% of deaths among patients. The mechanisms underlying distal metastasis remain largely unknown. Golgi phosphoprotein 3 (GOLPH3) correlates negatively with overall survival in multiple tumors. In this study, we evaluated the function of GOLPH3 in NSCLC distal metastasis. GOLPH3 was expressed at high levels in samples from patients with NSCLC and was positively associated with clinicopathologic characteristics including clinical stage (P < 0.001), T (P = 0.001), N (P = 0.007), and M (P = 0.001) classification. Functionally, Transwell and wound-healing assays suggested that GOLPH3 overexpression enhances NSCLC cell migration and invasion abilities. Tumor-sphere formation and flow cytometry assays demonstrated that GOLPH3 overexpression enhances a stem cell-like phenotype of NSCLC cells. Metastasis models established by tail vein and intracardiac injection confirmed the pro-metastatic function of GOLPH3 in vivo. A subcutaneous tumor formation model confirmed that GOLPH3 overexpression increased the tumorigenicity of NSCLC cells. Mechanistically, gene set enrichment analysis revealed a positive association of GOLPH3 mRNA expression with WNT-activated gene signatures. Luciferase-reporter and nuclear extract assays showed that GOLPH3 overexpression enhances metastasis and tumorigenicity through activation of the WNT/β-catenin pathway. Immunoprecipitation-mass spectrometry and gene ontology analysis demonstrated that GOLPH3 interacts with cytoskeleton-associated protein 4 (CKAP4) in exosome-mediated distal metastasis. We found that GOLPH3 decreased the amount of plasma membrane-localized CKAP4 and increased the amount of exosome-localized CKAP4 to promote the formation of CKAP4-containing exosomes. Furthermore, we demonstrated that CKAP4 binds exosomal WNT3A to enhance its secretion. Therefore, the GOLPH3/CKAP4 axis plays a crucial role in promoting exosomal-WNT3A secretion to enhance and maintain the stem-like phenotype and metastasis in NSCLC, thus indicating the therapeutic potential of GOLPH3 in patients with NSCLC metastasis.
Collapse
Affiliation(s)
- Jun-Wei Song
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Jing Zhu
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Xing-Xuan Wu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
| | - Ting Tu
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Jing-Qiang Huang
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Guan-Zi Chen
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Li-Yin Liang
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China
| | - Chun-Hui Zhou
- Guangzhou Health Science College, 510520, Guangzhou, Guangdong, P. R. China
| | - XingZhi Xu
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
- Carson International Cancer Center, Health Science Center, Shenzhen University, 518055, Shenzhen, Guangdong, China
| | - Li-Yun Gong
- GuangDong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, 518060, Shenzhen, Guangdong, P. R. China.
| |
Collapse
|
41
|
Wang R, Liu J, Li K, Yang G, Chen S, Wu J, Xie X, Ren H, Pang Y. An SETD1A/Wnt/β-catenin feedback loop promotes NSCLC development. J Exp Clin Cancer Res 2021; 40:318. [PMID: 34645486 PMCID: PMC8513302 DOI: 10.1186/s13046-021-02119-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background SETD1A, a member of SET1/MLL family H3K4 methyltransferases, is involved in the tumorigenesis of numerous cancers. However, the biological role and mechanism of SETD1A in non-small cell lung cancer (NSCLC) remain to be elucidated. Methods The expression of SETD1A, NEAT1, EZH2, and β-catenin in NSCLC tissues and cell lines was detected by qRT-PCR, immunohistochemistry and western blotting. The regulatory mechanisms were validated by chromatin immunoprecipitation, co-immunoprepitation and luciferase reporter assay. The self-renewal, cisplatin sensitivity and tumorigenesis of NSCLC cells were analyzed using sphere formation, CCK-8, colony formation assays and xenograft tumor models. Results SETD1A expression was significantly increased in NSCLC and its overexpression predicted a poor prognosis of patients with NSCLC. Functional experiments showed that SETD1A positively regulated cancer stem cell property and negatively regulated cisplatin sensitivity in NSCLC cells via the Wnt/β-catenin pathway. Next, we found that SETD1A positively regulated the Wnt/β-catenin pathway via interacting with and stabilizing β-catenin. The SET domain is dispensable for the interaction between SETD1A and β-catenin. Furthermore, we identified that SETD1A bound to the promoters of NEAT1 and EZH2 to activate gene transcription by inducing H3K4me3 enrichment. Rescue experiments showed that SETD1A promoted the Wnt/β-catenin pathway and exerted its oncogenic functions in NSCLC, at least, partly through NEAT1 and EZH2 upregulation. In addition, SETD1A was proven to be a direct target of the Wnt/β-catenin pathway, thus forming a positive feedback loop in NSCLC cells. Conclusion SETD1A and Wnt/β-catenin pathway form a positive feedback loop and coordinately contribute to NSCLC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02119-x.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jian Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.,Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Kai Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ganghua Yang
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Sisi Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jie Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Hong Ren
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
42
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|
43
|
Jeong W, Jho EH. Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Front Cell Dev Biol 2021; 9:714330. [PMID: 34589484 PMCID: PMC8473786 DOI: 10.3389/fcell.2021.714330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
44
|
Fang YS, Wu Q, Zhao HC, Zhou Y, Ye L, Liu SS, Li XX, Du WD. Do combined assays of serum AFP, AFP-L3, DCP, GP73, and DKK-1 efficiently improve the clinical values of biomarkers in decision-making for hepatocellular carcinoma? A meta-analysis. Expert Rev Gastroenterol Hepatol 2021; 15:1065-1076. [PMID: 33691550 DOI: 10.1080/17474124.2021.1900731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Serum biomarkers are valuable for clinical decision-making for patients with hepatocellular carcinoma (HCC), among which the most promising are AFP, AFP-L3, DCP, DKK-1, and GP73; however, the efficacy of using combined biomarkers remains controversial. This meta-analysis provides insights regarding this topic.Methods: After systematically surveying the literature available in PubMed, Embase, and Cochrane Library, we identified 28 qualified articles published since January 2015. A random-effects model was used to assess pooled sensitivity, specificity, positive and negative likelihood ratios (PLRs and NLPs), and diagnostic odds ratio (DOR).Results: Values under the summary receiver operating characteristic (SROC) curve varied in different panels of the five biomarkers. Importantly, the sum of sensitivity and specificity of AFP+GP73 was 1.76 (P= 0.0001), which was the best among all the panels. The sum of the triple biomarker panel of AFP, AFP-L3, and DCP was larger (1.64, P= 0.0001) than those of any double biomarker panels of AFP, AFP-L3, and DCP.Conclusions: To the best of our knowledge, this is the first meta-analysis to focus solely on combination assays of multiple biomarkers in HCC. The combined assay of AFP and GP73 conferred the best outcome among all panels. The triple combined panel of AFP, AFP-L3, and DCP showed higher diagnostic potential than individual random double combinations of the three biomarkers. Multiple-biomarker combined assays will be clinically important for decision-making processes for HCC.
Collapse
Affiliation(s)
- Yong-Sheng Fang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Qiang Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hong-Chuan Zhao
- Organ Transplantation Center & Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS, Tasmania, Australia
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Sheng-Sheng Liu
- Department of Pathology, Anhui Medical University, Hefei, People's Republic of China
| | - Xiao-Xue Li
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei-Dong Du
- Department of Pathology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
45
|
Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun 2021; 9:142. [PMID: 34425907 PMCID: PMC8381557 DOI: 10.1186/s40478-021-01243-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
The blood–brain barrier (BBB) plays important roles in brain tumor pathogenesis and treatment response, yet our understanding of its function and heterogeneity within or across brain tumor types remains poorly characterized. Here we analyze the neurovascular unit (NVU) of pediatric high-grade glioma (pHGG) and diffuse midline glioma (DMG) using patient derived xenografts and natively forming glioma mouse models. We show tumor-associated vascular differences between these glioma subtypes, and parallels between PDX and mouse model systems, with DMG models maintaining a more normal vascular architecture, BBB function and endothelial transcriptional program relative to pHGG models. Unlike prior work in angiogenic brain tumors, we find that expression of secreted Wnt antagonists do not alter the tumor-associated vascular phenotype in DMG tumor models. Together, these findings highlight vascular heterogeneity between pHGG and DMG and differences in their response to alterations in developmental BBB signals that may participate in driving these pathological differences.
Collapse
|
46
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
47
|
Moreno SE, Massee M, Bara H, Koob TJ. Dehydrated human amniotic membrane modulates canonical Wnt signaling in multiple cell types in vitro. Eur J Cell Biol 2021; 100:151168. [PMID: 34246182 DOI: 10.1016/j.ejcb.2021.151168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022] Open
Abstract
Canonical Wnt signaling is a major pathway known to regulate diverse physiological processes in multicellular organisms. Signaling is tightly regulated by feedback mechanisms; however, persistent dysregulation of this pathway is implicated in the progression of multiple disease states. In this study, proteomic analysis identified endogenous Wnt antagonists in micronized dehydrated human amnion/chorion membrane (μdHACM); thereby, prompting a study to further characterize the intrinsic properties of μdHACM as it relates to Wnt activity, in vitro. A TCF/LEF reporter cell line demonstrated the general ability of μdHACM to inhibit β-catenin induced transcription activity. Furthermore, in vitro systems, modeling elevated Wnt signaling, were developed in relevant cell types including tenocytes, synoviocytes, and human dermal fibroblasts (HDFs). Stimulation of these cells with Wnt3A resulted in translocation of β-catenin to the nucleus and increased expression of Wnt related genes. The subsequent addition of μdHACM, in the continued presence of Wnt-stimulus, mitigated the downstream effects of Wnt3A in tenocytes, synoviocytes, and HDFs. Nuclear localization of β-catenin was abated with corresponding reduction of Wnt related gene expression. These data demonstrate the in vitro regulation of canonical Wnt signaling as an inherent property of μdHACM and a novel mechanism of action.
Collapse
Affiliation(s)
- Sarah E Moreno
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA
| | - Michelle Massee
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA.
| | - Heather Bara
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA
| | - Thomas J Koob
- MiMedx Group, Inc. 1775 West Oak Commons Court NE, Marietta, GA 30062, USA
| |
Collapse
|
48
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
49
|
Yu D, Zhao Y, Wang H, Kong D, Jin W, Hu Y, Qin Y, Zhang B, Li X, Hao J, Li G, Wang H. IL-1β pre-stimulation enhances the therapeutic effects of endometrial regenerative cells on experimental colitis. Stem Cell Res Ther 2021; 12:324. [PMID: 34090510 PMCID: PMC8180147 DOI: 10.1186/s13287-021-02392-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, relapsing, and non-specific inflammatory bowel disease, and the current treatment strategies were mainly used to relieve symptoms or for maintenance. Endometrial regenerative cells (ERCs) are mesenchymal-like stromal cells and have been demonstrated to alleviate multiple immune-dysregulation diseases. Pro-inflammatory stimuli were reported to enhance the immunosuppressive functions of ERCs, but the mechanism underlined is not fully understood. Here, we have designed this study to investigate the therapeutic effects of IL-1β-primed ERCs in the attenuation of experimental colitis. METHODS BALB/c mice were given 3% dextran sodium sulfate (DSS) for 7 consecutive days and free tap water for 3 days sequentially to induce experimental colitis. PBS (200 μL), ERCs, and IL-1β-primed ERCs (10ng/mL, 48 h) were injected (1 million/mouse/day, i.v.) on day 2, 5, and 8, respectively. Colonic and splenic samples were harvested on day 10 after DSS induction. RESULTS It was found that IL-1β-primed ERC treatment markedly attenuated colonic damage, body weight loss, and colon length shortening in colitis mice. Compared with other treatments, cell populations of CD4+IL-4+Th2 cells, CD4+CD25+FOXP3+ regulatory T cells (Tregs), and CD68+CD206+ macrophages in spleens were also significantly upregulated in the IL-1β-primed ERC-treated group (p < 0.05). In addition, lower expression of pro-inflammatory (IFN-γ, IL-17, TNF-α, and IL-6), but higher levels of anti-inflammatory cytokines (IL-4 and IL-10) were detected in colons in the IL-1β-primed ERC-treated group (p < 0.05 vs. other groups). Importantly, we also found that different generations of ERCs had an overall lower secretion of Dickkopf-1 (DKK1) by IL-1β pre-stimulation (p < 0.05) and a higher expression of β-catenin in colonic and splenic tissues after the administration of IL-1β-primed ERCs. CONCLUSIONS This study has demonstrated that IL-1β pre-stimulation effectively downregulated DKK1 expression in ERCs, which in turn promoted the wnt/β-catenin pathway activation in colonic and splenic tissues. Consequently, IL-1β-primed ERCs exhibited an enhanced therapeutic effect in the attenuation of DSS-induced colitis.
Collapse
Affiliation(s)
- Dingding Yu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Wang Jin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
50
|
Chu HY, Chen Z, Wang L, Zhang ZK, Tan X, Liu S, Zhang BT, Lu A, Yu Y, Zhang G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front Immunol 2021; 12:658097. [PMID: 34093545 PMCID: PMC8174842 DOI: 10.3389/fimmu.2021.658097] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Clinical studies in a range of cancers have detected elevated levels of the Wnt antagonist Dickkopf-1 (DKK1) in the serum or tumors of patients, and this was frequently associated with a poor prognosis. Our analysis of DKK1 gene profile using data from TCGA also proves the high expression of DKK1 in 14 types of cancers. Numerous preclinical studies have demonstrated the cancer-promoting effects of DKK1 in both in vitro cell models and in vivo animal models. Furthermore, DKK1 showed the ability to modulate immune cell activities as well as the immunosuppressive cancer microenvironment. Expression level of DKK1 is positively correlated with infiltrating levels of myeloid-derived suppressor cells (MDSCs) in 20 types of cancers, while negatively associated with CD8+ T cells in 4 of these 20 cancer types. Emerging experimental evidence indicates that DKK1 has been involved in T cell differentiation and induction of cancer evasion of immune surveillance by accumulating MDSCs. Consequently, DKK1 has become a promising target for cancer immunotherapy, and the mechanisms of DKK1 affecting cancers and immune cells have received great attention. This review introduces the rapidly growing body of literature revealing the cancer-promoting and immune regulatory activities of DKK1. In addition, this review also predicts that by understanding the interaction between different domains of DKK1 through computational modeling and functional studies, the underlying functional mechanism of DKK1 could be further elucidated, thus facilitating the development of anti-DKK1 drugs with more promising efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zihao Chen
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zong-Kang Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinhuan Tan
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Shuangshuang Liu
- Department of Microsurgery (II), Wendeng Hospital of Traditional Chinese Orthopedics and Traumatology of Shandong Province, Wendeng, China
| | - Bao-Ting Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|