1
|
Chung CY, Shigenobu S. Reproductive constraint in the social aphid Ceratovacuna japonica: Sterility regulation in the soldier caste of a viviparous insect. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103756. [PMID: 35367587 DOI: 10.1016/j.ibmb.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Differentiation of the non-reproductive caste is a unique feature of eusocial insects. Apoptosis in oocytes plays a major role in constraining the reproductivity of the eusocial insects including bees, ants, and termites. However, the regulation of reproductive constraint in non-reproductives of primitively eusocial insects other than hymenopterans and blattodeans is almost unknown. Here, we investigated the soldier sterility in a hemipteran insect, the social aphid Ceratovacuna japonica. We compared the gonads of soldiers, that are completely sterile, with those of reproductives in their viviparous development. We found that soldiers possess a pair of ovaries and the same number of germaria as reproductives, but soldiers' ovarioles were small and lacking gastrulating embryos. Unlike in most model social insects, the staining of cleaved Caspase-3 showed apoptosis in the maternal nutritive cells, rather in the oocyte, of soldier ovaries. In addition, the ubiquitous C. japonica vasa1 and piwi2a expression indicates the developmental failure of embryos in soldier ovaries. The absence of posterior nos1, an insect posterior determinant, indicates deficient posterior patterning in soldier ovarioles. Our findings suggest a different mode of reproductive constraint, which regulates both oogenesis and embryogenesis in a viviparous insect ovary. This is the first report of the reproductive constraint in a viviparous social insect at the molecular level.
Collapse
Affiliation(s)
- Chen-Yo Chung
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Aichi, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan.
| |
Collapse
|
2
|
McFann S. Introduction to special issue: Biophysics of development. Biophys J 2021; 120:E1-E5. [PMID: 34555322 DOI: 10.1016/j.bpj.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sarah McFann
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
3
|
Chipman AD. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Curr Top Dev Biol 2021; 139:297-324. [PMID: 32450964 DOI: 10.1016/bs.ctdb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila blastoderm gene regulatory network is one of the best studied networks in biology. It is composed of a series of tiered sub-networks that act sequentially to generate a primary segmental pattern. Many of these sub-networks have been studied in other arthropods, allowing us to reconstruct how each of them evolved over the transition from the arthropod ancestor to the situation seen in Drosophila today. I trace the evolution of each of these networks, showing how some of them have been modified significantly in Drosophila relative to the ancestral state while others are largely conserved across evolutionary timescales. I compare the putative ancestral arthropod segmentation network with that found in Drosophila and discuss how and why it has been modified throughout evolution, and to what extent this modification is unusual.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
4
|
Chung CY, Hsiao YM, Huang TY, Chang TH, Chang CC. Germline expression of the hunchback orthologues in the asexual viviparous aphids: a conserved feature within the Aphididae. INSECT MOLECULAR BIOLOGY 2018; 27:752-765. [PMID: 29892979 DOI: 10.1111/imb.12514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In animals, differentiation of germline from soma usually takes place during embryogenesis. Genes and their products that are preferentially expressed in the embryonic germ cells are regarded as candidates for maintaining germline fate or promoting germline identity. In Drosophila, for example, the protein encoded by the germline gene vasa is specifically restricted to the germ cells, while products of the gap gene hunchback (hb), a somatic gene, are preferentially expressed in the neuroblasts. In this study, we report the expression of both messenger RNA and protein encoded by Aphb, an hb orthologue in the asexual viviparous pea aphid Acyrthosiphon pisum, in germ cells as well as in neuroblasts. We infer that expression of Aphb messenger RNA in the germ cells during the formation of germaria is required for the anterior localization of Aphb in the protruding oocytes. Germarial expression and anterior localization of ApKrüppel was also identified but, unlike Aphb, its expression was not detected in the migrating germ cells. Very similar patterns of hb expression were also identified in the green peach aphid Myzus persicae, suggesting that germline expression of hb is conserved within the Aphididae. To date, this pattern of hb germline expression has not been reported in other insects.
Collapse
Affiliation(s)
- C-Y Chung
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-M Hsiao
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - T-Y Huang
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - T-H Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - C-C Chang
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Nakao H, Takasu Y. Complexities in Bombyx germ cell formation process revealed by Bm-nosO (a Bombyx homolog of nanos) knockout. Dev Biol 2018; 445:29-36. [PMID: 30367845 DOI: 10.1016/j.ydbio.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022]
Abstract
Inheritance (sequestration of a localized determinant: germplasm) and zygotic induction are two modes of metazoan primordial germ cell (PGC) specification. vasa and nanos homologs are evolutionarily conserved germline marker genes that have been used to examine the ontogeny of germ cells in various animals. In the lepidopteran insect Bombyx mori, although the lack of vasa homolog (BmVLG) protein localization as well as microscopic observation suggested the lack of germplasm, classical embryo manipulation studies and the localization pattern of Bm-nosO (one of the four nanos genes in Bombyx) maternal mRNA in the egg raised the possibility that an inheritance mode is operating in Bombyx. Here, we generated Bm-nosO knockouts to examine whether the localized mRNA acts as a localized germ cell determinant. Contrary to our expectations, Bm-nosO knockout lines could be established. However, these lines frequently produced abnormal eggs, which failed to hatch, to various extent depending on the individuals. We also found that Bm-nosO positively regulated BmVLG expression at least during embryonic stage, directly or indirectly, indicating that these genes were on the same developmental pathway for germ cell formation in Bombyx. These results suggest that these conserved genes are concerned with stable germ cell production. On the other hand, from the aspect of BmVLG as a PGC marker, we showed that maternal Bm-nosO product(s) as well as early zygotic Bm-nosO activity were redundantly involved in PGC specification; elimination of both maternal and zygotic gene activities (as in knockout lines) resulted in the apparent lack of PGCs, indicating that an inheritance mechanism indeed operates in Bombyx. This, however, together with the fact that germ cells are produced at all in Bm-nosO knockout lines, also suggests the possibility that, in Bombyx, not only this inheritance mechanism but also an inductive mechanism acts in concert to form germ cells or that loss of early PGCs are compensated for by germline regeneration: mechanisms that could enable the evolution of preformation. Thus, Bombyx could serve as an important organism in understanding the evolution of germ cell formation mechanisms; transition between preformation and inductive modes.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yoko Takasu
- Silk Materials Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
6
|
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci 2018; 75:1929-1946. [PMID: 29397397 PMCID: PMC11105394 DOI: 10.1007/s00018-018-2766-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.
Collapse
Affiliation(s)
- Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Paco Hulpiau
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
7
|
Fischer AHL, Pang K, Henry JQ, Martindale MQ. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 2014; 5:4. [PMID: 24485336 PMCID: PMC3909359 DOI: 10.1186/2041-9139-5-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND An important question in experimental embryology is to understand how the developmental potential responsible for the generation of distinct cell types is spatially segregated over developmental time. Classical embryological work showed that ctenophores, a group of gelatinous marine invertebrates that arose early in animal evolution, display a highly stereotyped pattern of early development and a precocious specification of blastomere fates. Here we investigate the role of autonomous cell specification and the developmental timing of two distinct ctenophore cell types (motile compound comb-plate-like cilia and light-emitting photocytes) in embryos of the lobate ctenophore, Mnemiopsis leidyi. RESULTS In Mnemiopsis, 9 h after fertilization, comb plate cilia differentiate into derivatives of the E lineage, while the bioluminescent capability begins in derivatives of the M lineage. Arresting cleavage with cytochalasin B at the 1-, 2- or 4-cell stage does not result in blastomere death; however, no visible differentiation of the comb-plate-like cilia or bioluminescence was observed. Cleavage arrest at the 8- or 16-cell stage, in contrast, results in the expression of both differentiation products. Fate-mapping experiments indicate that only the lineages of cells that normally express these markers in an autonomous fashion during normal development express these traits in cleavage-arrested 8- and 16-cell stage embryos. Lineages that form comb plates in a non-autonomous fashion (derivatives of the M lineage) do not. Timed actinomycin D and puromycin treatments show that transcription and translation are required for comb formation and suggest that the segregated material might be necessary for activation of the appropriate genes. Interestingly, even in the absence of cytokinesis, differentiation markers appear to be activated at the correct times. Treatments with a DNA synthesis inhibitor, aphidicolin, show that the number of nuclear divisions, and perhaps the DNA to cytoplasmic ratio, are critical for the appearance of lineage-specific differentiation. CONCLUSION Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution.
Collapse
Affiliation(s)
- Antje HL Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory Heidelberg, Meyerhof Strasse 1, Heidelberg 69117, Germany
- current address: Molecular and Cell Biology Department, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
- current address: Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Jonathan Q Henry
- Department of Cell and Structural Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, Univ. Florida, 9505 Oceanshore Blvd, St, Augustine, FL 32080, USA
| |
Collapse
|
8
|
Chang CC, Hsiao YM, Huang TY, Cook CE, Shigenobu S, Chang TH. Noncanonical expression of caudal during early embryogenesis in the pea aphid Acyrthosiphon pisum: maternal cad-driven posterior development is not conserved. INSECT MOLECULAR BIOLOGY 2013; 22:442-455. [PMID: 23683148 DOI: 10.1111/imb.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previously we identified anterior localization of hunchback (Aphb) mRNA in oocytes and early embryos of the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, suggesting that the breaking of anterior asymmetry in the oocytes leads to the formation of the anterior axis in embryos. In order to study posterior development in the asexual pea aphid, we cloned and analysed the developmental expression of caudal (Apcad), a posterior gene highly conserved in many animal phyla. We found that transcripts of Apcad were not detected in germaria, oocytes and embryos prior to the formation of the blastoderm in the asexual (viviparous) pea aphid. This unusual expression pattern differs from that of the existing insect models, including long- and short-germ insects, where maternal cad mRNA is passed to the early embryos and forms a posterior-anterior gradient. The first detectable Apcad expression occurred in the newly formed primordial germ cells and their adjacent blastodermal cells during late blastulation. From gastrulation onward, and as in other insects, Apcad mRNA is restricted to the posteriormost region of the germ band. Similarly, in the sexual (oviparous) oocytes we were able to identify anterior localization of Aphb mRNA but posterior localization of Apcad was not detected. This suggests that cad-driven posterior development is not conserved during early embryogenesis in asexual and sexual pea aphids.
Collapse
Affiliation(s)
- C-C Chang
- Laboratory for Genetics and Development, Department of Entomology/Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
9
|
Kanska J, Frank U. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci 2013; 126:3192-203. [PMID: 23659997 DOI: 10.1242/jcs.127233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.
Collapse
Affiliation(s)
- Justyna Kanska
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | | |
Collapse
|
10
|
Nakao H. Anterior and posterior centers jointly regulate Bombyx embryo body segmentation. Dev Biol 2012; 371:293-301. [DOI: 10.1016/j.ydbio.2012.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
|
11
|
Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 2012; 364:236-48. [DOI: 10.1016/j.ydbio.2012.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/11/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023]
|
12
|
Schmitt-Engel C, Cerny AC, Schoppmeier M. A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol 2012; 364:224-35. [DOI: 10.1016/j.ydbio.2012.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/09/2012] [Accepted: 01/20/2012] [Indexed: 11/15/2022]
|
13
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|
14
|
Lynch JA, Ozüak O, Khila A, Abouheif E, Desplan C, Roth S. The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the Holometabola. PLoS Genet 2011; 7:e1002029. [PMID: 21552321 PMCID: PMC3084197 DOI: 10.1371/journal.pgen.1002029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/02/2011] [Indexed: 12/19/2022] Open
Abstract
The establishment of the germline is a critical, yet surprisingly evolutionarily labile, event in the development of sexually reproducing animals. In the fly Drosophila, germ cells acquire their fate early during development through the inheritance of the germ plasm, a specialized maternal cytoplasm localized at the posterior pole of the oocyte. The gene oskar (osk) is both necessary and sufficient for assembling this substance. Both maternal germ plasm and oskar are evolutionary novelties within the insects, as the germline is specified by zygotic induction in basally branching insects, and osk has until now only been detected in dipterans. In order to understand the origin of these evolutionary novelties, we used comparative genomics, parental RNAi, and gene expression analyses in multiple insect species. We have found that the origin of osk and its role in specifying the germline coincided with the innovation of maternal germ plasm and pole cells at the base of the holometabolous insects and that losses of osk are correlated with changes in germline determination strategies within the Holometabola. Our results indicate that the invention of the novel gene osk was a key innovation that allowed the transition from the ancestral late zygotic mode of germline induction to a maternally controlled establishment of the germline found in many holometabolous insect species. We propose that the ancestral role of osk was to connect an upstream network ancestrally involved in mRNA localization and translational control to a downstream regulatory network ancestrally involved in executing the germ cell program.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Lynch JA, Desplan C. Novel modes of localization and function of nanos in the wasp Nasonia. Development 2010; 137:3813-21. [PMID: 20929949 DOI: 10.1242/dev.054213] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
16
|
Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM. Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:267-79. [PMID: 20095031 DOI: 10.1002/jez.b.21336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Members of the Vasa and Nanos gene families are important for the specification and development of the germline in diverse animals. Here, we determine spatial and temporal expression of Vasa and Nanos to investigate germline development in the vetigastropod Haliotis asinina. This is the first time these genes have been examined in an equally cleaving lophotrochozoan species. We find that HasVasa and HasNanos have largely overlapping, but not identical, expression patterns during embryonic and larval development, with both being maternally expressed and localized to the micromere cell lineages during cleavage. As embryonic development continues, HasVasa and HasNanos become progressively more enriched in the dorsal quadrant of the embryo. By the trochophore stage, both HasVasa and HasNanos are expressed in the putative mesodermal bands of the larva. This differs from the unequally cleaving gastropod Illyanasa obsoleta, in which IoVasa and IoNanos expression is detectable only in the early embryo and not during gastrulation and larval development. Our results suggest that the H. asinina germline arises from the 4d cell lineage and that primordial germ cells (PGCs) are not specified exclusively by maternally inherited determinants (preformation). As such, we infer that inductive signals (epigenesis) play an important role in specifying PGCs in H. asinina. We hypothesize that HasVasa is expressed in a population of undifferentiated multipotent cells, from which the PGCs are segregated later during development.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
17
|
Chipman AD. Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 2010; 32:60-70. [PMID: 20020480 DOI: 10.1002/bies.200900130] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Different sources of data on the evolution of segmentation lead to very different conclusions. Molecular similarities in the developmental pathways generating a segmented body plan tend to suggest a segmented common ancestor for all bilaterally symmetrical animals. Data from paleontology and comparative morphology suggest that this is unlikely. A possible solution to this conundrum is that throughout evolution there was a parallel co-option of gene regulatory networks that had conserved ancestral roles in determining body axes and in elongating the anterior-posterior axis. Inherent properties in some of these networks made them easily recruitable for generating repeated patterns and for determining segmental boundaries. Phyla where this process happened are among the most successful in the animal kingdom, as the modular nature of the segmental body organization allowed them to diverge and radiate into a bewildering array of variations on a common theme.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Evolution, Systematics and Ecology, The Hebrew University of Jerusalem, Givat Ram, Israel.
| |
Collapse
|
18
|
Huang TY, Cook CE, Davis GK, Shigenobu S, Chen RPY, Chang CC. Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:75-85. [PMID: 20482641 DOI: 10.1111/j.1365-2583.2009.00940.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the dipteran Drosophila, the genes bicoid and hunchback work synergistically to pattern the anterior blastoderm during embryogenesis. bicoid, however, appears to be an innovation of the higher Diptera. Hence, in some non-dipteran insects, anterior specification instead relies on a synergistic interaction between maternally transcribed hunchback and orthodenticle. Here we describe how orthologues of hunchback and orthodenticle are expressed during oogenesis and embryogenesis in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum. A. pisum hunchback (Aphb) mRNA is localized to the anterior pole in developing oocytes and early embryos prior to blastoderm formation - a pattern strongly reminiscent of bicoid localization in Drosophila. A. pisum orthodenticle (Apotd), on the other hand, is not expressed prior to gastrulation, suggesting that it is the asymmetric localization of Aphb, rather than synergy between Aphb and Apotd, that regulates anterior specification in asexual pea aphids.
Collapse
Affiliation(s)
- T-Y Huang
- Department of Entomology/Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Rosenberg MI, Lynch JA, Desplan C. Heads and tails: evolution of antero-posterior patterning in insects. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:333-42. [PMID: 18976722 DOI: 10.1016/j.bbagrm.2008.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
In spite of their varied appearances, insects share a common body plan whose layout is established by patterning genes during embryogenesis. We understand in great molecular detail how the Drosophila embryo patterns its segments. However, Drosophila has a type of embryogenesis that is highly derived and varies extensively as compared to most insects. Therefore, the study of other insects is invaluable for piecing together how the ancestor of all insects established its segmented body plan, and how this process can be plastic during evolution. In this review, we discuss the evolution of Antero-Posterior (A-P) patterning mechanisms in insects. We first describe two distinct modes of insect development - long and short germ development - and how these two modes of patterning are achieved. We then summarize how A-P patterning occurs in the long-germ Drosophila, where most of our knowledge comes from, and in the well-studied short-germ insect, Tribolium. Finally, using examples from other insects, we highlight differences in patterns of expression, which suggest foci of evolutionary change.
Collapse
|
21
|
Zhao G, Chen K, Yao Q, Wang W. Cloning and characterization of nanos gene in silkworm Bombyx mori. J Genet Genomics 2008; 35:77-83. [PMID: 18407054 DOI: 10.1016/s1673-8527(08)60012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 11/15/2022]
Abstract
Gene nanos is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nanos-related genes is associated with the germ line in a broad variety of other taxa. In this study, the 5'-RACE method and the in silico cloning method are used to isolate the new nanos-like gene of Bombyx mori and the gene obtained is analyzed with bioinformatics tools. The putative protein is expressed in Escherichia coli and the antiserum has been produced in New Zealand white rabbits. The result shows that the nanos cDNA is 1,913 bp in full length and contains a 954 bp open reading frame. The deduced protein has 317 amino acid residues, with a predicted molecular weight of 35 kDa, isoelectric point of 5. 38, and contains a conserved nanos RNA binding domain. The conserved region of the deduced protein shares 73% homology with the nanos protein conserved region of Honeybee (Apis mellifera). This gene has been registered in the GenBank under the accession number EF647589. One encoding sequence of the nanos fragment has been successfully expressed in E. coli. Western blotting analysis indicates that homemade antiserum can specifically detect nanos protein expressed in prokaryotic cells.
Collapse
Affiliation(s)
- Guoli Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | | | | |
Collapse
|
22
|
Nanos Is Required in Somatic Blast Cell Lineages in the Posterior of a Mollusk Embryo. Curr Biol 2008; 18:331-6. [DOI: 10.1016/j.cub.2008.01.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/20/2022]
|
23
|
Zinzen RP, Papatsenko D. Enhancer responses to similarly distributed antagonistic gradients in development. PLoS Comput Biol 2007; 3:e84. [PMID: 17500585 PMCID: PMC1866357 DOI: 10.1371/journal.pcbi.0030084] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 03/28/2007] [Indexed: 01/09/2023] Open
Abstract
Formation of spatial gene expression patterns in development depends on transcriptional responses mediated by gene control regions, enhancers. Here, we explore possible responses of enhancers to overlapping gradients of antagonistic transcriptional regulators in the Drosophila embryo. Using quantitative models based on enhancer structure, we demonstrate how a pair of antagonistic transcription factor gradients with similar or even identical spatial distributions can lead to the formation of distinct gene expression domains along the embryo axes. The described mechanisms are sufficient to explain the formation of the anterior and the posterior knirps expression, the posterior hunchback expression domain, and the lateral stripes of rhomboid expression and of other ventral neurogenic ectodermal genes. The considered principles of interaction between antagonistic gradients at the enhancer level can also be applied to diverse developmental processes, such as domain specification in imaginal discs, or even eyespot pattern formation in the butterfly wing. The early development of the fruit fly embryo depends on an intricate but well-studied gene regulatory network. In fly eggs, maternally deposited gene products—morphogenes—form spatial concentration gradients. The graded distribution of the maternal morphogenes initiates a cascade of gene interactions leading to embryo development. Gradients of activators and repressors regulating common target genes may produce different outcomes depending on molecular mechanisms, mediating their function. Here, we describe quantitative mathematical models for the interplay between gradients of positive and negative transcriptional regulators—proteins, activating or repressing their target genes through binding the gene's regulatory DNA sequences. We predict possible spatial outcomes of the transcriptional antagonistic interactions in fly development and consider examples where the predicted cases may take place.
Collapse
Affiliation(s)
- Robert P Zinzen
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, California, United States of America
| | - Dmitri Papatsenko
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Agee SJ, Lyons DC, Weisblat DA. Maternal expression of a NANOS homolog is required for early development of the leech Helobdella robusta. Dev Biol 2006; 298:1-11. [PMID: 16930584 DOI: 10.1016/j.ydbio.2006.04.473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/10/2006] [Accepted: 04/19/2006] [Indexed: 11/16/2022]
Abstract
The gene nanos (nos) is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nos-related genes is associated with the germ line in a broad variety of other taxa, including the leech Helobdella robusta, where zygotically expressed Hro-nos appears to be associated with primordial germ cells. The function of maternally inherited Hro-nos transcripts remains to be determined, however. Here, the function of maternal Hro-nos is examined using an antisense morpholino (MO) knockdown strategy, as confirmed by immunostaining and western blot analysis. HRO-NOS knockdown embryos exhibit abnormalities in the distribution of micromeres during cleavage. Subsequently, their germinal bands are positioned abnormally with respect to the embryonic midline and the micromere cap, epiboly fails, and the HRO-NOS knockdown embryos die. This lethality can be rescued by injection of mRNA encoding an eGFP::HRO-NOS fusion protein. HRO-NOS knockdown embryos make their normal complements of mesodermal and ectodermal teloblasts, and the progeny of these teloblasts segregate into distinct mesodermal and ectodermal layers. These results suggest that maternal Hro-nos is required for embryonic development. However, contrary to previous suggestions, maternal inherited Hro-nos does not appear necessary for ectoderm specification.
Collapse
Affiliation(s)
- Sara J Agee
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
25
|
Dearden PK. Germ cell development in the Honeybee (Apis mellifera); vasa and nanos expression. BMC DEVELOPMENTAL BIOLOGY 2006; 6:6. [PMID: 16503992 PMCID: PMC1388196 DOI: 10.1186/1471-213x-6-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/17/2006] [Indexed: 11/13/2022]
Abstract
Background Studies of specification of germ-cells in insect embryos has indicated that in many taxa the germ cells form early in development, and their formation is associated with pole plasm, germ plasm or an organelle called the oosome. None of these morphological features associated with germ cell formation have been identified in the Honeybee Apis mellifera. In this study I report the cloning and expression analysis of Honeybee homologues of vasa and nanos, germ cell markers in insects and other animals. Results Apis vasa and nanos RNAs are present in early honeybee embryos, but the RNAs clear rapidly, without any cells expressing these germ cell markers past stage 2. These genes are then only expressed in a line of cells in the abdomen from stage 9 onwards. These cells are the developing germ cells that are moved dorsally by dorsal closure and are placed in the genital ridge. Conclusion This study of the expression of germ cell markers in the honeybee implies that in this species either germ cells are formed by an inductive event, late in embryogenesis, or they are formed early in development in the absence of vasa and nanos expression. This contrasts with germ cell development in other members of the Hymenoptera, Diptera and Lepidoptera.
Collapse
Affiliation(s)
- Peter K Dearden
- Biochemistry Department, University of Otago, PO Box 56, Dunedin, New Zealand.
| |
Collapse
|
26
|
Liu PZ, Kaufman TC. Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev 2006; 7:629-46. [PMID: 16336416 DOI: 10.1111/j.1525-142x.2005.05066.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The insect body plan is very well conserved, yet the developmental mechanisms of segmentation are surprisingly varied. Less evolutionarily derived insects undergo short germ segmentation where only the anterior segments are specified before gastrulation whereas the remaining posterior segments are formed during a later secondary growth phase. In contrast, derived long germ insects such as Drosophila specify their entire bodies essentially simultaneously. These fundamental embryological differences imply potentially divergent molecular patterning events. Numerous studies have focused on comparing the expression and function of the homologs of Drosophila segmentation genes between Drosophila and different short and long germ insects. Here we review these comparative data with special emphasis on understanding how short germ insects generate segments and how this ancestral mechanism may have been modified in derived long germ insects such as Drosophila. We break down the larger issue of short versus long germ segmentation into its component developmental problems and structure our discussion in order to highlight the unanswered questions in the evolution of insect segmentation.
Collapse
Affiliation(s)
- Paul Z Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
27
|
Gamberi C, Johnstone O, Lasko P. Drosophila RNA Binding Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:43-139. [PMID: 16487790 DOI: 10.1016/s0074-7696(06)48002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
28
|
Abstract
Most of our knowledge about the mechanisms of segmentation in arthropods comes from work on Drosophila melanogaster. In recent years it has become clear that this mechanism is far from universal, and different arthropod groups have distinct modes of segmentation that operate through divergent genetic mechanisms. We review recent data from a range of arthropods, identifying which features of the D. melanogaster segmentation cascade are present in the different groups, and discuss the evolutionary implications of their conserved and divergent aspects. A model is emerging, although slowly, for the way that arthropod segmentation mechanisms have evolved.
Collapse
Affiliation(s)
- Andrew D Peel
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
29
|
Extavour CG, Pang K, Matus DQ, Martindale MQ. vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 2005; 7:201-15. [PMID: 15876193 DOI: 10.1111/j.1525-142x.2005.05023.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.
Collapse
Affiliation(s)
- Cassandra G Extavour
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
30
|
Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JCY, Small S, Desplan C, Leaf DS. A major role for zygotichunchbackin patterning theNasoniaembryo. Development 2005; 132:3705-15. [PMID: 16077090 DOI: 10.1242/dev.01939] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental genetic analysis has shown that embryos of the parasitoid wasp Nasonia vitripennis depend more on zygotic gene products to direct axial patterning than do Drosophila embryos. In Drosophila, anterior axial patterning is largely established by bicoid, a rapidly evolving maternal-effect gene, working with hunchback, which is expressed both maternally and zygotically. Here,we focus on a comparative analysis of Nasonia hunchback function and expression. We find that a lesion in Nasonia hunchback is responsible for the severe zygotic headless mutant phenotype, in which most head structures and the thorax are deleted, as are the three most posterior abdominal segments. This defines a major role for zygotic Nasonia hunchback in anterior patterning, more extensive than the functions described for hunchback in Drosophila or Tribolium. Despite the major zygotic role of Nasonia hunchback, we find that it is strongly expressed maternally, as well as zygotically. NasoniaHunchback embryonic expression appears to be generally conserved; however, the mRNA expression differs from that of Drosophila hunchback in the early blastoderm. We also find that the maternal hunchback message decays at an earlier developmental stage in Nasonia than in Drosophila, which could reduce the relative influence of maternal products in Nasonia embryos. Finally, we extend the comparisons of Nasonia and Drosophila hunchback mutant phenotypes, and propose that the more severe Nasonia hunchback mutant phenotype may be a consequence of differences in functionally overlapping regulatory circuitry.
Collapse
Affiliation(s)
- Mary Anne Pultz
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Calvo E, Walter M, Adelman ZN, Jimenez A, Onal S, Marinotti O, James AA. Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:789-98. [PMID: 15894194 DOI: 10.1016/j.ibmb.2005.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
A number of genetics-based strategies for the control of vector-borne diseases require the development of genetic drive systems for introgressing antipathogen effector genes into wild populations of insects. Modified transposons whose mobilization is controlled by the DNA elements of developmentally regulated genes offer a potential solution for introducing effector genes into mosquitoes. Such elements could exhibit sex-, stage- and species-specific transposition, thus mitigating some of the concerns associated with autonomous transposition. Hybridizations in situ show that the transcription products of the nanos orthologous genes of Anopheles gambiae (Anga nos), An. stephensi (Anst nos) and Aedes aegypti (Aeae nos) accumulate in developing oocytes in adult females and localize to the posterior pole in early embryos. These features make nos genes promising candidates for donating control sequences to modified transposons.
Collapse
Affiliation(s)
- Eric Calvo
- Department of Molecular Biology & Biochemistry, 3205 McGaugh Hall, University of California, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Goltsev Y, Hsiong W, Lanzaro G, Levine M. Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 2005; 275:435-46. [PMID: 15501229 DOI: 10.1016/j.ydbio.2004.08.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 11/20/2022]
Abstract
Drosophila segmentation is governed by a well-defined gene regulation network. The evolution of this network was investigated by examining the expression profiles of a complete set of segmentation genes in the early embryos of the mosquito, Anopheles gambiae. There are numerous differences in the expression profiles as compared with Drosophila. The germline determinant Oskar is expressed in both the anterior and posterior poles of Anopheles embryos but is strictly localized within the posterior plasm of Drosophila. The gap genes hunchback and giant display inverted patterns of expression in posterior regions of Anopheles embryos, while tailless exhibits an expanded pattern as compared with Drosophila. These observations suggest that the segmentation network has undergone considerable evolutionary change in the dipterans and that similar patterns of pair-rule gene expression can be obtained with different combinations of gap repressors. We discuss the evolution of separate stripe enhancers in the eve loci of different dipterans.
Collapse
Affiliation(s)
- Yury Goltsev
- Department of Molecular and Cellular Biology, Division of Genetics and Development, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
In Drosophila, a Bcd protein gradient orchestrates patterning along the anteroposterior embryonic axis. However, studies of basal flies and other insects have revealed that bcd is a derived Hox3 gene found only in higher dipterans. To understand how bcd acquired its role in flies and how anteroposterior patterning mechanisms have evolved, I first review key features of bcd function in Drosophila: anterior localization and transcriptional and translation control of gene expression. I then discuss investigations of bcd in other higher dipterans that have provided insight into the evolution of regulatory interactions and the Bcd gradient. Finally, I review studies of Drosophila and other insects that address the evolution of bcd function and integration of bcd into ancestral regulatory mechanisms. I suggest further comparative studies may allow us to identify the intermediate steps in bcd evolution. This will make bcd a paradigm for the origin and evolution of genes and regulatory networks.
Collapse
Affiliation(s)
- Alistair P McGregor
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08540, USA.
| |
Collapse
|
34
|
Torras R, Yanze N, Schmid V, González-Crespo S. nanos expression at the embryonic posterior pole and the medusa phase in the hydrozoan Podocoryne carnea. Evol Dev 2004; 6:362-71. [PMID: 15330869 DOI: 10.1111/j.1525-142x.2004.04044.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summary The distinction between soma and germline is an important process in the development of animals with sexual reproduction. It is regulated by a number of germline-specific genes, most of which appear conserved in evolution and therefore can be used to study the formation of the germline in diverged animal groups. Here we report the isolation of two orthologs of one such gene, nanos (nos), in the cnidarian Podocoryne carnea, a species with representative zoological features among the hydrozoans. By studying nos gene expression throughout the Podocoryne biphasic life cycle, we find that the germline differentiates exclusively during medusa development, whereas the polyp does not contribute to the process. An early widespread nos expression in developing medusae progressively refines into a mainly germline-specific pattern at terminal stages of medusa formation. Thus, the distinction between germline and soma is a late event in hydrozoan development. Also, we show that the formation of the medusa is a de novo process that relies on active local cell proliferation and differentiation of novel cell and tissue types not present in the polyp, including nos-expressing cells. Finally, we find nos expression at the posterior pole of Podocoryne developing embryos, not related to germline formation. This second aspect of nos expression is also found in Drosophila, where nos functions as a posterior determinant essential for the formation of the fly abdomen. This raises the possibility that nos embryonic expression could play a role in establishing axial polarity in cnidarians.
Collapse
Affiliation(s)
- Raquel Torras
- Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18-26, 08034-Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW. Caste- and development-associated gene expression in a lower termite. Genome Biol 2003; 4:R62. [PMID: 14519197 PMCID: PMC328451 DOI: 10.1186/gb-2003-4-10-r62] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 07/16/2003] [Accepted: 08/26/2003] [Indexed: 11/10/2022] Open
Abstract
Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN 47907-2089, USA.
| | | | | | | |
Collapse
|
36
|
Wittkopp PJ, Carroll SB, Kopp A. Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 2003; 19:495-504. [PMID: 12957543 DOI: 10.1016/s0168-9525(03)00194-x] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Patricia J Wittkopp
- Molecular Biology and Genetics, 227 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
37
|
Schröder R. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 2003; 422:621-5. [PMID: 12687002 DOI: 10.1038/nature01536] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2002] [Accepted: 02/25/2003] [Indexed: 11/09/2022]
Abstract
In Drosophila, the morphogen Bicoid organizes anterior patterning in a concentration-dependent manner by activating the transcription of target genes such as orthodenticle (otd) and hunchback (hb), and by repressing the translation of caudal. Homologues of the bicoid gene have not been isolated in any organism apart from the higher Dipterans. In fact, head and thorax formation in other insects is poorly understood. To elucidate this process in a short-germband insect, I analysed the function of the conserved genes orthodenticle-1 (otd-1) and hb in the flour beetle Tribolium castaneum. Here I show that, in contrast to Drosophila, Tribolium otd-1 messenger RNA is maternally inherited by the embryo. Reduction of Tribolium otd-1 levels by RNA interference (RNAi) results in headless embryos. This shows that otd-1 is required for anterior patterning in Tribolium. As in Drosophila, Tribolium hb specifies posterior gnathal and thoracic segments. The head, thorax and the anterior abdomen fail to develop in otd-1/hb double-RNAi embryos. This phenotype is similar to that of strong bicoid mutants in Drosophila. I propose that otd-1 and hb are part of an ancestral anterior patterning system.
Collapse
Affiliation(s)
- Reinhard Schröder
- Interfakultäres Institut für Zellbiologie, Universität Tübingen, Abt. Genetik der Tiere, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|