1
|
Gao K, Donati A, Ainsworth J, Wu D, Terner ER, Perry MW. Deep conservation complemented by novelty and innovation in the insect eye ground plan. Proc Natl Acad Sci U S A 2025; 122:e2416562122. [PMID: 39793041 PMCID: PMC11725883 DOI: 10.1073/pnas.2416562122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function. We find that flies, mosquitos, butterflies, moths, beetles, wasps, honeybees, and crickets use homologous developmental programs to pattern their retinas. Transcription factor expression can be used to establish homology of different photoreceptor (PR) types across the insects: Prospero (Pros) for R7, Spalt (Sal) for R7+R8, and Defective proventriculus (Dve) for R1-6. Using gene knockout (CRISPR/Cas9) in houseflies, butterflies, and crickets and gene knockdown (RNAi) in beetles, we found that like Drosophila, EGFR and Sevenless (Sev) signaling pathways are required to recruit motion and color vision PRs, though Drosophila have a decreased reliance on Sev signaling relative to other insects. Despite morphological and physiological variation across species, retina development passes through a highly conserved phylotypic stage when the unit eyes (ommatidia) are first patterned. This patterning process likely represents an "insect eye ground plan" that is established by an ancient developmental program. We identify three types of developmental patterning modifications (ground plan modification, nonstochastic patterns, and specialized regions) that allow for the diversification of insect eyes. We suggest that developmental divergence after the ground plan is established is responsible for the exceptional diversity observed across insect visual systems.
Collapse
Affiliation(s)
- Ke Gao
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Antoine Donati
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Julia Ainsworth
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Di Wu
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Eleanor R. Terner
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - Michael W. Perry
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Yost PP, Al-Nouman A, Curtiss J. The Rap1 small GTPase affects cell fate or survival and morphogenetic patterning during Drosophila melanogaster eye development. Differentiation 2023; 133:12-24. [PMID: 37437447 PMCID: PMC10528170 DOI: 10.1016/j.diff.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The Drosophila melanogaster eye has been instrumental for determining both how cells communicate with one another to determine cell fate, as well as cell morphogenesis and patterning. Here, we describe the effects of the small GTPase Rap1 on the development of multiple cell types in the D. melanogaster eye. Although Rap1 has previously been linked to RTK-Ras-MAPK signaling in eye development, we demonstrate that manipulation of Rap1 activity is modified by increase or decrease of Delta/Notch signaling during several events of cell fate specification in eye development. In addition, we demonstrate that manipulating Rap1 function either in primary pigment cells or in interommatidial cells affects cone cell contact switching, primary pigment cell enwrapment of the ommatidial cluster, and sorting of secondary and tertiary pigment cells. These data suggest that Rap1 has roles in both ommatidial cell recruitment/survival and in ommatidial morphogenesis in the pupal stage. They lay groundwork for future experiments on the role of Rap1 in these events.
Collapse
Affiliation(s)
- Philip P Yost
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA
| | | | - Jennifer Curtiss
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA.
| |
Collapse
|
3
|
Kim LH, Kim JY, Xu YY, Lim MA, Koo BS, Kim JH, Yoon SE, Kim YJ, Choi KW, Chang JW, Hong ST. Tctp, a unique Ing5-binding partner, inhibits the chromatin binding of Enok in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2218361120. [PMID: 37014852 PMCID: PMC10104566 DOI: 10.1073/pnas.2218361120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
The MOZ/MORF histone acetyltransferase complex is highly conserved in eukaryotes and controls transcription, development, and tumorigenesis. However, little is known about how its chromatin localization is regulated. Inhibitor of growth 5 (ING5) tumor suppressor is a subunit of the MOZ/MORF complex. Nevertheless, the in vivo function of ING5 remains unclear. Here, we report an antagonistic interaction between Drosophila Translationally controlled tumor protein (TCTP) (Tctp) and ING5 (Ing5) required for chromatin localization of the MOZ/MORF (Enok) complex and H3K23 acetylation. Yeast two-hybrid screening using Tctp identified Ing5 as a unique binding partner. In vivo, Ing5 controlled differentiation and down-regulated epidermal growth factor receptor signaling, whereas it is required in the Yorkie (Yki) pathway to determine organ size. Ing5 and Enok mutants promoted tumor-like tissue overgrowth when combined with uncontrolled Yki activity. Tctp depletion rescued the abnormal phenotypes of the Ing5 mutation and increased the nuclear translocation of Ing5 and chromatin binding of Enok. Nonfunctional Enok promoted the nuclear translocation of Ing5 by reducing Tctp, indicating a feedback mechanism between Tctp, Ing5, and Enok to regulate histone acetylation. Therefore, Tctp is essential for H3K23 acetylation by controlling the nuclear translocation of Ing5 and chromatin localization of Enok, providing insights into the roles of human TCTP and ING5-MOZ/MORF in tumorigenesis.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Ja-Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Yu-Ying Xu
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Jung Hae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon34141, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| |
Collapse
|
4
|
Buffered EGFR signaling regulated by spitz-to-argos expression ratio is a critical factor for patterning the Drosophila eye. PLoS Genet 2023; 19:e1010622. [PMID: 36730442 PMCID: PMC9928117 DOI: 10.1371/journal.pgen.1010622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/14/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) signaling pathway plays a critical role in regulating tissue patterning. Drosophila EGFR signaling achieves specificity through multiple ligands and feedback loops to finetune signaling outcomes spatiotemporally. The principal Drosophila EGF ligand, cleaved Spitz, and the negative feedback regulator, Argos are diffusible and can act both in a cell autonomous and non-autonomous manner. The expression dose of Spitz and Argos early in photoreceptor cell fate determination has been shown to be critical in patterning the Drosophila eye, but the exact identity of the cells expressing these genes in the larval eye disc has been elusive. Using single molecule RNA Fluorescence in situ Hybridization (smFISH), we reveal an intriguing differential expression of spitz and argos mRNA in the Drosophila third instar eye imaginal disc indicative of directional non-autonomous EGFR signaling. By genetically tuning EGFR signaling, we show that rather than absolute levels of expression, the ratio of expression of spitz-to-argos to be a critical determinant of the final adult eye phenotype. Proximate effects on EGFR signaling in terms of cell cycle and differentiation markers are affected differently in the different perturbations. Proper ommatidial patterning is robust to thresholds around a tightly maintained wildtype spitz-to-argos ratio, and breaks down beyond. This provides a powerful instance of developmental buffering against gene expression fluctuations.
Collapse
|
5
|
Follmer M, Shrawder B, Eckert K, Heinly B, Vivekanand P. The effectiveness of EGFR knockdown by RNAi lines varies depending on the tissue. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000612. [PMID: 35903780 PMCID: PMC9315407 DOI: 10.17912/micropub.biology.000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
In Drosophila , the Epidermal growth factor receptor (EGFR) signaling pathway is known to be critically involved in multiple stages of development. We induced a loss of function phenotype in the eyes, wings, and somatic follicle cells using four EGFR RNAi lines: HMS05003 and JF02283, which produce short hairpin RNAs, as well as JF01368 and KK100051, which produce long hairpin RNAs. Using these four lines, we completed a systematic comparison of the ability of short hairpin vs long hairpin RNAi lines to produce loss-of-function phenotypes in the above-mentioned tissues. Tissue specific knockdown was achieved by using Gal4 drivers specific to the three tissues being studied. In the eyes and wings, the KK100051 line induced the most severe phenotype, while the JF01368 line was the least severe, but in the somatic follicle cells, the KK100051 line was the least effective, while the JF01368 and JF02283 lines were comparable with respect to phenotypic severity. We conclude that there is significant tissue specific variability exhibited by the different RNAi lines.
Collapse
|
6
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
9
|
Wu C, Boisclair Lachance JF, Ludwig MZ, Rebay I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet 2020; 16:e1009216. [PMID: 33253156 PMCID: PMC7728396 DOI: 10.1371/journal.pgen.1009216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.
Collapse
Affiliation(s)
- Chudong Wu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ilaria Rebay
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Portela M, Mitchell T, Casas-Tintó S. Cell-to-cell communication mediates glioblastoma progression in Drosophila. Biol Open 2020; 9:bio053405. [PMID: 32878880 PMCID: PMC7541342 DOI: 10.1242/bio.053405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and lethal tumour of the central nervous system (CNS). GB cells grow rapidly and display a network of projections, ultra-long tumour microtubes (TMs), that mediate cell to cell communication. GB-TMs infiltrate throughout the brain, enwrap neurons and facilitate the depletion of the signalling molecule wingless (Wg)/WNT from the neighbouring healthy neurons. GB cells establish a positive feedback loop including Wg signalling upregulation that activates cJun N-terminal kinase (JNK) pathway and matrix metalloproteases (MMPs) production, which in turn promote further TMs infiltration, GB progression and neurodegeneration. Thus, cellular and molecular signals other than primary mutations emerge as central players of GB. Using a Drosophila model of GB, we describe the temporal organisation of the main cellular events that occur in GB, including cell-to-cell interactions, neurodegeneration and TM expansion. We define the progressive activation of JNK pathway signalling in GB mediated by the receptor Grindelwald (Grnd) and activated by the ligand Eiger (Egr)/TNFα produced by surrounding healthy brain tissue. We propose that cellular interactions of GB with the healthy brain tissue precede TM expansion and conclude that non-autonomous signals facilitate GB progression. These results contribute to deciphering the complexity and versatility of these incurable tumours.
Collapse
Affiliation(s)
- Marta Portela
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, 3086 Melbourne, Australia
| | - Teresa Mitchell
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| |
Collapse
|
11
|
Sheng Z, Du W. NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways. PLoS Genet 2020; 16:e1008863. [PMID: 32559195 PMCID: PMC7329143 DOI: 10.1371/journal.pgen.1008863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Inactivation of the Rb tumor suppressor causes context-dependent increases in cell proliferation or cell death. In a genetic screen for factors that promoted Rb mutant cell death in Drosophila, we identified Psid, a regulatory subunit of N-terminal acetyltransferase B (NatB). We showed that NatB subunits were required for elevated EGFR/MAPK signaling and Rb mutant cell survival. We showed that NatB regulates the posttranscriptional levels of the highly conserved pathway components Grb2/Drk, MAPK, and PP2AC but not that of the less conserved Sprouty. Interestingly, NatB increased the levels of positive pathway components Grb2/Drk and MAPK while decreased the levels of negative pathway component PP2AC, which were mediated by the distinct N-end rule branch E3 ubiquitin ligases Ubr4 and Cnot4, respectively. These results suggest a novel mechanism by which NatB and N-end rule pathways modulate EGFR/MAPK signaling by inversely regulating the levels of multiple conserved positive and negative pathway components. As inactivation of Psid blocked EGFR signaling-dependent tumor growth, this study raises the possibility that NatB is potentially a novel therapeutic target for cancers dependent on deregulated EGFR/Ras signaling.
Collapse
Affiliation(s)
- Zhentao Sheng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
DeAngelis MW, McGhie EW, Coolon JD, Johnson RI. Mask, a component of the Hippo pathway, is required for Drosophila eye morphogenesis. Dev Biol 2020; 464:53-70. [PMID: 32464117 DOI: 10.1016/j.ydbio.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
Hippo signaling is an important regulator of tissue size, but it also has a lesser-known role in tissue morphogenesis. Here we use the Drosophila pupal eye to explore the role of the Hippo effector Yki and its cofactor Mask in morphogenesis. We found that Mask is required for the correct distribution and accumulation of adherens junctions and appropriate organization of the cytoskeleton. Accordingly, disrupting mask expression led to severe mis-patterning and similar defects were observed when yki was reduced or in response to ectopic wts. Further, the patterning defects generated by reducing mask expression were modified by Hippo pathway activity. RNA-sequencing revealed a requirement for Mask for appropriate expression of numerous genes during eye morphogenesis. These included genes implicated in cell adhesion and cytoskeletal organization, a comprehensive set of genes that promote cell survival, and numerous signal transduction genes. To validate our transcriptome analyses, we then considered two loci that were modified by Mask activity: FER and Vinc, which have established roles in regulating adhesion. Modulating the expression of either locus modified mask mis-patterning and adhesion phenotypes. Further, expression of FER and Vinc was modified by Yki. It is well-established that the Hippo pathway is responsive to changes in cell adhesion and the cytoskeleton, but our data indicate that Hippo signaling also regulates these structures.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Emily W McGhie
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Joseph D Coolon
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| | - Ruth I Johnson
- Wesleyan University Department of Biology, Middletown CT, 06457, USA.
| |
Collapse
|
13
|
Chen YC, Desplan C. Gene regulatory networks during the development of the Drosophila visual system. Curr Top Dev Biol 2020; 139:89-125. [PMID: 32450970 DOI: 10.1016/bs.ctdb.2020.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Drosophila visual system integrates input from 800 ommatidia and extracts different features in stereotypically connected optic ganglia. The development of the Drosophila visual system is controlled by gene regulatory networks that control the number of precursor cells, generate neuronal diversity by integrating spatial and temporal information, coordinate the timing of retinal and optic lobe cell differentiation, and determine distinct synaptic targets of each cell type. In this chapter, we describe the known gene regulatory networks involved in the development of the different parts of the visual system and explore general components in these gene networks. Finally, we discuss the advantages of the fly visual system as a model for gene regulatory network discovery in the era of single-cell transcriptomics.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, United States.
| |
Collapse
|
14
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
15
|
Casas-Tintó S, Portela M. Cytonemes, Their Formation, Regulation, and Roles in Signaling and Communication in Tumorigenesis. Int J Mol Sci 2019; 20:ijms20225641. [PMID: 31718063 PMCID: PMC6888727 DOI: 10.3390/ijms20225641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence during the past two decades shows that cells interconnect and communicate through cytonemes. These cytoskeleton-driven extensions of specialized membrane territories are involved in cell–cell signaling in development, patterning, and differentiation, but also in the maintenance of adult tissue homeostasis, tissue regeneration, and cancer. Brain tumor cells in glioblastoma extend ultralong membrane protrusions (named tumor microtubes, TMs), which contribute to invasion, proliferation, radioresistance, and tumor progression. Here we review the mechanisms underlying cytoneme formation, regulation, and their roles in cell signaling and communication in epithelial cells and other cell types. Furthermore, we discuss the recent discovery of glial cytonemes in the Drosophila glial cells that alter Wingless (Wg)/Frizzled (Fz) signaling between glia and neurons. Research on cytoneme formation, maintenance, and cell signaling mechanisms will help to better understand not only physiological developmental processes and tissue homeostasis but also cancer progression.
Collapse
Affiliation(s)
- Sergio Casas-Tintó
- Instituto Cajal-CSIC. Av. del Doctor Arce, 37. 28002 Madrid, Spain
- Correspondence: (S.C.-T.); (M.P.); Tel.: +34915854738 (S.C.-T.); +61394792522 (M.P.)
| | - Marta Portela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Correspondence: (S.C.-T.); (M.P.); Tel.: +34915854738 (S.C.-T.); +61394792522 (M.P.)
| |
Collapse
|
16
|
Reiff T, Antonello ZA, Ballesta-Illán E, Mira L, Sala S, Navarro M, Martinez LM, Dominguez M. Notch and EGFR regulate apoptosis in progenitor cells to ensure gut homeostasis in Drosophila. EMBO J 2019; 38:e101346. [PMID: 31566767 DOI: 10.15252/embj.2018101346] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
The regenerative activity of adult stem cells carries a risk of cancer, particularly in highly renewable tissues. Members of the family of inhibitor of apoptosis proteins (IAPs) inhibit caspases and cell death, and are often deregulated in adult cancers; however, their roles in normal adult tissue homeostasis are unclear. Here, we show that regulation of the number of enterocyte-committed progenitor (enteroblast) cells in the adult Drosophila involves a caspase-mediated physiological apoptosis, which adaptively eliminates excess enteroblast cells produced by intestinal stem cells (ISCs) and, when blocked, can also lead to tumorigenesis. Importantly, we found that Diap1 is expressed by enteroblast cells and that loss and gain of Diap1 led to changes in enteroblast numbers. We also found that antagonistic interplay between Notch and EGFR signalling governs enteroblast life/death decisions via the Klumpfuss/WT1 and Lozenge/RUNX transcription regulators, which also regulate enteroblast differentiation and cell fate plasticity. These data provide new insights into how caspases drive adult tissue renewal and protect against the formation of tumours.
Collapse
Affiliation(s)
- Tobias Reiff
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Zeus A Antonello
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Esther Ballesta-Illán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Laura Mira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Maria Navarro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Luis M Martinez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| |
Collapse
|
17
|
Kazeminasab S, Taskiran II, Fattahi Z, Bazazzadegan N, Hosseini M, Rahimi M, Oladnabi M, Haddadi M, Celik A, Ropers HH, Najmabadi H, Kahrizi K. CNKSR1 gene defect can cause syndromic autosomal recessive intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:691-699. [PMID: 30450701 DOI: 10.1002/ajmg.b.32648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The advent of high-throughput sequencing technologies has led to an exponential increase in the identification of novel disease-causing genes in highly heterogeneous diseases. A novel frameshift mutation in CNKSR1 gene was detected by Next-Generation Sequencing (NGS) in an Iranian family with syndromic autosomal recessive intellectual disability (ARID). CNKSR1 encodes a connector enhancer of kinase suppressor of Ras 1, which acts as a scaffold component for receptor tyrosine kinase in mitogen-activated protein kinase (MAPK) cascades. CNKSR1 interacts with proteins which have already been shown to be associated with intellectual disability (ID) in the MAPK signaling pathway and promotes cell migration through RhoA-mediated c-Jun N-terminal kinase (JNK) activation. Lack of CNKSR1 transcripts and protein was observed in lymphoblastoid cells derived from affected patients using qRT-PCR and western blot analysis, respectively. Furthermore, RNAi-mediated knockdown of cnk, the CNKSR1 orthologue in Drosophila melanogaster brain, led to defects in eye and mushroom body (MB) structures. In conclusion, our findings support the possible role of CNKSR1 in brain development which can lead to cognitive impairment.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
18
|
The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol 2018; 87:45-57. [PMID: 29775660 DOI: 10.1016/j.semcdb.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Cell signaling is essential for cells to adequately respond to their environment. One of the most evolutionarily conserved signaling pathways is that of the epidermal growth factor receptor (EGFR). Transmembrane receptors with intracellular tyrosine kinase activity are activated by the binding of their corresponding ligands. This in turn activates a wide variety of intracellular cascades and induces the up- or downregulation of target genes, leading to a specific cellular response. Freshwater planarians are an excellent model in which to study the role of cell signaling in the context of stem-cell based regeneration. Owing to the presence of a population of pluripotent stem cells called neoblasts, these animals can regenerate the entire organism from a tiny piece of the body. Here, we review the current state of knowledge of the planarian EGFR pathway. We describe the main components of the pathway and their functions in other animals, and focus in particular on receptors and ligands identified in the planarian Schmidtea mediterranea. Moreover, we summarize current data on the function of some of these components during planarian regeneration and homeostasis. We hypothesize that the EGFR pathway may act as a key regulator of the terminal differentiation of distinct populations of lineage-committed progenitors.
Collapse
|
19
|
Bala Tannan N, Collu G, Humphries AC, Serysheva E, Weber U, Mlodzik M. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster. PLoS Genet 2018; 14:e1007153. [PMID: 29309414 PMCID: PMC5785023 DOI: 10.1371/journal.pgen.1007153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/25/2018] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
AKAP200 is a Drosophila melanogaster member of the “A Kinase Associated Protein” family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling. AKAP200 belongs to a family of scaffolding proteins best known for their regulation of PKA localization. In this study, we have identified a novel role of AKAP200 in Notch protein stability and signaling. In Drosophila melanogaster, AKAP200’s loss and gain-of-function (LOF/GOF) phenotypes are characteristic of Notch signaling defects. Furthermore, we demonstrated genetic interactions between AKAP200 and Notch. Consistent with this, AKAP200 stabilizes the endogenous Notch protein and limits its ubiquitination. AKAP200 exerts its effects on Notch by antagonizing Cbl-mediated ubiquitination and thus lysosome targeting of Notch. Based on these data, we postulate a novel PKA independent mechanism of AKAP200 to achieve optimal Notch protein levels, with AKAP200 preventing Cbl-mediated lysosomal degradation of Notch.
Collapse
Affiliation(s)
- Neeta Bala Tannan
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giovanna Collu
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ashley C. Humphries
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ekatherina Serysheva
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ursula Weber
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bhattacharya A, Li K, Quiquand M, Rimesso G, Baker NE. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 2017; 431:309-320. [PMID: 28919436 DOI: 10.1016/j.ydbio.2017.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
22
|
Marco Antonio DS, Hartfelder K. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis melliferaL.): A Correlative Analysis of Morphology and Gene Expression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:139-156. [DOI: 10.1002/jez.b.22696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 12/27/2022]
Affiliation(s)
- David S. Marco Antonio
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
23
|
dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis. PLoS Genet 2016; 12:e1006204. [PMID: 27442438 PMCID: PMC4956209 DOI: 10.1371/journal.pgen.1006204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. Molecules of the Hedgehog (Hh) family are involved in the control of many developmental processes in both vertebrates and invertebrates. One of these processes is the formation of the retina in the fruitfly Drosophila. Here, Hh orchestrates a differentiation wave that allows the fast and precise differentiation of the fly retina, by controlling cell cycle, fate and morphogenesis. In this work we identify the gene dachshund (dac) as necessary to potentiate Hh signaling. In its absence, all Hh-dependent processes are delayed and retinal differentiation is severely impaired. Using genetic analysis, we find that dac, a nuclear factor that can bind DNA, is required for the stabilization of the nuclear transducer of the Hh signal, the Gli transcription factor Ci. dac expression is activated by Hh signaling and therefore is a key element in a positive feedback loop within the Hh signaling pathway that ensures a fast and robust differentiation of the retina. The vertebrate dac homologues, the DACH1 and 2 genes, are also important developmental regulators and cancer genes and a potential link between DACH genes and the Hh pathway in vertebrates awaits investigation.
Collapse
|
24
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
25
|
Sheng Z, Yu L, Zhang T, Pei X, Li X, Zhang Z, Du W. ESCRT-0 complex modulates Rbf-mutant cell survival by regulating Rhomboid endosomal trafficking and EGFR signaling. J Cell Sci 2016; 129:2075-84. [PMID: 27056762 DOI: 10.1242/jcs.182261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
The Rb tumor suppressor is conserved in Drosophila, and its inactivation can lead to cell proliferation or death depending on the specific cellular context. Therefore, identifying genes that affect the survival of Rb-mutant cells can potentially identify novel targets for therapeutic intervention in cancer. From a genetic screen in Drosophila, we identified synthetic lethal interactions between mutations of fly Rb (rbf) and the ESCRT-0 components stam and hrs We show that inactivation of ESCRT-0 sensitizes rbf-mutant cells to undergo apoptosis through inhibition of EGFR signaling and accumulation of Hid protein. Mutation of stam inhibits EGFR signaling upstream of secreted Spi and downstream of Rhomboid expression, and causes Rhomboid protein to accumulate in the abnormal endosomes labeled with both the early and late endosomal markers Rab5 and Rab7. These results reveal that ESCRT-0 mutants inhibit EGFR signaling by disrupting Rhomboid endosomal trafficking in the ligand-producing cells. Because ESCRT-0 also plays crucial roles in EGFR downregulation after ligand binding, this study provides new insights into how loss of ESCRT-0 function can either increase or decrease EGFR signaling.
Collapse
Affiliation(s)
- Zhentao Sheng
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Lijia Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Tianyi Zhang
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Xun Pei
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Xuan Li
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Wei Du
- Ben May Department for Cancer Research, University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
26
|
|
27
|
Decapentaplegic and growth control in the developing Drosophila wing. Nature 2015; 527:375-8. [DOI: 10.1038/nature15730] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/14/2015] [Indexed: 02/01/2023]
|
28
|
Huu NT, Yoshida H, Yamaguchi M. Tumor suppressor gene OSCP1/NOR1 regulates apoptosis, proliferation, differentiation, and ROS generation during eye development of Drosophila melanogaster. FEBS J 2015; 282:4727-46. [PMID: 26411401 DOI: 10.1111/febs.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022]
Abstract
OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.
Collapse
Affiliation(s)
- Nguyen Tho Huu
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Hideki Yoshida
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| |
Collapse
|
29
|
Zhang T, Du W. Groucho restricts rhomboid expression and couples EGFR activation with R8 selection during Drosophila photoreceptor differentiation. Dev Biol 2015; 407:246-55. [PMID: 26417727 DOI: 10.1016/j.ydbio.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/18/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022]
Abstract
Notch and EGFR signaling pathways play important roles in photoreceptor differentiation during Drosophila eye development. Notch signaling induces Enhancer of Split (E(spl)) proteins to repress atonal (ato) expression and restrict R8 photoreceptor cell fate. The R8 precursors express rhomboid (rho), which is required for the release of active EGFR ligand to activate EGFR signaling in surrounding cells for the subsequent stepwise recruitment. However, it is not clear about the mechanisms of transcriptional regulation of rho and how the lateral inhibition of Notch signaling and rho expression are coordinated. In this study, we show that inactivation of Groucho (Gro), an evolutionally conserved transcriptional corepressor, inhibits Ato upregulation, delays R8 determination, and promotes differentiation of R2-5 type of neurons. We demonstrate that these phenotypes are caused by a combination of the loss of Notch-mediated lateral inhibition and the precocious activation of EGFR signaling due to deregulated rho expression. Blocking EGFR signaling by Pnt-RNAi in conjunction with Gro-inactivation leads to lateral inhibition defects with deregulated Ato expression and R8 differentiation. We further show that inactivation of E(spl), which are the Gro binding transcription factors, causes deregulated rho expression and extra R8 cells within and posterior to the morphogenetic furrow (MF), and that E(spl) mediates the binding of Gro to the regulatory regions of both rho and ato genes in eye disc cells. Our results suggest that Gro inhibits rho expression in undifferentiated cells and represses the expression of both ato and rho in non-R8 precursors during initiation of photoreceptor differentiation in an E(spl)-dependent manner. The latter function of Gro provides novel insights into the mechanism that coordinates R8 specification with the restriction of initial rho expression to developing R8 cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
30
|
Fernandes VM, Pradhan-Sundd T, Blaquiere JA, Verheyen EM. Ras/MEK/MAPK-mediated regulation of heparin sulphate proteoglycans promotes retinal fate in the Drosophila eye-antennal disc. Dev Biol 2015; 402:109-18. [PMID: 25848695 DOI: 10.1016/j.ydbio.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
Abstract
Generating cellular heterogeneity is crucial to the development of complex organs. Organ-fate selector genes and signalling pathways generate cellular diversity by subdividing and patterning naïve tissues to assign them regional identities. The Drosophila eye-antennal imaginal disc is a well-characterised system in which to study regional specification; it is first divided into antennal and eye fates and subsequently retinal differentiation occurs within only the eye field. During development, signalling pathways and selector genes compete with and mutually antagonise each other to subdivide the tissue. Wingless (Wg) signalling is the main inhibitor of retinal differentiation; it does so by promoting antennal/head-fate via selector factors and by antagonising Hedgehog (Hh), the principal differentiation-initiating signal. Wg signalling must be suppressed by JAK/STAT at the disc posterior in order to initiate retinal differentiation. Ras/MEK/MAPK signalling has also been implicated in initiating retinal differentiation but its mode of action is not known. We find that compromising Ras/MEK/MAPK signalling in the early larval disc results in expanded antennal/head cuticle at the expense of the compound eye. These phenotypes correspond both to perturbations in selector factor expression, and to de-repressed wg. Indeed, STAT activity is reduced due to decreased mobility of the ligand Unpaired (Upd) along with a corresponding loss in Dally-like protein (Dlp), a heparan sulphate proteoglycan (HSPG) that aids Upd diffusion. Strikingly, blocking HSPG biogenesis phenocopies compromised Ras/MEK/MAPK, while restoring HSPG expression rescues the adult phenotype significantly. This study identifies a novel mode by which the Ras/MEK/MAPK pathway regulates regional-fate specification via HSPGs during development.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
31
|
Kornberg TB. Cytonemes and the dispersion of morphogens. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:445-63. [PMID: 25186102 PMCID: PMC4199865 DOI: 10.1002/wdev.151] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/10/2014] [Accepted: 07/25/2014] [Indexed: 01/07/2023]
Abstract
Filopodia are cellular protrusions that have been implicated in many types of mechanosensory activities. Morphogens are signaling proteins that regulate the patterned development of embryos and tissues. Both have long histories that date to the beginnings of cell and developmental biology in the early 20th century, but recent findings tie specialized filopodia called cytonemes to morphogen movement and morphogen signaling. This review explores the conceptual and experimental background for a model of paracrine signaling in which the exchange of morphogens between cells is directed to sites where cytonemes directly link cells that produce morphogens to cells that receive and respond to them.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Zhang T, Liao Y, Hsu FN, Zhang R, Searle JS, Pei X, Li X, Ryoo HD, Ji JY, Du W. Hyperactivated Wnt signaling induces synthetic lethal interaction with Rb inactivation by elevating TORC1 activities. PLoS Genet 2014; 10:e1004357. [PMID: 24809668 PMCID: PMC4014429 DOI: 10.1371/journal.pgen.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Inactivation of the Rb tumor suppressor can lead to increased cell proliferation or cell death depending on specific cellular context. Therefore, identification of the interacting pathways that modulate the effect of Rb loss will provide novel insights into the roles of Rb in cancer development and promote new therapeutic strategies. Here, we identify a novel synthetic lethal interaction between Rb inactivation and deregulated Wg/Wnt signaling through unbiased genetic screens. We show that a weak allele of axin, which deregulates Wg signaling and increases cell proliferation without obvious effects on cell fate specification, significantly alters metabolic gene expression, causes hypersensitivity to metabolic stress induced by fasting, and induces synergistic apoptosis with mutation of fly Rb ortholog, rbf. Furthermore, hyperactivation of Wg signaling by other components of the Wg pathway also induces synergistic apoptosis with rbf. We show that hyperactivated Wg signaling significantly increases TORC1 activity and induces excessive energy stress with rbf mutation. Inhibition of TORC1 activity significantly suppressed synergistic cell death induced by hyperactivated Wg signaling and rbf inactivation, which is correlated with decreased energy stress and decreased induction of apoptotic regulator expression. Finally the synthetic lethality between Rb and deregulated Wnt signaling is conserved in mammalian cells and that inactivation of Rb and APC induces synergistic cell death through a similar mechanism. These results suggest that elevated TORC1 activity and metabolic stress underpin the evolutionarily conserved synthetic lethal interaction between hyperactivated Wnt signaling and inactivated Rb tumor suppressor. Inactivation of Rb tumor suppressor is common in cancers. Therefore, identification of genes and pathways that are synthetic lethal with Rb will provide new insights into the role of Rb in cancer development and promote the development of novel therapeutic approaches. Here we identified a novel synthetic lethal interaction between Rb inactivation and hyperactivated Wnt signaling and showed that this synthetic lethal interaction is conserved in mammalian systems. We demonstrate that hyperactivated Wnt signaling activate TORC1 activity and induce excessive energy stress with inactivated Rb tumor suppressor, which underpins the evolutionarily conserved synthetic lethal interaction. This study provides novel insights into the interactions between the Rb, Wnt, and mTOR pathways in regulating cellular energy balance, cell growth, and survival.
Collapse
Affiliation(s)
- Tianyi Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Yang Liao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Robin Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Jennifer S Searle
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Xun Pei
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Xuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
33
|
Jusiak B, Karandikar UC, Kwak SJ, Wang F, Wang H, Chen R, Mardon G. Regulation of Drosophila eye development by the transcription factor Sine oculis. PLoS One 2014; 9:e89695. [PMID: 24586968 PMCID: PMC3934907 DOI: 10.1371/journal.pone.0089695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Homeodomain transcription factors of the Sine oculis (SIX) family direct multiple regulatory processes throughout the metazoans. Sine oculis (So) was first characterized in the fruit fly Drosophila melanogaster, where it is both necessary and sufficient for eye development, regulating cell survival, proliferation, and differentiation. Despite its key role in development, only a few direct targets of So have been described previously. In the current study, we aim to expand our knowledge of So-mediated transcriptional regulation in the developing Drosophila eye using ChIP-seq to map So binding regions throughout the genome. We find 7,566 So enriched regions (peaks), estimated to map to 5,952 genes. Using overlap between the So ChIP-seq peak set and genes that are differentially regulated in response to loss or gain of so, we identify putative direct targets of So. We find So binding enrichment in genes not previously known to be regulated by So, including genes that encode cell junction proteins and signaling pathway components. In addition, we analyze a subset of So-bound novel genes in the eye, and find eight genes that have previously uncharacterized eye phenotypes and may be novel direct targets of So. Our study presents a greatly expanded list of candidate So targets and serves as basis for future studies of So-mediated gene regulation in the eye.
Collapse
Affiliation(s)
- Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Umesh C. Karandikar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Su-Jin Kwak
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Morante J, Vallejo DM, Desplan C, Dominguez M. Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell 2013; 27:174-187. [PMID: 24139822 DOI: 10.1016/j.devcel.2013.09.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/22/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
Neuroepithelial cell proliferation must be carefully balanced with the transition to neuroblast (neural stem cell) to control neurogenesis. Here, we show that loss of the Drosophila microRNA mir-8 (the homolog of vertebrate miR-200 family) results in both excess proliferation and ectopic neuroblast transition. Unexpectedly, mir-8 is expressed in a subpopulation of optic-lobe-associated cortex glia that extend processes that ensheath the neuroepithelium, suggesting that glia cells communicate with the neuroepithelium. We provide evidence that miR-8-positive glia express Spitz, a transforming growth factor α (TGF-α)-like ligand that triggers epidermal growth factor receptor (EGFR) activation to promote neuroepithelial proliferation and neuroblast formation. Further, our experiments suggest that miR-8 ensures both a correct glial architecture and the spatiotemporal control of Spitz protein synthesis via direct binding to Spitz 3' UTR. Together, these results establish glial-derived cues as key regulatory elements in the control of neuroepithelial cell proliferation and the neuroblast transition.
Collapse
Affiliation(s)
- Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain.
| | - Diana M Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, Av Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
| |
Collapse
|
35
|
Blocking apoptotic signaling rescues axon guidance in Netrin mutants. Cell Rep 2013; 3:595-606. [PMID: 23499445 DOI: 10.1016/j.celrep.2013.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/14/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022] Open
Abstract
Netrins are guidance cues that form gradients to guide growing axons. We uncover a mechanism for axon guidance by demonstrating that axons can accurately navigate in the absence of a Netrin gradient if apoptotic signaling is blocked. Deletion of the two Drosophila NetA and NetB genes leads to guidance defects and increased apoptosis, and expression of either gene at the midline is sufficient to rescue the connectivity defects and cell death. Surprisingly, pan-neuronal expression of NetB rescues equally well, even though no Netrin gradient has been established. Furthermore, NetB expression blocks apoptosis, suggesting that NetB acts as a neurotrophic factor. In contrast, neuronal expression of NetA increases axon defects. Simply blocking apoptosis in NetAB mutants is sufficient to rescue connectivity, and inhibition of caspase activity in subsets of neurons rescues guidance independently of survival. In contrast to the traditional role of Netrin as simply a guidance cue, our results demonstrate that guidance and survival activities may be functionally related.
Collapse
|
36
|
Nfonsam LE, Cano C, Mudge J, Schilkey FD, Curtiss J. Analysis of the transcriptomes downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch signaling pathways in Drosophila melanogaster. PLoS One 2012; 7:e44583. [PMID: 22952997 PMCID: PMC3432130 DOI: 10.1371/journal.pone.0044583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans.
Collapse
Affiliation(s)
- Landry E. Nfonsam
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Carlos Cano
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
37
|
Abstract
Since the discovery of a single white-eyed male in a population of red eyed flies over 100 years ago (Morgan, 1910), the compound eye of the fruit fly, Drosophila melanogaster, has been a favorite experimental system for identifying genes that regulate various aspects of development. For example, a fair amount of what we know today about enzymatic pathways and vesicular transport is due to the discovery and subsequent characterization of eye color mutants such as white. Likewise, our present day understanding of organogenesis has been aided considerably by studies of mutations, such as eyeless, that either reduce or eliminate the compound eyes. But by far the phenotype that has provided levers into the greatest number of experimental fields has been the humble "rough" eye. The fly eye is composed of several hundred unit-eyes that are also called ommatidia. These unit eyes are packed into a hexagonal array of remarkable precision. The structure of the eye is so precise that it has been compared with that of a crystal (Ready et al., 1976). Even the slightest perturbations to the structure of the ommatidium can be visually detected by light or electron microscopy. The cause for this is two-fold: (1) any defect that affects the hexagonal geometry of a single ommatidium can and will disrupt the positioning of surrounding unit eyes thereby propagating structural flaws and (2) disruptions in genes that govern the development of even a single cell within an ommatidium will affect all unit eyes. In both cases, the effect is the visual magnification of even the smallest imperfection. Studies of rough eye mutants have provided key insights into the areas of cell fate specification, lateral inhibition, signal transduction, transcription factor networks, planar cell polarity, cell proliferation, and programmed cell death just to name a few. This review will attempt to summarize the key steps that are required to assemble each ommatidium.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
38
|
Reid DW, Muyskens JB, Neal JT, Gaddini GW, Cho LY, Wandler AM, Botham CM, Guillemin K. Identification of genetic modifiers of CagA-induced epithelial disruption in Drosophila. Front Cell Infect Microbiol 2012; 2:24. [PMID: 22919616 PMCID: PMC3417398 DOI: 10.3389/fcimb.2012.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/16/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori strains containing the CagA protein are associated with high risk of gastric diseases including atrophic gastritis, peptic ulcers, and gastric cancer. CagA is injected into host cells via a Type IV secretion system where it activates growth factor-like signaling, disrupts cell-cell junctions, and perturbs host cell polarity. Using a transgenic Drosophila model, we have shown that CagA expression disrupts the morphogenesis of epithelial tissues such as the adult eye. Here we describe a genetic screen to identify modifiers of CagA-induced eye defects. We determined that reducing the copy number of genes encoding components of signaling pathways known to be targeted by CagA, such as the epidermal growth factor receptor (EGFR), modified the CagA-induced eye phenotypes. In our screen of just over half the Drosophila genome, we discovered 12 genes that either suppressed or enhanced CagA's disruption of the eye epithelium. Included in this list are genes involved in epithelial integrity, intracellular trafficking, and signal transduction. We investigated the mechanism of one suppressor, encoding the epithelial polarity determinant and junction protein Coracle, which is homologous to the mammalian Protein 4.1. We found that loss of a single copy of coracle improved the organization and integrity of larval retinal epithelia expressing CagA, but did not alter CagA's localization to cell junctions. Loss of a single copy of the coracle antagonist crumbs enhanced CagA-associated disruption of the larval retinal epithelium, whereas overexpression of crumbs suppressed this phenotype. Collectively, these results point to new cellular pathways whose disruption by CagA are likely to contribute to H. pylori-associated disease pathology.
Collapse
Affiliation(s)
- David W Reid
- Institute of Molecular Biology, University of Oregon, Eugene OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Katanaev VL, Kryuchkov MV. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. BIOCHEMISTRY (MOSCOW) 2012; 76:1556-81. [DOI: 10.1134/s0006297911130116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
A screen for X-linked mutations affecting Drosophila photoreceptor differentiation identifies Casein kinase 1α as an essential negative regulator of wingless signaling. Genetics 2011; 190:601-16. [PMID: 22095083 DOI: 10.1534/genetics.111.133827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Wnt and Hedgehog signaling pathways are essential for normal development and are misregulated in cancer. The casein kinase family of serine/threonine kinases regulates both pathways at multiple levels. However, it has been difficult to determine whether individual members of this family have distinct functions in vivo, due to their overlapping substrate specificities. In Drosophila melanogaster, photoreceptor differentiation is induced by Hedgehog and inhibited by Wingless, providing a sensitive system in which to identify regulators of each pathway. We used a mosaic genetic screen in the Drosophila eye to identify mutations in genes on the X chromosome required for signal transduction. We recovered mutations affecting the transcriptional regulator CREB binding protein, the small GTPase dynamin, the cytoskeletal regulator Actin-related protein 2, and the protein kinase Casein kinase 1α. Consistent with its reported function in the β-Catenin degradation complex, Casein Kinase 1α mutant cells accumulate β-Catenin and ectopically induce Wingless target genes. In contrast to previous studies based on RNA interference, we could not detect any effect of the same Casein Kinase 1α mutation on Hedgehog signaling. We thus propose that Casein kinase 1α is essential to allow β-Catenin degradation and prevent inappropriate Wingless signaling, but its effects on the Hedgehog pathway are redundant with other Casein kinase 1 family members.
Collapse
|
41
|
Yan, an ETS-domain transcription factor, negatively modulates the Wingless pathway in the Drosophila eye. EMBO Rep 2011; 12:1047-54. [PMID: 21869817 DOI: 10.1038/embor.2011.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/23/2023] Open
Abstract
We report the identification of yan, an ETS-domain transcription factor belonging to the Drosophila epidermal growth factor receptor (DER) pathway, as an antagonist of the Wingless signalling pathway. We demonstrate that cells lacking yan function in the Drosophila eye show increased Wingless pathway activity, and inhibition of Wingless signalling in yan(-/-) cells rescues the yan mutant phenotype. Biochemical analysis shows that Yan physically associates with Armadillo, a crucial effector of the Wingless pathway, thereby suggesting a direct regulatory mechanism. We conclude that yan represents a new and unsuspected molecular link between the Wingless and DER pathways.
Collapse
|
42
|
RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye. Dev Biol 2011; 359:190-8. [PMID: 21920355 DOI: 10.1016/j.ydbio.2011.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/21/2011] [Accepted: 08/28/2011] [Indexed: 01/13/2023]
Abstract
The retinoblastoma gene Rb is the prototype tumor suppressor and is conserved in Drosophila. We use the developing fly retina as a model system to investigate the role of Drosophila Rb (rbf) during differentiation. This report shows that mutation of rbf and rhinoceros (rno), which encodes a PHD domain protein, leads to a synergistic delay in photoreceptor cell differentiation in the developing eye disc. We show that this differentiation delay phenotype is caused by decreased levels of different components of the Epidermal Growth Factor Receptor (EGFR) signaling pathway in the absence of rbf and rno. We show that rbf is required for normal expression of Rhomboid proteins and activation of MAP kinase in the morphogenetic furrow (MF), while rno is required for the expression of Pointed (Pnt) and Ebi proteins, which are key factors that mediate EGFR signaling output in the nucleus. Interestingly, while removing the transcription activation function of dE2F1 is sufficient to suppress the synergistic differentiation delay, a mutant form of de2f1 that disrupts the binding with RBF but retains the transcription activation function does not mimic the effect of rbf loss. These observations suggest that RBF has additional functions besides dE2F1 binding that regulates EGFR signaling and photoreceptor differentiation.
Collapse
|
43
|
Zhang SSM, Li H, Huang P, Lou LX, Fu XY, Barnstable CJ. MAPK signaling during Müller glial cell development in retina explant cultures. J Ocul Biol Dis Infor 2011; 3:129-33. [PMID: 22888395 DOI: 10.1007/s12177-011-9064-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/03/2011] [Indexed: 02/02/2023] Open
Abstract
The Müller cell is the only glial cell type generated from the retinal neuroepithelium. This cell type controls normal retina homeostasis and has been suggested to play a neuroprotective role. Recent evidence suggests that mammalian Müller cells can de-differentiate and return to a progenitor or stem cell stage following injury or disease. In vivo exploration of the molecular mechanisms of Müller cell differentiation and proliferation will add essential information to manipulate Müller cell functions. Signal transduction pathways that regulate Müller cell responses and activity are a critical part of their cellular machinery. In this study, we focus on mitogen-activated protein kinase (MAPK) signaling pathway during Müller glial cell differentiation and proliferation. We found that both MAPK and STAT3 signaling pathways are present during Müller glial cell development. Ciliary neurotrophic factor (CNTF)-stimulated Müller glial cell proliferation is associated with early developmental stages. Specific inhibition of MAPK phosphorylation significantly reduced the number of Müller glial cells with or without CNTF stimulation. These results suggested that the MAPK signal transduction pathway is important in the formation of Müller glial cells during retina development.
Collapse
|
44
|
Hwang HJ, Rulifson E. Serial specification of diverse neuroblast identities from a neurogenic placode by Notch and Egfr signaling. Development 2011; 138:2883-93. [PMID: 21653613 PMCID: PMC3119302 DOI: 10.1242/dev.055681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used the brain insulin-producing cell (IPC) lineage and its identified neuroblast (IPC NB) as a model to understand a novel example of serial specification of NB identities in the Drosophila dorsomedial protocerebral neuroectoderm. The IPC NB was specified from a small, molecularly identified group of cells comprising an invaginated epithelial placode. By progressive delamination of cells, the placode generated a series of NB identities, including the single IPC NB, a number of other canonical Type I NBs, and a single Type II NB that generates large lineages by transient amplification of neural progenitor cells. Loss of Notch function caused all cells of the placode to form as supernumerary IPC NBs, indicating that the placode is initially a fate equivalence group for the IPC NB fate. Loss of Egfr function caused all placodal cells to apoptose, except for the IPC NB, indicating a requirement of Egfr signaling for specification of alternative NB identities. Indeed, both derepressed Egfr activity in yan mutants and ectopic EGF activity produced supernumerary Type II NBs from the placode. Loss of both Notch and Egfr function caused all placode cells to become IPC NBs and survive, indicating that commitment to NB fate nullified the requirement of Egfr activity for placode cell survival. We discuss the surprising parallels between the serial specification of neural fates from this neurogenic placode and the fly retina.
Collapse
Affiliation(s)
- Helen J Hwang
- Biomedical Sciences Graduate Program, University of California-San Francisco, CA 94143, USA
| | | |
Collapse
|
45
|
Brooks CL, Lazareno-Saez C, Lamoureux JS, Mak MW, Lemieux MJ. Insights into substrate gating in H. influenzae rhomboid. J Mol Biol 2011; 407:687-97. [PMID: 21295583 DOI: 10.1016/j.jmb.2011.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/16/2023]
Abstract
Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed.
Collapse
Affiliation(s)
- Cory L Brooks
- Membrane Protein Disease Research Group, Department of Biochemistry, Faculty of Medicine and Dentistry,University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
46
|
Bap170, a subunit of the Drosophila PBAP chromatin remodeling complex, negatively regulates the EGFR signaling. Genetics 2010; 186:167-81. [PMID: 20551433 DOI: 10.1534/genetics.110.118695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BAP and PBAP constitute the two different forms of the Drosophila melanogaster Brahma chromatin remodelers. A common multisubunit core, containing the Brahma ATPase, can associate either with Osa to form the BAP complex or with Bap170, Bap180, and Sayp to constitute the PBAP complex. Although required for many biological processes, recent genetic analyses revealed that one role of the BAP complex during Drosophila wing development is the proper regulation of EGFR target genes. Here, we show that Bap170, a distinctive subunit of the PBAP complex, participates instead in the negative regulation of EGFR signaling. In adults, loss of Bap170 generates phenotypes similar to the defects induced by hyperactivation of the EGFR pathway, such as overrecruitment of cone and photoreceptor cells and formation extra veins. In genetic interactions, bap170 mutations suppress the loss of veins and photoreceptors caused by mutations affecting the activity of the EGFR pathway. Our results suggest a dual requirement of the PBAP complex: for transcriptional repression of rhomboid and for efficient expression of argos. Interestingly, genetic evidence also indicates that Bap170-mediated repression of rho is inhibited by EGFR signaling, suggesting a scenario of mutual antagonism between EGFR signaling and PBAP function.
Collapse
|
47
|
Abstract
Cells are sequentially recruited during formation of the Drosophila compound eye. A few simple rules are reiteratively utilized to control successive steps of eye assembly. Two themes emerge: the interplay between cell signaling and competence determines diversity of cell types and selective cell adhesion determines spatial patterns of cells. Cell signaling through competence creates signaling relays, which sequentially trigger differentiation of all cell types. Selective cell adhesion, on the other hand, provides forces to drive cells into energy-favored spatial configurations. Organ formation is nevertheless a complex process. The complexity lies in the spatial, temporal, and quantitative precision of gene expression. Many challenging questions remain.
Collapse
Affiliation(s)
- Sujin Bao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
48
|
Siddall NA, Hime GR, Pollock JA, Batterham P. Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc. BMC DEVELOPMENTAL BIOLOGY 2009; 9:64. [PMID: 20003234 PMCID: PMC2797499 DOI: 10.1186/1471-213x-9-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
Abstract
Background During the development of the Drosophila eye, specific cell types differentiate from an initially equipotent group of uncommitted precursor cells. The lozenge (lz) gene, which is a member of the Runt family of transcriptional regulators, plays a pivotal role in mediating this process through regulating the expression of several fate-specifying transcription factors. However, the regulation of lz, and the control of lz expression levels in different cell types is not fully understood. Results Here, we show a genetic interaction between Tramtrack69 (Ttk69) a key transcriptional repressor and an inhibitor of neuronal fate specification, and lz, the master patterning gene of cells posterior to the morphogenetic furrow in the Drosophila eye disc. Loss of Ttk69 expression causes the development of ectopic R7 cells in the third instar eye disc, with these cells being dependent upon Lz for their development. Using the binary UAS Gal4 system, we show that overexpression of Ttk69 causes the loss of lz-dependent differentiating cells, and a down-regulation of Lz expression in the developing eye. The loss of lz-dependent cells can be rescued by overexpressing lz via a GMR-lz transgene. We provide additional data showing that factors functioning upstream of Ttk69 in eye development regulate lz in a Ttk69-dependent manner. Conclusions Our results lead us to conclude that Ttk69 can either directly or indirectly repress lz gene expression to prevent the premature development of R7 precursor cells in the developing eye of Drosophila. We therefore define a mechanism for the tight regulatory control of the master pre-patterning gene, lz, in early Drosophila eye development and provide insight into how differential levels of lz expression can be achieved to effect specific cell fate outcomes.
Collapse
Affiliation(s)
- Nicole A Siddall
- Department of Genetics, University of Melbourne, Parkville, Vic 3010, Australia.
| | | | | | | |
Collapse
|
49
|
Baker NE, Bhattacharya A, Firth LC. Regulation of Hh signal transduction as Drosophila eye differentiation progresses. Dev Biol 2009; 335:356-66. [PMID: 19761763 DOI: 10.1016/j.ydbio.2009.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
Abstract
Differentiation of the Drosophila retina occurs as a morphogenetic furrow sweeps anteriorly across the eye imaginal disc, driven by Hedgehog secretion from photoreceptor precursors differentiating behind the furrow. A BTB protein, Roadkill, is expressed posterior to the furrow and targets the Hedgehog signal transduction component Cubitus interruptus for degradation by Cullin-3 and the proteosome. Clonal analysis and conditional mutant studies establish that roadkill transcription is activated by the EGF receptor and Ras pathway in most differentiating retinal cells, and by both EGF receptor/Ras and by Hedgehog signaling in cells that remain unspecified. These findings outline a circuit by which Hedgehog signal transduction is modified as Hedgehog signaling initiates retinal differentiation. A model is presented for regulation of the Cullin-3 and Cullin-1 pathways that modifies Hedgehog signaling as the morphogenetic furrow moves and the responses of retinal cells change.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
50
|
Roignant JY, Treisman JE. Pattern formation in the Drosophila eye disc. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:795-804. [PMID: 19557685 DOI: 10.1387/ijdb.072483jr] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Differentiation of the Drosophila compound eye from the eye imaginal disc is a progressive process: columns of cells successively differentiate in a posterior to anterior sequence, clusters of cells form at regularly spaced intervals within each column, and individual photoreceptors differentiate in a defined order within each cluster. The progression of differentiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz. Hedgehog refines the spatial position at which each column initiates its differentiation by inducing secondary signals that act over different ranges to control the expression of positive and negative regulators. The position of clusters within each column is controlled by secreted inhibitory signals from clusters in the preceding column, and a single founder neuron, R8, is singled out within each cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to differentiate by producing a short-range signal, Spitz, which induces a secondary short-range signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along the photoreceptor axons and reused within the brain as long-range and local cues to trigger the differentiation and assembly of target neurons.
Collapse
Affiliation(s)
- Jean-Yves Roignant
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, Department of Cell Biology, New York, 10016, USA
| | | |
Collapse
|