1
|
Tolokh IS, Kinney NA, Sharakhov IV, Onufriev AV. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin. Epigenetics Chromatin 2023; 16:21. [PMID: 37254161 PMCID: PMC10228000 DOI: 10.1186/s13072-023-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Interactions among topologically associating domains (TADs), and between the nuclear envelope (NE) and lamina-associated domains (LADs) are expected to shape various aspects of three-dimensional (3D) chromatin structure and dynamics; however, relevant genome-wide experiments that may provide statistically significant conclusions remain difficult. RESULTS We have developed a coarse-grained dynamical model of D. melanogaster nuclei at TAD resolution that explicitly accounts for four distinct epigenetic classes of TADs and LAD-NE interactions. The model is parameterized to reproduce the experimental Hi-C map of the wild type (WT) nuclei; it describes time evolution of the chromatin over the G1 phase of the interphase. The simulations include an ensemble of nuclei, corresponding to the experimentally observed set of several possible mutual arrangements of chromosomal arms. The model is validated against multiple structural features of chromatin from several different experiments not used in model development. Predicted positioning of all LADs at the NE is highly dynamic-the same LAD can attach, detach and move far away from the NE multiple times during interphase. The probabilities of LADs to be in contact with the NE vary by an order of magnitude, despite all having the same affinity to the NE in the model. These probabilities are mostly determined by a highly variable local linear density of LADs along the genome, which also has the same strong effect on the predicted positioning of individual TADs -- higher probability of a TAD to be near NE is largely determined by a higher linear density of LADs surrounding this TAD. The distribution of LADs along the chromosome chains plays a notable role in maintaining a non-random average global structure of chromatin. Relatively high affinity of LADs to the NE in the WT nuclei substantially reduces sensitivity of the global radial chromatin distribution to variations in the strength of TAD-TAD interactions compared to the lamin depleted nuclei, where a small (0.5 kT) increase of cross-type TAD-TAD interactions doubles the chromatin density in the central nucleus region. CONCLUSIONS A dynamical model of the entire fruit fly genome makes multiple genome-wide predictions of biological interest. The distribution of LADs along the chromatin chains affects their probabilities to be in contact with the NE and radial positioning of highly mobile TADs, playing a notable role in creating a non-random average global structure of the chromatin. We conjecture that an important role of attractive LAD-NE interactions is to stabilize global chromatin structure against inevitable cell-to-cell variations in TAD-TAD interactions.
Collapse
Affiliation(s)
- Igor S. Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
| | - Nicholas Allen Kinney
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061 USA
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060 USA
| | | | - Alexey V. Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Physics, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
2
|
Maslova A, Krasikova A. FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains. Front Cell Dev Biol 2021; 9:753097. [PMID: 34805161 PMCID: PMC8597843 DOI: 10.3389/fcell.2021.753097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intimate relationships between genome structure and function direct efforts toward deciphering three-dimensional chromatin organization within the interphase nuclei at different genomic length scales. For decades, major insights into chromatin structure at the level of large-scale euchromatin and heterochromatin compartments, chromosome territories, and subchromosomal regions resulted from the evolution of light microscopy and fluorescence in situ hybridization. Studies of nanoscale nucleosomal chromatin organization benefited from a variety of electron microscopy techniques. Recent breakthroughs in the investigation of mesoscale chromatin structures have emerged from chromatin conformation capture methods (C-methods). Chromatin has been found to form hierarchical domains with high frequency of local interactions from loop domains to topologically associating domains and compartments. During the last decade, advances in super-resolution light microscopy made these levels of chromatin folding amenable for microscopic examination. Here we are reviewing recent developments in FISH-based approaches for detection, quantitative measurements, and validation of contact chromatin domains deduced from C-based data. We specifically focus on the design and application of Oligopaint probes, which marked the latest progress in the imaging of chromatin domains. Vivid examples of chromatin domain FISH-visualization by means of conventional, super-resolution light and electron microscopy in different model organisms are provided.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Laboratory of Nuclear Structure and Dynamics, Cytology and Histology Department, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
3
|
Okazaki R, Yamazoe K, Inoue YH. Nuclear Export of Cyclin B Mediated by the Nup62 Complex Is Required for Meiotic Initiation in Drosophila Males. Cells 2020; 9:E270. [PMID: 31979075 PMCID: PMC7072204 DOI: 10.3390/cells9020270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The central channel of the nuclear pore complex plays an important role in the selective transport of proteins between the nucleus and cytoplasm. Previous studies have demonstrated that the depletion of the Nup62 complex, constructing the nuclear pore channel in premeiotic Drosophila cells, resulted in the absence of meiotic cells. We attempted to understand the mechanism underlying the cell cycle arrest before meiosis. METHODS We induced dsRNAs against the nucleoporin mRNAs using the Gal4/UAS system in Drosophila. RESULTS The cell cycle of the Nup62-depleted cells was arrested before meiosis without CDK1 activation. The ectopic over-expression of CycB, but not constitutively active CDK1, resulted in partial rescue from the arrest. CycB continued to exist in the nuclei of Nup62-depleted cells and cells depleted of exportin encoded by emb. Protein complexes containing CycB, Emb, and Nup62 were observed in premeiotic spermatocytes. CycB, which had temporally entered the nucleus, was associated with Emb, and the complex was transported back to the cytoplasm through the central channel, interacting with the Nup62 complex. Conclusion: We proposed that CycB is exported with Emb through the channel interacting with the Nup62 complex before the onset of meiosis. The nuclear export ensures the modification and formation of sufficient CycB-CDK1 in the cytoplasm.
Collapse
Affiliation(s)
| | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto, Japan; (R.O.); (K.Y.)
| |
Collapse
|
4
|
|
5
|
Sharakhov IV, Bondarenko SM, Artemov GN, Onufriev AV. The Role of Chromosome–Nuclear Envelope Attachments in 3D Genome Organization. BIOCHEMISTRY (MOSCOW) 2018; 83:350-358. [DOI: 10.1134/s0006297918040065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Amitai A, Seeber A, Gasser SM, Holcman D. Visualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectories. Cell Rep 2017; 18:1200-1214. [PMID: 28147275 DOI: 10.1016/j.celrep.2017.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin moves with subdiffusive and spatially constrained dynamics within the cell nucleus. Here, we use single-locus tracking by time-lapse fluorescence microscopy to uncover information regarding the forces that influence chromatin movement following the induction of a persistent DNA double-strand break (DSB). Using improved time-lapse imaging regimens, we monitor trajectories of tagged DNA loci at a high temporal resolution, which allows us to extract biophysical parameters through robust statistical analysis. Polymer modeling based on these parameters predicts chromatin domain expansion near a DSB and damage extrusion from the domain. Both phenomena are confirmed by live imaging in budding yeast. Calculation of the anomalous exponent of locus movement allows us to differentiate forces imposed on the nucleus through the actin cytoskeleton from those that arise from INO80 remodeler-dependent changes in nucleosome organization. Our analytical approach can be applied to high-density single-locus trajectories obtained in any cell type.
Collapse
Affiliation(s)
- Assaf Amitai
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland.
| | - David Holcman
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France; Department of Applied Mathematics and Theoretical Physics, University of Cambridge and Churchill College, Cambridge CB30DS, UK.
| |
Collapse
|
7
|
Shukron O, Hauer M, Holcman D. Two loci single particle trajectories analysis: constructing a first passage time statistics of local chromatin exploration. Sci Rep 2017; 7:10346. [PMID: 28871173 PMCID: PMC5583259 DOI: 10.1038/s41598-017-10842-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
Stochastic single particle trajectories are used to explore the local chromatin organization. We present here a statistical analysis of the first contact time distributions between two tagged loci recorded experimentally. First, we extract the association and dissociation times from data for various genomic distances between loci, and we show that the looping time occurs in confined nanometer regions. Second, we characterize the looping time distribution for two loci in the presence of multiple DNA damages. Finally, we construct a polymer model, that accounts for the local chromatin organization before and after a double-stranded DNA break (DSB), to estimate the level of chromatin decompaction. This novel passage time statistics method allows extracting transient dynamic at scales varying from one to few hundreds of nanometers, it predicts the local changes in the number of binding molecules following DSB and can be used to characterize the local dynamic of the chromatin.
Collapse
Affiliation(s)
- Ofir Shukron
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure, IBENS, 46 rue d'Ulm, 75005, Paris, France
| | - Michael Hauer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - David Holcman
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure, IBENS, 46 rue d'Ulm, 75005, Paris, France. .,Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
8
|
Ulianov SV, Tachibana-Konwalski K, Razin SV. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization. Bioessays 2017; 39. [DOI: 10.1002/bies.201700104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sergey V. Ulianov
- Institute of Gene Biology; Russian Academy of Sciences; Moscow Russia
- Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| | - Kikue Tachibana-Konwalski
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences; Vienna Biocenter (VBC); Vienna Austria
| | - Sergey V. Razin
- Institute of Gene Biology; Russian Academy of Sciences; Moscow Russia
- Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
9
|
Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N, Surka C, Chow A, Cerase A, McDonel P, Guttman M. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 2016; 354:468-472. [PMID: 27492478 DOI: 10.1126/science.aae0047] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Constanza Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Erik Aznauryan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Cerase
- European Molecular Biology Laboratory-Monterotondo, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Patrick McDonel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Abstract
Chromosomes are folded into cells in a nonrandom fashion, with particular genetic loci occupying distinct spatial regions. This observation raises the question of whether the spatial organization of a chromosome governs its functions, such as recombination or transcription. We consider this general question in the specific context of mating-type switching in budding yeast, which is a model system for homologous recombination. Mating-type switching is induced by a DNA double-strand break (DSB) at the MAT locus on chromosome III, followed by homologous recombination between the cut MAT locus and one of two donor loci (HMLα and HMRa), located on the same chromosome. Previous studies have suggested that in MATa cells after the DSB is induced chromosome III undergoes refolding, which directs the MAT locus to recombine with HMLα. Here, we propose a quantitative model of mating-type switching predicated on the assumption of DSB-induced chromosome refolding, which also takes into account the previously measured stochastic dynamics and polymer nature of yeast chromosomes. Using quantitative fluorescence microscopy, we measure changes in the distance between the donor (HMLα) and MAT loci after the DSB and find agreement with the theory. Predictions of the theory also agree with measurements of changes in the use of HMLα as the donor, when we perturb the refolding of chromosome III. These results establish refolding of yeast chromosome III as a key driving force in MAT switching and provide an example of a cell regulating the spatial organization of its chromosome so as to direct homology search during recombination.
Collapse
|
11
|
Kinney NA, Onufriev AV, Sharakhov IV. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes. Nucleus 2016; 6:212-24. [PMID: 26068134 DOI: 10.1080/19491034.2015.1056441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We use a combined experimental and computational approach to study the effects of chromosome-nuclear envelope (Chr-NE) attachments on the 3D genome organization of Drosophila melanogaster (fruit fly) salivary gland nuclei. We consider 3 distinct models: a Null model - without specific Chr-NE attachments, a 15-attachment model - with 15 previously known Chr-NE attachments, and a 48-attachment model - with 15 original and 33 recently identified Chr-NE attachments. The radial densities of chromosomes in the models are compared to the densities observed in 100 experimental images of optically sectioned salivary gland nuclei forming "z-stacks." Most of the experimental z-stacks support the Chr-NE 48-attachment model suggesting that as many as 48 chromosome loci with appreciable affinity for the NE are necessary to reproduce the experimentally observed distribution of chromosome density in fruit fly nuclei. Next, we investigate if and how the presence and the number of Chr-NE attachments affect several key characteristics of 3D genome organization: chromosome territories and gene-gene contacts. This analysis leads to novel insight about the possible role of Chr-NE attachments in regulating the genome architecture. Specifically, we find that model nuclei with more numerous Chr-NE attachments form more distinct chromosome territories and their chromosomes intertwine less frequently. Intra-chromosome and intra-arm contacts are more common in model nuclei with Chr-NE attachments compared to the Null model (no specific attachments), while inter-chromosome and inter-arm contacts are less common in nuclei with Chr-NE attachments. We demonstrate that Chr-NE attachments increase the specificity of long-range inter-chromosome and inter-arm contacts. The predicted effects of Chr-NE attachments are rationalized by intuitive volume vs. surface accessibility arguments.
Collapse
Affiliation(s)
- Nicholas Allen Kinney
- a Genomics Bioinformatics and Computational Biology; Virginia Tech ; Blacksburg , VA , USA
| | | | | |
Collapse
|
12
|
Abstract
The paternal contribution to fertilization and embryogenesis is frequently overlooked as the spermatozoon is often considered to be a silent vessel whose only function is to safely deliver the paternal genome to the maternal oocyte. In this article, we hope to demonstrate that this perception is far from the truth. Typically, infertile men have been unable to conceive naturally (or through regular IVF), and therefore, a perturbation of the genetic integrity of sperm heads in infertile males has been under-considered. The advent of intracytoplasmic sperm injection (ICSI) however has led to very successful treatment of male factor infertility and subsequent widespread use in IVF clinics worldwide. Until recently, little concern has been raised about the genetic quality of sperm in ICSI patients or the impact genetic aberrations could have on fertility and embryogenesis. This review highlights the importance of chromatin packaging in the sperm nucleus as essential for the establishment and maintenance of a viable pregnancy.
Collapse
|
13
|
Razin SV, Borunova VV, Iarovaia OV, Vassetzky YS. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. BIOCHEMISTRY (MOSCOW) 2015; 79:608-18. [PMID: 25108324 DOI: 10.1134/s0006297914070037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
14
|
Ioannou D, Kandukuri L, Quadri A, Becerra V, Simpson JL, Tempest HG. Spatial positioning of all 24 chromosomes in the lymphocytes of six subjects: evidence of reproducible positioning and spatial repositioning following DNA damage with hydrogen peroxide and ultraviolet B. PLoS One 2015; 10:e0118886. [PMID: 25756782 PMCID: PMC4355486 DOI: 10.1371/journal.pone.0118886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/18/2015] [Indexed: 12/18/2022] Open
Abstract
The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Lakshmi Kandukuri
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Ameer Quadri
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Victor Becerra
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Joe Leigh Simpson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
- March of Dimes Foundation, White Plains, New York, United States of America
| | - Helen G. Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Effect of chromosome tethering on nuclear organization in yeast. PLoS One 2014; 9:e102474. [PMID: 25020108 PMCID: PMC4096926 DOI: 10.1371/journal.pone.0102474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022] Open
Abstract
Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.
Collapse
|
18
|
Razin SV, Iarovaia OV, Vassetzky YS. A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma 2014; 123:217-24. [PMID: 24664318 DOI: 10.1007/s00412-014-0459-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
The first papers coining the term "nuclear matrix" were published 40 years ago. Here, we review the data obtained during the nuclear matrix studies and discuss the contribution of this controversial concept to our current understanding of nuclear architecture and three-dimensional organization of genome.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334, Moscow, Russia
| | | | | |
Collapse
|
19
|
Malhas AN, Vaux DJ. Nuclear envelope invaginations and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:523-35. [PMID: 24563364 DOI: 10.1007/978-1-4899-8032-8_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear envelope (NE) surrounds the nucleus and separates it from the cytoplasm. The NE is not a passive structural component, but rather contributes to various cellular processes such as genome organization, transcription, signaling, and stress responses. Although the NE is mostly a smooth surface, it also forms invaginations that can reach deep into the nucleoplasm and may even traverse the nucleus completely. Cancer cells are generally characterized by irregularities and invaginations of the NE that are of diagnostic and prognostic significance. In the current chapter, we describe the link between nuclear invaginations and irregularities with cancer and explore possible mechanistic roles they might have in tumorigenesis.
Collapse
Affiliation(s)
- Ashraf N Malhas
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK,
| | | |
Collapse
|
20
|
Sackton TB, Hartl DL. Meta-analysis reveals that genes regulated by the Y chromosome in Drosophila melanogaster are preferentially localized to repressive chromatin. Genome Biol Evol 2013; 5:255-66. [PMID: 23315381 PMCID: PMC3595022 DOI: 10.1093/gbe/evt005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila Y chromosome is a degenerated, heterochromatic chromosome with few functional genes. Despite this, natural variation on the Y chromosome in D. melanogaster has substantial trans-acting effects on the regulation of X-linked and autosomal genes. It is not clear, however, whether these genes simply represent a random subset of the genome or whether specific functional properties are associated with susceptibility to regulation by Y-linked variation. Here, we present a meta-analysis of four previously published microarray studies of Y-linked regulatory variation (YRV) in D. melanogaster. We show that YRV genes are far from a random subset of the genome: They are more likely to be in repressive chromatin contexts, be expressed tissue specifically, and vary in expression within and between species than non-YRV genes. Furthermore, YRV genes are more likely to be associated with the nuclear lamina than non-YRV genes and are generally more likely to be close to each other in the nucleus (although not along chromosomes). Taken together, these results suggest that variation on the Y chromosome plays a role in modifying how the genome is distributed across chromatin compartments, either via changes in the distribution of DNA-binding proteins or via changes in the spatial arrangement of the genome in the nucleus.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, MA, USA
| | | |
Collapse
|
21
|
Kleessen S, Klie S, Nikoloski Z. Data integration through proximity-based networks provides biological principles of organization across scales. THE PLANT CELL 2013; 25:1917-27. [PMID: 23749845 PMCID: PMC3723603 DOI: 10.1105/tpc.113.111039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/30/2013] [Accepted: 05/16/2013] [Indexed: 05/18/2023]
Abstract
Plant behaviors across levels of cellular organization, from biochemical components to tissues and organs, relate and reflect growth habitats. Quantification of the relationship between behaviors captured in various phenotypic characteristics and growth habitats can help reveal molecular mechanisms of plant adaptation. The aim of this article is to introduce the power of using statistics originally developed in the field of geographic variability analysis together with prominent network models in elucidating principles of biological organization. We provide a critical systematic review of the existing statistical and network-based approaches that can be employed to determine patterns of covariation from both uni- and multivariate phenotypic characteristics in plants. We demonstrate that parameter-independent network-based approaches result in robust insights about phenotypic covariation. These insights can be quantified and tested by applying well-established statistics combining the network structure with the phenotypic characteristics. We show that the reviewed network-based approaches are applicable from the level of genes to the study of individuals in a population of Arabidopsis thaliana. Finally, we demonstrate that the patterns of covariation can be generalized to quantifiable biological principles of organization. Therefore, these network-based approaches facilitate not only interpretation of large-scale data sets, but also prediction of biochemical and biological behaviors based on measurable characteristics.
Collapse
Affiliation(s)
- Sabrina Kleessen
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sebastian Klie
- Genes and Small Molecules Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Address correspondence to
| |
Collapse
|
22
|
Razin SV, Gavrilov AA, Ioudinkova ES, Iarovaia OV. Communication of genome regulatory elements in a folded chromosome. FEBS Lett 2013; 587:1840-7. [PMID: 23651551 DOI: 10.1016/j.febslet.2013.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The most popular model of gene activation by remote enhancers postulates that the enhancers interact directly with target promoters via the looping of intervening DNA fragments. This interaction is thought to be necessary for the stabilization of the Pol II pre-initiation complex and/or for the transfer of transcription factors and Pol II, which are initially accumulated at the enhancer, to the promoter. The direct interaction of enhancer(s) and promoter(s) is only possible when these elements are located in close proximity within the nuclear space. Here, we discuss the molecular mechanisms for maintaining the close proximity of the remote regulatory elements of the eukaryotic genome. The models of an active chromatin hub (ACH) and an active nuclear compartment are considered, focusing on the role of chromatin folding in juxtaposing remote DNA sequences. The interconnection between the functionally dependent architecture of the interphase chromosome and nuclear compartmentalization is also discussed.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia.
| | | | | | | |
Collapse
|
23
|
Buster DW, Daniel SG, Nguyen HQ, Windler SL, Skwarek LC, Peterson M, Roberts M, Meserve JH, Hartl T, Klebba JE, Bilder D, Bosco G, Rogers GC. SCFSlimb ubiquitin ligase suppresses condensin II-mediated nuclear reorganization by degrading Cap-H2. J Cell Biol 2013; 201:49-63. [PMID: 23530065 PMCID: PMC3613687 DOI: 10.1083/jcb.201207183] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/04/2013] [Indexed: 12/21/2022] Open
Abstract
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCF(Slimb) ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCF(Slimb) function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCF(Slimb)-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus.
Collapse
Affiliation(s)
- Daniel W. Buster
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Scott G. Daniel
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Huy Q. Nguyen
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Sarah L. Windler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Lara C. Skwarek
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Maureen Peterson
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Meredith Roberts
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joy H. Meserve
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Tom Hartl
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joseph E. Klebba
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Giovanni Bosco
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, and Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
24
|
Abstract
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.
Collapse
|
25
|
Ao Z, Jayappa KD, Wang B, Zheng Y, Wang X, Peng J, Yao X. Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration. J Biol Chem 2012; 287:10544-10555. [PMID: 22308026 DOI: 10.1074/jbc.m111.317057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV-1 integration is promoted by viral integrase (IN) and its cellular cofactors. The lens epithelium-derived growth factor (LEDGF/p75), an IN interacting cellular cofactor, has been shown to play an important role in HIV-1 chromatin targeting and integration. However, whether other cellular cofactors are also involved in viral replication steps is still elusive. Here, we show that nucleoporin 62 (Nup62) is a chromatin-bound protein and can specifically interact with HIV-1 IN in both soluble nuclear extract and chromatin-bound fractions. The knockdown of Nup62 by shRNA reduced the association of IN with host chromatin and significantly impaired viral integration and replication in HIV-1-susceptible cells. Furthermore, the expression of the IN-binding region of Nup62 in CD4(+) T cells significantly inhibited HIV-1 infection. Taken together, these results indicate that the cellular Nup62 is specifically recruited by HIV-1 IN and contribute to an efficient viral DNA integration.
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Kallesh Danappa Jayappa
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Binchen Wang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Yingfeng Zheng
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Xiaoxia Wang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Jinyu Peng
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
26
|
Albert B, Léger-Silvestre I, Normand C, Gadal O. Nuclear organization and chromatin dynamics in yeast: biophysical models or biologically driven interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:468-81. [PMID: 22245105 DOI: 10.1016/j.bbagrm.2011.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022]
Abstract
Over the past decade, tremendous progress has been made in understanding the spatial organization of genes and chromosomes. Nuclear organization can be thought of as information that is not encoded in DNA, but which nevertheless impacts gene expression. Nuclear organizational influences can be cell-specific and are potentially heritable. Thus, nuclear organization fulfills all the criteria necessary for it to be considered an authentic level of epigenetic information. Chromosomal nuclear organization is primarily dictated by the biophysical properties of chromatin. Diffusion models of polymers confined in the crowded nuclear space accurately recapitulate experimental observation. Diffusion is a Brownian process, which implies that the positions of chromosomes and genes are not defined deterministically but are likely to be dictated by the laws of probability. Despite the small size of their nuclei, budding yeast have been instrumental in discovering how epigenetic information is encoded in the spatial organization of the genome. The relatively simple organization of the yeast nucleus and the very high number of genetically identical cells that can be observed under fluorescent microscopy allow statistically robust definitions of the gene and chromosome positions in the nuclear space to be constructed. In this review, we will focus on how the spatial organization of the chromatin in the yeast nucleus might impact transcription. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
27
|
Capelson M, Doucet C, Hetzer MW. Nuclear pore complexes: guardians of the nuclear genome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:585-97. [PMID: 21502404 DOI: 10.1101/sqb.2010.75.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eukaryotic cell function depends on the physical separation of nucleoplasmic and cytoplasmic components by the nuclear envelope (NE). Molecular communication between the two compartments involves active, signal-mediated trafficking, a function that is exclusively performed by nuclear pore complexes (NPCs). The individual NPC components and the mechanisms that are involved in nuclear trafficking are well documented and have become textbook knowledge. However, in addition to their roles as nuclear gatekeepers, NPC components-nucleoporins-have been shown to have critical roles in chromatin organization and gene regulation. These findings have sparked new enthusiasm to study the roles of this multiprotein complex in nuclear organization and explore novel functions that in some cases appear to go beyond a role in transport. Here, we discuss our present view of NPC biogenesis, which is tightly linked to proper cell cycle progression and cell differentiation. In addition, we summarize new data suggesting that NPCs represent dynamic hubs for the integration of gene regulation and nuclear transport processes.
Collapse
Affiliation(s)
- M Capelson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California 92037, USA
| | | | | |
Collapse
|
28
|
Ioannou D, Griffin DK. Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res 2010; 133:269-79. [PMID: 21088381 DOI: 10.1159/000322060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have implicated the role of gross genomic rearrangements in male infertility, e.g., constitutional aneuploidy, translocations, inversions, Y chromosome deletions, elevated sperm disomy, and DNA damage. The primary purpose of this paper is to review male fertility studies associated with such abnormalities. In addition, we speculate whether altered nuclear organization, another chromosomal/whole genome-associated phenomenon, is also concomitant with male factor infertility. Nuclear organization has been studied in a range of systems and implicated in several diseases. For many applications the measurement of the relative position of chromosome territories is sufficient to determine patterns of nuclear organization. Initial evidence has suggested that, unlike in the more usual 'size-related' or 'gene density-related' models, mammalian (including human) sperm heads display a highly organized pattern including a chromocenter with the centromeres located to the center of the nucleus and the telomeres near the periphery. More recent evidence, however, suggests there may be size- and gene density-related components to nuclear organization in sperm. It seems reasonable to hypothesize therefore that alterations in this pattern may be associated with male factor infertility. A small handful of studies have addressed this issue; however, to date it remains an exciting avenue for future research with possible implications for diagnosis and therapy.
Collapse
Affiliation(s)
- D Ioannou
- School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
29
|
Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes. PLoS One 2010; 5:e10592. [PMID: 20485676 PMCID: PMC2868863 DOI: 10.1371/journal.pone.0010592] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/14/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates. METHODOLOGY/PRINCIPAL FINDINGS To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus. CONCLUSIONS/SIGNIFICANCE These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type of repetitive element, is likely responsible for arm-specific rates of rearrangements.
Collapse
|
30
|
Abstract
The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional "higher order" levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study.
Collapse
|
31
|
Kalverda B, Pickersgill H, Shloma VV, Fornerod M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 2010; 140:360-71. [PMID: 20144760 DOI: 10.1016/j.cell.2010.01.011] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 05/18/2009] [Accepted: 12/31/2009] [Indexed: 10/19/2022]
Abstract
Nuclear pore complexes (NPCs) mediate transport across the nuclear envelope. In yeast, they also interact with active genes, attracting or retaining them at the nuclear periphery. In higher eukaryotes, some NPC components (nucleoporins) are also found in the nucleoplasm, with a so far unknown function. We have functionally characterized nucleoporin-chromatin interactions specifically at the NPC or within the nucleoplasm in Drosophila. We analyzed genomic interactions of full-length nucleoporins Nup98, Nup50, and Nup62 and nucleoplasmic and NPC-tethered forms of Nup98. We found that nucleoporins predominantly interacted with transcriptionally active genes inside the nucleoplasm, in particular those involved in developmental regulation and the cell cycle. A smaller set of nonactive genes interacted with the NPC. Genes strongly interacting with nucleoplasmic Nup98 were downregulated upon Nup98 depletion and activated on nucleoplasmic Nup98 overexpression. Thus, nucleoporins stimulate developmental and cell-cycle gene expression away from the NPC by interacting with these genes inside the nucleoplasm.
Collapse
Affiliation(s)
- Bernike Kalverda
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
33
|
Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 2009; 138:343-354. [PMID: 19921441 DOI: 10.1007/s10709-009-9424-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023]
|
34
|
Dynamic changes of territories 17 and 18 during EBV-infection of human lymphocytes. Mol Biol Rep 2009; 37:2347-54. [PMID: 19685159 DOI: 10.1007/s11033-009-9740-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Interphase chromosomes form distinct spatial domains called chromosome territories (CTs). The arrangement of CTs is non-random and correlated with cellular processes such as differentiation. The purpose of this study is to provide some behavior information of CTs during lymphocyte EBV-infection, which is thought to be a general extra-biological model. Three-dimensional fluorescence in situ hybridization (3D-FISH) was performed on human lymphocytes every 24 h over 96 h periods in EBV-infection. Chromosomes 17 and 18 were selected as target territories for similar size and different gene density. The data indicate that the radial position of territories 17 was altered with time, whereas territories 18 showed relative stable localization. The relative CT volume of CTs 18 to 17 also changed with infection. Our study is the first to examine the timely changes of chromatin positioning and folding in EBV-lymphocyte infection. Dynamic changes in position and folding status of target chromosomes reflected an impact of EBV infection on genome stability.
Collapse
|
35
|
Rosa A, Everaers R. Structure and dynamics of interphase chromosomes. PLoS Comput Biol 2008; 4:e1000153. [PMID: 18725929 PMCID: PMC2515109 DOI: 10.1371/journal.pcbi.1000153] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 07/10/2008] [Indexed: 12/19/2022] Open
Abstract
During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.
Collapse
Affiliation(s)
- Angelo Rosa
- Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany.
| | | |
Collapse
|
36
|
Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys J 2008; 95:3028-35. [PMID: 18556763 DOI: 10.1529/biophysj.108.132274] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome organization within the cell nucleus is a result of chromatin condensation achieved by histone tail-tail interactions and other nuclear proteins that counter the outward entropic pressure of the polymeric DNA. We probed the entropic swelling of chromatin driven by enzymatic disruption of these interactions in isolated mammalian cell nuclei. The large-scale decondensation of chromatin and the eventual rupture of the nuclear membrane and lamin network due to this entropic pressure were observed by fluorescence imaging. This swelling was accompanied by nuclear softening, an effect that we quantified by measuring the fluctuations of an optically trapped bead adhered onto the nucleus. We also measured the pressure at which the nuclear scaffold ruptured using an atomic force microscope cantilever. A simple theory based on a balance of forces in a swelling porous gel quantitatively explains the diffusive dynamics of swelling. Our experiments on decondensation of chromatin in nuclei suggest that its compaction is a critical parameter in controlling nuclear stability.
Collapse
|
37
|
Kalverda B, Röling MD, Fornerod M. Chromatin organization in relation to the nuclear periphery. FEBS Lett 2008; 582:2017-22. [PMID: 18435921 DOI: 10.1016/j.febslet.2008.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/11/2008] [Indexed: 11/15/2022]
Abstract
In the limited space of the nucleus, chromatin is organized in a dynamic and non-random manner. Three ways of chromatin organization are compaction, formation of loops and localization within the nucleus. To study chromatin localization it is most convenient to use the nuclear envelope as a fixed viewpoint. Peripheral chromatin has both been described as silent chromatin, interacting with the nuclear lamina, and active chromatin, interacting with nuclear pore proteins. Current data indicate that the nuclear envelope is a reader as well as a writer of chromatin state, and that its influence is not limited to the nuclear periphery.
Collapse
Affiliation(s)
- Bernike Kalverda
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. ACTA ACUST UNITED AC 2008; 180:51-65. [PMID: 18195101 PMCID: PMC2213611 DOI: 10.1083/jcb.200706060] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The peripheral nuclear lamina, which is largely but not entirely associated with inactive chromatin, is considered to be an important determinant of nuclear structure and gene expression. We present here an inducible system to target a genetic locus to the nuclear lamina in living mammalian cells. Using three-dimensional time-lapse microscopy, we determined that targeting of the locus requires passage through mitosis. Once targeted, the locus remains anchored to the nuclear periphery in interphase as well as in daughter cells after passage through a subsequent mitosis. Upon transcriptional induction, components of the gene expression machinery are recruited to the targeted locus, and we visualized nascent transcripts at the nuclear periphery. The kinetics of transcriptional induction at the nuclear lamina is similar to that observed at an internal nuclear region. This new cell system provides a powerful approach to study the dynamics of gene function at the nuclear periphery in living cells.
Collapse
Affiliation(s)
- R Ileng Kumaran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
39
|
Chi YH, Haller K, Peloponese JM, Jeang KT. Histone Acetyltransferase hALP and Nuclear Membrane Protein hsSUN1 Function in De-condensation of Mitotic Chromosomes. J Biol Chem 2007; 282:27447-27458. [PMID: 17631499 DOI: 10.1074/jbc.m703098200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicated mammalian chromosomes condense to segregate during anaphase, and they de-condense at the conclusion of mitosis. Currently, it is not understood what the factors and events are that specify de-condensation. Here, we demonstrate that chromosome de-condensation needs the function of an inner nuclear membrane (INM) protein hsSUN1 and a membrane-associated histone acetyltransferase (HAT), hALP. We propose that nascently reforming nuclear envelope employs hsSUN1 and hALP to acetylate histones for de-compacting DNA at the end of mitosis.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Kerstin Haller
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Jean-Marie Peloponese
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
40
|
Pathak RU, Rangaraj N, Kallappagoudar S, Mishra K, Mishra RK. Boundary element-associated factor 32B connects chromatin domains to the nuclear matrix. Mol Cell Biol 2007; 27:4796-806. [PMID: 17485444 PMCID: PMC1951503 DOI: 10.1128/mcb.00305-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin domain boundary elements demarcate independently regulated domains of eukaryotic genomes. While a few such boundary sequences have been studied in detail, only a small number of proteins that interact with them have been identified. One such protein is the boundary element-associated factor (BEAF), which binds to the scs' boundary element of Drosophila melanogaster. It is not clear, however, how boundary elements function. In this report we show that BEAF is associated with the nuclear matrix and map the domain required for matrix association to the middle region of the protein. This region contains a predicted coiled-coil domain with several potential sites for posttranslational modification. We demonstrate that the DNA sequences that bind to BEAF in vivo are also associated with the nuclear matrix and colocalize with BEAF. These results suggest that boundary elements may function by tethering chromatin to nuclear architectural components and thereby provide a structural basis for compartmentalization of the genome into functionally independent domains.
Collapse
Affiliation(s)
- Rashmi U Pathak
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | |
Collapse
|
41
|
Stanchescu R, Betts DR, Yekutieli D, Ambros P, Cohen N, Rechavi G, Amariglio N, Trakhtenbrot L. SKY analysis of childhood neural tumors and cell lines demonstrates a susceptibility of aberrant chromosomes to further rearrangements. Cancer Lett 2007; 250:47-52. [PMID: 17084022 DOI: 10.1016/j.canlet.2006.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/23/2006] [Accepted: 09/15/2006] [Indexed: 11/21/2022]
Abstract
Malignant solid tumors are commonly characterized by a large number of complex structural and numerical chromosomal alterations, which often reflect the level of genomic instability and can be associated with disease progression. The aim of this study was to evaluate whether chromosomes that harbor primary aberrations have a higher susceptibility to accumulate further alterations. We used spectral karyotyping (SKY), to compare the individual chromosomal instability of two chromosome types: chromosomes that have a primary aberration and chromosomes without an aberration, in 13 primary childhood neural tumors and seven cell lines. We found that chromosomes that contain a primary aberration are significantly (p-value<0.001) more likely to gain further structural rearrangements or to undergo numerical changes (22.6%, 36 of 159 chromosomes) than chromosomes with no initial aberration (4.9%, 54 of 1099 chromosomes). These results are highly suggestive that aberrant chromosomes in solid tumors have a higher susceptibility to accumulate further rearrangements than "normal" chromosomes.
Collapse
Affiliation(s)
- Racheli Stanchescu
- Department of Pediatric Hemato-Oncology and Cancer Research Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Davis SK, Bardeen CJ. Time-resolved Microscopy of Chromatin In Vitro and In Vivo¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00224.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Abstract
The nuclear envelope (NE) is composed of inner and outer nuclear membranes (INM and ONM, respectively), nuclear pore complexes and an underlying mesh like supportive structure--the lamina. It has long been known that heterochromatin clusters at the nuclear periphery adjacent to the nuclear lamina, hinting that proteins of the lamina may participate in regulation of gene expression. Recent studies on the molecular mechanisms involved show that proteins of the nuclear envelope participate in regulation of transcription on several levels, from direct binding to transcription factors to induction of epigenetic histone modifications. Three INM proteins; lamin B receptor, lamina-associated polypeptide 2beta and emerin, were shown to bind chromatin modifiers and/or transcriptional repressors inducing, at least in one case, histone deacetylation. Emerin and another INM protein, MAN1, have been linked to down-regulation of specific signaling pathways, the retino blastoma 1/E2F MyoD and transforming growth factor beta/bone morphogenic protein, respectively. Therefore, cumulative data suggests that proteins of the nuclear lamina regulate transcription by recruiting chromatin modifiers and transcription factors to the nuclear periphery. In this minireview we describe the recent literature concerning mechanisms of gene repression by proteins of the NE and suggest the hypothesis that the epigenetic "histone code", dictating transcriptional repression, is "written" in part, at the NE by its proteins. Finally, as aberrant gene expression is one of the mechanisms speculated to underlie the newly discovered group of genetic diseases termed nuclear envelopathies/laminopathies, elucidating the repressive role of NE proteins is a major challenge to both researchers and clinicians.
Collapse
Affiliation(s)
- Sigal Shaklai
- Sheba Cancer Research Center and the Institute of Hematology, The Chaim Sheba Medical Center, Tel Hashomer and the Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
44
|
Alverca E, Cuadrado A, Jouve N, Franca S, Moreno Díaz de la Espina S. Telomeric DNA localization on dinoflagellate chromosomes: structural and evolutionary implications. Cytogenet Genome Res 2007; 116:224-31. [PMID: 17317964 DOI: 10.1159/000098191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/21/2006] [Indexed: 12/25/2022] Open
Abstract
Dinoflagellates are eukaryotic microalgae with distinct chromosomes throughout the cell cycle which lack histones and nucleosomes. The molecular organization of these chromosomes is still poorly understood. We have analysed the presence of telomeres in two evolutionarily distant and heterogeneous dinoflagellate species (Prorocentrum micans and Amphidinium carterae) by FISH with a probe containing the Arabidopsis consensus telomeric sequence. Telomere structures were identified at the chromosome ends of both species during interphase and mitosis and were frequently associated with the nuclear envelope. These results identify for the first time telomere structures in dinoflagellate chromosomes, which are formed in the absence of histones. The presence of telomeres supports the linear nature of dinoflagellate chromosomes.
Collapse
Affiliation(s)
- E Alverca
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
45
|
Sharakhova MV, Hammond MP, Lobo NF, Krzywinski J, Unger MF, Hillenmeyer ME, Bruggner RV, Birney E, Collins FH. Update of the Anopheles gambiae PEST genome assembly. Genome Biol 2007; 8:R5. [PMID: 17210077 PMCID: PMC1839121 DOI: 10.1186/gb-2007-8-1-r5] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/24/2006] [Accepted: 01/08/2007] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The genome of Anopheles gambiae, the major vector of malaria, was sequenced and assembled in 2002. This initial genome assembly and analysis made available to the scientific community was complicated by the presence of assembly issues, such as scaffolds with no chromosomal location, no sequence data for the Y chromosome, haplotype polymorphisms resulting in two different genome assemblies in limited regions and contaminating bacterial DNA. RESULTS Polytene chromosome in situ hybridization with cDNA clones was used to place 15 unmapped scaffolds (sizes totaling 5.34 Mbp) in the pericentromeric regions of the chromosomes and oriented a further 9 scaffolds. Additional analysis by in situ hybridization of bacterial artificial chromosome (BAC) clones placed 1.32 Mbp (5 scaffolds) in the physical gaps between scaffolds on euchromatic parts of the chromosomes. The Y chromosome sequence information (0.18 Mbp) remains highly incomplete and fragmented among 55 short scaffolds. Analysis of BAC end sequences showed that 22 inter-scaffold gaps were spanned by BAC clones. Unmapped scaffolds were also aligned to the chromosome assemblies in silico, identifying regions totaling 8.18 Mbp (144 scaffolds) that are probably represented in the genome project by two alternative assemblies. An additional 3.53 Mbp of alternative assembly was identified within mapped scaffolds. Scaffolds comprising 1.97 Mbp (679 small scaffolds) were identified as probably derived from contaminating bacterial DNA. In total, about 33% of previously unmapped sequences were placed on the chromosomes. CONCLUSION This study has used new approaches to improve the physical map and assembly of the A. gambiae genome.
Collapse
Affiliation(s)
- Maria V Sharakhova
- Center for Global Health and Infectious Diseases, University of Notre Dame, Galvin Life Sciences Building, Notre Dame, IN 46556-0369, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Williams RRE, Azuara V, Perry P, Sauer S, Dvorkina M, Jørgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher AG. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 2006; 119:132-40. [PMID: 16371653 DOI: 10.1242/jcs.02727] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Determining how genes are epigenetically regulated to ensure their correct spatial and temporal expression during development is key to our understanding of cell lineage commitment. Here we examined epigenetic changes at an important proneural regulator gene Mash1 (Ascl1), as embryonic stem (ES) cells commit to the neural lineage. In ES cells where the Mash1 gene is transcriptionally repressed, the locus replicated late in S phase and was preferentially positioned at the nuclear periphery with other late-replicating genes (Neurod, Sprr2a). This peripheral location was coupled with low levels of histone H3K9 acetylation at the Mash1 promoter and enhanced H3K27 methylation but surprisingly location was not affected by removal of the Ezh2/Eed HMTase complex or several other chromatin-silencing candidates (G9a, SuV39h-1, Dnmt-1, Dnmt-3a and Dnmt-3b). Upon neural induction however, Mash1 transcription was upregulated (>100-fold), switched its time of replication from late to early in S phase and relocated towards the interior of the nucleus. This spatial repositioning was selective for neural commitment because Mash1 was peripheral in ES-derived mesoderm and other non-neural cell types. A bidirectional analysis of replication timing across a 2 Mb region flanking the Mash1 locus showed that chromatin changes were focused at Mash1. These results suggest that Mash1 is regulated by changes in chromatin structure and location and implicate the nuclear periphery as an important environment for maintaining the undifferentiated state of ES cells.
Collapse
Affiliation(s)
- Ruth R E Williams
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bhattacharya D, Mazumder A, Miriam SA, Shivashankar GV. EGFP-tagged core and linker histones diffuse via distinct mechanisms within living cells. Biophys J 2006; 91:2326-36. [PMID: 16815908 PMCID: PMC1557551 DOI: 10.1529/biophysj.105.079343] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 06/09/2006] [Indexed: 11/18/2022] Open
Abstract
The effect of chromatin organization on EGFP-tagged histone protein dynamics within the cell nucleus has been probed using fluorescence correlation and recovery measurements on single living HeLa cells. Our studies reveal that free fraction of core-particle histones exist as multimers within the cell nucleus whereas the linker histones exist in monomeric forms. The multimeric state of core histones is found to be invariant across mammalian and polytene chromosomes and this is ATP dependent. In contrast, the dynamics of the linker histones exhibits two distinct diffusion timescales corresponding to its transient binding and unbinding to chromatin governed by the tail domain residues. Under conditions of chromatin condensation induced by apoptosis, the free multimeric fraction of core histones is found to become immobile, while the monomeric linker histone mobility is partially reduced. In addition, we observe differences in nuclear colocalization of linker and core particle histones. These results are validated through Brownian dynamics simulation of core and linker histone mobility. Our findings provide a framework to understand the coupling between the state of chromatin assembly and histone protein dynamics that is central to accessing regulatory sites on the genome.
Collapse
|
48
|
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 2006; 38:1005-14. [PMID: 16878134 DOI: 10.1038/ng1852] [Citation(s) in RCA: 427] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 06/30/2006] [Indexed: 01/18/2023]
Abstract
The nuclear lamina binds chromatin in vitro and is thought to function in its organization, but genes that interact with it are unknown. Using an in vivo approach, we identified approximately 500 Drosophila melanogaster genes that interact with B-type lamin (Lam). These genes are transcriptionally silent and late replicating, lack active histone marks and are widely spaced. These factors collectively predict lamin binding behavior, indicating that the nuclear lamina integrates variant and invariant chromatin features. Consistently, proximity of genomic regions to the nuclear lamina is partly conserved between cell types, and induction of gene expression or active histone marks reduces Lam binding. Lam target genes cluster in the genome, and these clusters are coordinately expressed during development. This genome-wide analysis gives clear insight into the nature and dynamic behavior of the genome at the nuclear lamina, and implies that intergenic DNA functions in the global organization of chromatin in the nucleus.
Collapse
Affiliation(s)
- Helen Pickersgill
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Banerjee B, Bhattacharya D, Shivashankar GV. Chromatin structure exhibits spatio-temporal heterogeneity within the cell nucleus. Biophys J 2006; 91:2297-303. [PMID: 16815897 PMCID: PMC1557579 DOI: 10.1529/biophysj.105.079525] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local chromatin compaction undergoes dynamic perturbations to regulate genetic processes. To address this, the direct measurement of the fluidity of chromatin structure is carried out in single live cells using steady-state anisotropy imaging and polarization modulation microscopy. Fluorescently tagged core and linker histones are used to probe different structural aspects of chromatin compaction. A graded spatial heterogeneity in compaction is observed for the chromatin besides the distinct positional ordering of core and linker histones. These spatio-temporal features are maintained by active processes and perturbed during death. With cell cycle, the distribution in compaction heterogeneity continually changes maximizing during M-G1 transition where it displays bimodal behavior. Such measurements of spatio-temporal chromatin fluidity could have broader implications in understanding chromatin remodeling within living cells.
Collapse
Affiliation(s)
- Bidisha Banerjee
- National Centre for Biological Sciences, TIFR, Bangalore-560065, India
| | | | | |
Collapse
|
50
|
Therizols P, Fairhead C, Cabal GG, Genovesio A, Olivo-Marin JC, Dujon B, Fabre E. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. ACTA ACUST UNITED AC 2006; 172:189-99. [PMID: 16418532 PMCID: PMC2063549 DOI: 10.1083/jcb.200505159] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the yeast Saccharomyces cerevisiae that lacks lamins, the nuclear pore complex (NPC) has been proposed to serve a role in chromatin organization. Here, using fluorescence microscopy in living cells, we show that nuclear pore proteins of the Nup84 core complex, Nup84p, Nup145Cp, Nup120p, and Nup133p, serve to anchor telomere XI-L at the nuclear periphery. The integrity of this complex is shown to be required for repression of a URA3 gene inserted in the subtelomeric region of this chromosome end. Furthermore, altering the integrity of this complex decreases the efficiency of repair of a DNA double-strand break (DSB) only when it is generated in the subtelomeric region, even though the repair machinery is functional. These effects are specific to the Nup84 complex. Our observations thus confirm and extend the role played by the NPC, through the Nup84 complex, in the functional organization of chromatin. They also indicate that anchoring of telomeres is essential for efficient repair of DSBs occurring therein and is important for preserving genome integrity.
Collapse
Affiliation(s)
- Pierre Therizols
- Unité de Génétique Moléculaire des Levures (URA 2171 Centre National de la Recherche Scientifique, UFR 927 Université Pierre et Marie Curie), Département Structure et Dynamique des Génomes, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|