1
|
Nathawat R, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Role of the FnIII domain associated with a cell wall-degrading enzyme cellobiosidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:1011-1021. [PMID: 35278018 PMCID: PMC9190976 DOI: 10.1111/mpp.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cellobiosidase (CbsA) is an important secreted virulence factor of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight of rice. CbsA is one of several cell wall-degrading enzymes secreted by Xoo via the type II secretion system (T2SS). CbsA is considered a fundamental virulence factor for vascular pathogenesis. CbsA has an N-terminal glycosyl hydrolase domain and a C-terminal fibronectin type III (FnIII) domain. Interestingly, the secreted form of CbsA lacks the FnIII domain during in planta growth. Here we show that the presence of the FnIII domain inhibits the enzyme activity of CbsA on polysaccharide substrates like carboxymethylcellulose. The FnIII domain is required for the interaction of CbsA with SecB chaperone, and this interaction is crucial for the stability and efficient transport of CbsA across the inner membrane. Deletion of the FnIII domain reduced virulence similar to ΔcbsA Xoo, which corroborates the importance of the FnIII domain in CbsA. Our work elucidates a hitherto unknown function of the FnIII domain in enabling the virulence-promoting activity of CbsA.
Collapse
Affiliation(s)
| | - Roshan V. Maku
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
DBT – National Institute of Animal BiotechnologyHyderabadIndia
| | | | | | - Ramesh V. Sonti
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
Indian Institute of Science Education and Research TirupatiTirupatiIndia
| |
Collapse
|
2
|
Fan TP, Su YH. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava. Mar Genomics 2015; 24 Pt 2:167-75. [PMID: 26232261 DOI: 10.1016/j.margen.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factors (FGFs) are a group of ligands that play multiple roles during development by transducing signals through FGF receptors (FGFRs) to downstream factors. At least 22 FGF ligands and 4 receptors have been identified in vertebrates, while six to eight FGF ligands and a single FGFR are present in invertebrate chordates, such as tunicates and amphioxus. The chordate FGFs can be categorized into at least seven subfamilies, and the members of which expanded during the evolution of early vertebrates. In contrast, only one FGF and two FGFRs have been found in sea urchins. Thus, it is unclear whether the FGF subfamilies duplicated in the lineage leading to the chordates, or sea urchins lost several fgf genes. Analyses of the FGF signaling repertoire in hemichordates, which together with echinoderms form the closest group to the chordates, may provide insights into the evolution of FGF signaling in deuterostomes. In this study, we identified five FGFs and three FGFRs from Ptychodera flava, an indirect-developing hemichordate acorn worm. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Analyses of sequence similarity and protein domain organizations suggested that the sea urchin and hemichordate FGFRs arose from independent lineage-specific duplications. Furthermore, the acorn worm fgf and fgfr genes were demonstrated to be expressed during P. flava embryogenesis. These results set the foundations for further functional studies of FGF signaling in hemichordates and provided insights into the evolutionary history of the FGF repertoire.
Collapse
Affiliation(s)
- Tzu-Pei Fan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsien Su
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, Pagenstecher A, Mösch HU, Essen LO. Interactions by the Fungal Flo11 Adhesin Depend on a Fibronectin Type III-like Adhesin Domain Girdled by Aromatic Bands. Structure 2015; 23:1005-17. [DOI: 10.1016/j.str.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
|
4
|
Martín-García R, de León N, Sharifmoghadam MR, Curto MÁ, Hoya M, Bustos-Sanmamed P, Valdivieso MH. The FN3 and BRCT motifs in the exomer component Chs5p define a conserved module that is necessary and sufficient for its function. Cell Mol Life Sci 2011; 68:2907-17. [PMID: 21113731 PMCID: PMC11114652 DOI: 10.1007/s00018-010-0596-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 11/05/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Chs5p is a component of the exomer, a coat complex required to transport the chitin synthase Chs3p from the trans-Golgi network to the plasma membrane. The Chs5p N-terminal region exhibits fibronectin type III (FN3) and BRCT domains. FN3 domains are present in proteins that mediate adhesion processes, whereas BRCT domains are involved in DNA repair. Several fungi--including Schizosaccharomyces pombe, which has no detectable amounts of chitin--have proteins similar to Chs5p. Here we show that the FN3 and BRCT motifs in Chs5p behave as a module that is necessary and sufficient for Chs5p localization and for cargo delivery. The N-terminal regions of S. cerevisiae Chs5p and S. pombe Cfr1p are interchangeable in terms of Golgi localization, but not in terms of exomer assembly, showing that the conserved function of this module is protein retention in this organelle and that the interaction between the exomer components is organism-specific.
Collapse
Affiliation(s)
- Rebeca Martín-García
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Nagore de León
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mohammad Reza Sharifmoghadam
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Faculty of Veterinary Medicine, Zabol University, Zabol, Iran
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Marta Hoya
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Pilar Bustos-Sanmamed
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lab Anim Res 2011; 27:1-8. [PMID: 21826153 PMCID: PMC3145984 DOI: 10.5625/lar.2011.27.1.1] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 01/26/2023] Open
Abstract
Skin is the most superficial body organ and plays an important role in protecting the body from environmental damage and in forming social relations. With the increase of the aging population in our society, dermatological and cosmetic concerns of skin aging are rapidly increasing. Skin aging is a complex process combined with intrinsic and extrinsic factors. Intrinsic or chronological skin aging results from the passage of time and is influenced by genetic factors. Extrinsic skin aging is mainly determined by UV irradiation, also called photoaging. These two types of aging processes are superimposed on sun-exposed skin, and have a common feature of causing dermal matrix alterations that mostly contribute to the formation of wrinkles, laxity, and fragility of aged skin. The dermal matrix contains extracellular matrix proteins such as collagen, elastin, and proteoglycans that confer the strength and resiliency of skin. Skin aging associated with dermal matrix alterations and atrophy can be caused by cellular senescence of dermal cells like fibroblasts, and decreased synthesis and accelerated degradation of dermal matrix components, especially collagen fibers. Both intrinsic aging and photoaging exert influence during each step of dermal matrix alteration via different mechanisms. Mouse models of skin aging have been extensively developed to elucidate intrinsic aging and photoaging processes, to validate in vitro biochemical data, and to test the effects of pharmacological tools for retarding skin aging because they have the advantages of being genetically similar to humans and are easily available.
Collapse
|
6
|
Makrantonaki E, Zouboulis CC. The skin as a mirror of the aging process in the human organism--state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp Gerontol 2007; 42:879-86. [PMID: 17689905 DOI: 10.1016/j.exger.2007.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 01/01/2023]
Abstract
As our society is growing older, the consequences of aging have begun to gain particular attention. Improvement of quality of life at old age and prevention of age-associated diseases have become the main focus of the aging research. The process of aging in humans is complex and underlies multiple influences, with the probable involvement of heritable and various environmental factors. In particular, hormones are decisively involved in the generation of aging. Over time, important circulating hormones decline due to a reduced secretion of the pituitary, the adrenal glands and the gonads or due to an intercurrent disease. Among them, serum levels of growth factors and sexual steroids show significant aging-associated changes. Within the scope of the Explorative Project 'Genetic aetiology of human longevity' supported by the German National Genome Research Network 2 (NGFN-2) an in vitro model of human hormonal aging has been developed. Human SZ95 sebocytes were maintained under a hormone-substituted environment consisting of growth factors and sexual steroids in concentrations corresponding to those circulating in 20- and in 60-year-old women. Eight hundred and ninety-nine genes showed a differential expression in SZ95 sebocytes maintained under the 20- and 60-year-old hormone mixture, respectively. Among them genes were regulated which are involved in biological processes which are all hallmarks of aging. The most significantly altered signaling pathway identified was that of the transforming growth factor-beta (TGF-beta). A disturbed function of this cascade has been associated with tumorigenesis, i.e. in pancreatic, prostate, intestine, breast, and uterine cancer. Interestingly, genes expressed in signaling pathways operative in age-associated diseases such as Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and amyotrophic lateral sclerosis (ALS) were also identified. These data demonstrate that skin and its appendages may represent an adequate model for aging research. Hormones interact in a complex fashion, and aging may be partly attributed to the changes in their circulating blood levels. Furthermore, a disturbed hormone status may partially act towards the manifestation of neurodegenerative diseases. Thus, these results could be a basis for an integrated and interdisciplinary approach to the analysis of the aging process.
Collapse
Affiliation(s)
- Evgenia Makrantonaki
- Departments of Dermatology and Immunology, Dessau Medical Center, Auenweg 38, 06847 Dessau, Germany
| | | |
Collapse
|
7
|
Lightowlers MW, Gauci CG, Chow C, Drew DR, Gauci SM, Heath DD, Jackson DC, Dadley-Moore DL, Read AJ. Molecular and genetic characterisation of the host-protective oncosphere antigens of taeniid cestode parasites. Int J Parasitol 2004; 33:1207-17. [PMID: 13678636 DOI: 10.1016/s0020-7519(03)00174-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Highly effective recombinant vaccines have been developed against Taenia ovis infection in sheep, Taenia saginata infection in cattle, Taenia solium infection in pigs, Echinococcus granulosus and Echinococcus multilocularis infections in a variety of intermediate host species. These vaccines have been based on the identification and expression in Escherichia coli of antigens derived from the oncosphere life cycle stage, contained within the parasites' eggs. Investigation of the molecular aspects of these proteins and the genes encoding them have revealed a number of common features, including the presence of a predicted secretory signal sequence, and one or two copies of a fibronectin type III domain, each encoded by separate exons within the associated gene. Evidence has been obtained to confirm glycosylation of some of these antigens. Ongoing investigations will shed light on the biological roles played by the proteins within the parasites and the mechanism by which they make the parasites vulnerable to vaccine-induced immune responses.
Collapse
Affiliation(s)
- M W Lightowlers
- The University of Melbourne, Veterinary Clinical Centre, 250 Princes Highway, Victoria 3030, Werribee, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lightowlers MW, Colebrook AL, Gauci CG, Gauci SM, Kyngdon CT, Monkhouse JL, Vallejo Rodriquez C, Read AJ, Rolfe RA, Sato C. Vaccination against cestode parasites: anti-helminth vaccines that work and why. Vet Parasitol 2003; 115:83-123. [PMID: 12878418 DOI: 10.1016/s0304-4017(03)00202-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly effective recombinant vaccines have been developed against the helminth parasites Taenia ovis, Taenia saginata and Echinococcus granulosus. These vaccines indicate that it is possible to achieve a reliable, high level of protection against a complex metazoan parasite using defined recombinant antigens. However, the effectiveness of the vaccines against the taeniid cestodes stands in contrast to the more limited successes which characterise attempts to develop vaccines against other platyhelminth or nematode parasites. This review examines the features of the host-parasite relationships among the taeniid cestodes which have formed the basis for vaccine development. Particular consideration is given to the methodologies that have been used in making the cestode vaccines that might be of interest to researchers working on vaccination against other helminths. In developing the cestode vaccines, antigens from the parasites' infective larval stage contained within the egg (oncosphere) were identified as having the potential to induce high levels of protection in vaccinated hosts. A series of vaccination trials with antigen fractions, and associated immunological analyses, identified individual protective antigens or fractions. These were cloned from cDNA and the recombinant proteins expressed in Escherichia coli. This strategy was independently successful in developing vaccines against T. ovis and E. granulosus. Identification of protective antigens for these species enabled rapid identification, cloning and expression of their homologues in related species and thereby the development of effective vaccines against T. saginata, E. multilocularis and, more recently, T. solium. The T. saginata vaccine provides an excellent example of the use of two antigen components, each of which were not protective when used individually, but when combined they induce a reliable, high level of protection. One important contributing factor to the success of vaccine development for the taeniid cestodes was the concentration on studies seeking to identify native host-protective antigens, before the adoption of recombinant methodologies. The cestode vaccines are being developed towards practical (commercial) application. The high level of efficacy of the vaccines against T. solium cysticercosis and hydatid disease suggests that they would be effective also if used directly in humans.
Collapse
Affiliation(s)
- M W Lightowlers
- The University of Melbourne, Veterinary Clinical Centre, Vic. 3030, Werribee, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Carotti C, Ferrario L, Roncero C, Valdivieso MH, Duran A, Popolo L. Maintenance of cell integrity in the gas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast 2002; 19:1113-24. [PMID: 12237852 DOI: 10.1002/yea.905] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chitin synthase III is essential for the increase in chitin level and for cell integrity in cells lacking Gas1p, a beta(1,3)-glucanosyltransferase. In order to discover whether the upregulation of chitin synthesis proceeds through the canonical transport and activation pathway of Chs3p or through an alternative one, here we studied the effects of the inactivation of the GAS1 and CHS4-5-6-7 genes. All the double-null mutants showed a temperature-sensitive cell lysis phenotype that could be suppressed by the presence of an osmotic stabilizer. In liquid YEPD at 30 degrees C, chs4 delta gas1 delta, chs5 delta gas1 delta, chs6 deltagas1 delta and chs7 delta gas1 delta mutants were unable to grow, whereas they grew very slowly in minimal medium and showed low viability. High osmolarity suppressed the defective phenotype and restored growth. In chs4 gas1, chs5 gas1 and chs7 gas1, chitin levels did not increase and were reduced to only 10%, while in chs6 gas1 the value of gas1 was reduced to 20-40%. To investigate at which level the upregulation of chitin synthesis could occur, mRNA levels were monitored. The expression of CHS4-5-6-7 did not change significantly in gas1 delta. In strains expressing HA-tagged forms, the localization of Chs3p and Chs5p was examined. In the gas1 mutant the fluorescence pattern was affected and the proteins appeared abnormally present in the bud. The results indicate that: (a) the function of the CHS4-7 genes is required for chitin hyperaccumulation in gas1 mutant and for cell integrity; (b) homologous genes do not replace their function; (c) the regulation of CHS4-7 genes does not occur at transcriptional level. Control of the position of chitin synthesis could be important in protecting the bud from lysis.
Collapse
Affiliation(s)
- Cristina Carotti
- Università degli Studi di Milano, Dipartimento di Fisiologia e Biochimica Generali, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Jee JG, Ikegami T, Hashimoto M, Kawabata T, Ikeguchi M, Watanabe T, Shirakawa M. Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1. J Biol Chem 2002; 277:1388-97. [PMID: 11600504 DOI: 10.1074/jbc.m109726200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growing evidence suggests that horizontal gene transfer plays an integral role in the evolution of bacterial genomes. One of the debated examples of horizontal gene transfer from animal to prokaryote is the fibronectin type III domain (FnIIID). Certain extracellular proteins of soil bacteria contain an unusual cluster of FnIIIDs, which show sequence similarity to those of animals and are likely to have been acquired horizontally from animals. Here we report the solution structure of the FnIIID of chitinase A1 from Bacillus circulans WL-12. To the best of our knowledge, this is the first tertiary structure to be reported for an FnIIID from a bacterial protein. The structure of the domain shows significant similarity to FnIIIDs from animal proteins. Sequence comparisons with FnIIIDs from other soil bacteria proteins show that the core-forming residues are highly conserved and, thus, are under strong evolutionary pressure. Striking similarities in the tertiary structures of bacterial FnIIIDs and their mammalian counterparts may support the hypothesis that the evolution of the FnIIID in bacterial carbohydrases occurred horizontally. The total lack of surface-exposed aromatic residues also suggests that the role of this FnIIID is different from those of other bacterial beta-sandwich domains, which function as carbohydrate-binding modules.
Collapse
Affiliation(s)
- Jun-Goo Jee
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Pendland JC, Boucias DG. Comparative analysis of the binding of antibodies prepared against the insect Spodoptera exigua and against the mycopathogen Nomuraea rileyi. J Invertebr Pathol 2000; 75:107-16. [PMID: 10772323 DOI: 10.1006/jipa.1999.4915] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyclonal antibodies were produced in mice against Spodoptera exigua (beet armyworm) larval hemolymph and hemocytes and against cell wall surfaces of hyphal bodies and hyphae of the entomopathogenic hyphomycete Nomuraea rileyi. In addition to exhibiting strong activity against their original antigenic substrates, all of the antibodies cross-react extensively with other substrates. The hemolymph antibody binds to hemocytes and vice versa, and both antibodies cross-react to the insect fat body basement membrane (extracellular matrix (ECM) and to N. rileyi and Beauveria bassiana (another entomopathogenic fungus) cell wall surfaces (ECM). Likewise, the anti-fungal antibodies cross-react with S. exigua hemolymph and hemocytes, especially the granules that may contain ECM components, and with fat body basement membrane. These cross-reactivities are specific as indicated by negative controls in the microscopy and Western blotting assays. Parallel labeling experiments using Con A suggest that the reactive epitopes contain mannose; however, none of the antibodies bind to mannose residues of nonentomopathogenic Candida albicans or Saccharomyces cerevisiae yeast cells. Thus, these cross-reactivities suggest that the host mimicry expressed by surface components of entomopathogenic fungi represents an important pathogenic determinant.
Collapse
Affiliation(s)
- J C Pendland
- University of Florida, Entomology and Nematology Department, Gainesville 32611-0620, USA
| | | |
Collapse
|
12
|
Aravind L, Subramanian G. Origin of multicellular eukaryotes - insights from proteome comparisons. Curr Opin Genet Dev 1999; 9:688-94. [PMID: 10607613 DOI: 10.1016/s0959-437x(99)00028-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The complete genomes of the yeast Saccharomyces cerevisiae and the nematode worm Caenorhabditis elegans have recently become available allowing the comparison of the complete protein sets of a unicellular and multicellular eukaryote for the first time. These comparisons reveal some striking trends in terms of expansions or extensive shuffling of specific domains that are involved in regulatory functions and signaling. Similar comparisons with the available sequence data from the plant Arabidopsis thaliana produce consistent results. These observations have provided useful insights regarding the origin of multicellular organisms.
Collapse
Affiliation(s)
- L Aravind
- Department of Biology, Texas A&M University, College Station, 77843, USA.
| | | |
Collapse
|
13
|
Mian IS, Moser MJ, Holley WR, Chatterjee A. Statistical modelling and phylogenetic analysis of a deaminase domain. J Comput Biol 1998; 5:57-72. [PMID: 9541871 DOI: 10.1089/cmb.1998.5.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deamination reactions are catalyzed by a variety of enzymes including those involved in nucleoside/nucleotide metabolism and cytosine to uracil (C-->U) and adenosine to inosine (A-->I) mRNA editing. The active site of the deaminase (DM) domain in these enzymes contains a conserved histidine (or rarely cysteine), two cysteines and a glutamate proposed to act as a proton shuttle during deamination. Here, a statistical model, a hidden Markov model (HMM), of the DM domain has been created which identifies currently known DM domains and suggests new DM domains in viral, bacterial and eucaryotic proteins. However, no DM domains were identified in the currently predicted proteins from the archaeon Methanococcus jannaschii and possible causes for, and a potential means to ameliorate this situation are discussed. In some of the newly identified DM domains, the glutamate is changed to a residue that could not function as a proton shuttle and in one instance (Mus musculus spermatid protein TENR) the cysteines are also changed to lysine and serine. These may be non-competent DM domains able to bind but not act upon their substrate. Phylogenetic analysis using an HMM-generated alignment of DM domains reveals three branches with clear substructure in each branch. The results suggest DM domains that are candidates for yeast, platyhelminth, plant and mammalian C-->U and A-->I mRNA editing enzymes. Some bacterial and eucaryotic DM domains form distinct branches in the phylogenetic tree suggesting the existence of common, novel substrates.
Collapse
Affiliation(s)
- I S Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Computational analysis of the Fanconi anemia (FA) complementation group A protein suggests that it contains a peroxidase domain. FA proteins may be part of a general mechanism that protects cells from oxidative damage.
Collapse
Affiliation(s)
- I S Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
15
|
Abstract
Molecules involved in cell adhesion processes are often both structurally and functionally modular, with subdomains that are members of large protein families. Recently, high-resolution structures have been determined for representative members of many of these families including fragments of integrins, cadherins, fibronectin-like domains, and immunoglobulin-like domains. These structures have enhanced our understanding of cell adhesion processes at several levels. In almost all cases, ligand-binding sites have been visualized and provide insight into how these molecules mediate biologically important interactions. Metal-binding sites have been identified and characterized, allowing assessment of the role of bound ions in cell adhesion processes. Many of these structures serve as templates for modeling homologous domains in other proteins or, when the structure of a fragment consisting of more than one domain is determined, the structure of multidomain arrays of homologous domains. Knowledge of atomic structure also allows rational design of drugs that either mimic or target specific binding sites. In many cases, high-resolution structures have revealed unexpected relationships that pose questions about the evolutionary origin of specific domains. This review briefly describes several recently determined structures of cell adhesion molecules, summarizes some of the main results of each structure, and highlights common features of different systems.
Collapse
Affiliation(s)
- D J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
16
|
Krogh A. An introduction to hidden Markov models for biological sequences. COMPUTATIONAL METHODS IN MOLECULAR BIOLOGY 1998. [DOI: 10.1016/s0167-7306(08)60461-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Moser MJ, Holley WR, Chatterjee A, Mian IS. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 1997; 25:5110-8. [PMID: 9396823 PMCID: PMC147149 DOI: 10.1093/nar/25.24.5110] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prior sequence analysis studies have suggested that bacterial ribonuclease (RNase) Ds comprise a complete domain that is found also in Homo sapiens polymyositis-scleroderma overlap syndrome 100 kDa autoantigen and Werner syndrome protein. This RNase D 3'-->5' exoribonuclease domain was predicted to have a structure and mechanism of action similar to the 3'-->5' exodeoxyibonuclease (proofreading) domain of DNA polymerases. Here, hidden Markov model (HMM) and phylogenetic studies have been used to identify and characterise other sequences that may possess this exonuclease domain. Results indicate that it is also present in the RNase T family; Borrelia burgdorferi P93 protein, an immunodominant antigen in Lyme disease; bacteriophage T4 dexA and Escherichia coli exonuclease I, processive 3'-->5' exodeoxyribonucleases that degrade single-stranded DNA; Bacillus subtilis dinG, a probable helicase involved in DNA repair and possibly replication, and peptide synthase 1; Saccharomyces cerevisiae Pab1p-dependent poly(A) nuclease PAN2 subunit, required for shortening mRNA poly(A) tails; Caenorhabditis elegans and Mus musculus CAF1, transcription factor CCR4-associated factor 1; Xenopus laevis XPMC2, prevention of mitotic catastrophe in fission yeast; Drosophila melanogaster egalitarian, oocyte specification and axis determination, and exuperantia, establishment of oocyte polarity; H.sapiens HEM45, expressed in tumour cell lines and uterus and regulated by oestrogen; and 31 open reading frames including one in Methanococcus jannaschii . Examination of a multiple sequence alignment and two three-dimensional structures of proofreading domains has allowed definition of the core sequence, structural and functional elements of this exonuclease domain.
Collapse
Affiliation(s)
- M J Moser
- Life Sciences Division (Mail Stop 29-100), Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
18
|
Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 1997; 25:4626-38. [PMID: 9358175 PMCID: PMC147097 DOI: 10.1093/nar/25.22.4626] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The LAGLIDADG and HNH families of site-specific DNA endonucleases encoded by viruses, bacteriophages as well as archaeal, eucaryotic nuclear and organellar genomes are characterized by the sequence motifs 'LAGLIDADG' and 'HNH', respectively. These endonucleases have been shown to occur in different environments: LAGLIDADG endonucleases are found in inteins, archaeal and group I introns and as free standing open reading frames (ORFs); HNH endonucleases occur in group I and group II introns and as ORFs. Here, statistical models (hidden Markov models, HMMs) that encompass both the conserved motifs and more variable regions of these families have been created and employed to characterize known and potential new family members. A number of new, putative LAGLIDADG and HNH endonucleases have been identified including an intein-encoded HNH sequence. Analysis of an HMM-generated multiple alignment of 130 LAGLIDADG family members and the three-dimensional structure of the I- Cre I endonuclease has enabled definition of the core elements of the repeated domain (approximately 90 residues) that is present in this family of proteins. A conserved negatively charged residue is proposed to be involved in catalysis. Phylogenetic analysis of the two families indicates a lack of exchange of endonucleases between different mobile elements (environments) and between hosts from different phylogenetic kingdoms. However, there does appear to have been considerable exchange of endonuclease domains amongst elements of the same type. Such events are suggested to be important for the formation of elements of new specficity.
Collapse
Affiliation(s)
- J Z Dalgaard
- NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, PO Box B, Building 549, Room 154, Frederick, MD 21702-1202, USA.
| | | | | | | | | | | |
Collapse
|