1
|
Williams SL, Casas‐Delucchi CS, Raguseo F, Guneri D, Li Y, Minamino M, Fletcher EE, Yeeles JTP, Keyser UF, Waller ZAE, Di Antonio M, Coster G. Replication-induced DNA secondary structures drive fork uncoupling and breakage. EMBO J 2023; 42:e114334. [PMID: 37781931 PMCID: PMC10646557 DOI: 10.15252/embj.2023114334] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.
Collapse
Affiliation(s)
- Sophie L Williams
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Corella S Casas‐Delucchi
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Federica Raguseo
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
| | | | - Yunxuan Li
- Cavendish LaboratoryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | - Marco Di Antonio
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
- Francis Crick InstituteLondonUK
| | - Gideon Coster
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| |
Collapse
|
2
|
Mustafi M, Kwon Y, Sung P, Greene EC. Single-molecule visualization of Pif1 helicase translocation on single-stranded DNA. J Biol Chem 2023; 299:104817. [PMID: 37178921 PMCID: PMC10279920 DOI: 10.1016/j.jbc.2023.104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
3
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Shaw AE, Kairamkonda S, Ghodke H, Schauer GD. Biochemical and single-molecule techniques to study accessory helicase resolution of R-loop proteins at stalled replication forks. Methods Enzymol 2022; 673:191-225. [PMID: 35965008 DOI: 10.1016/bs.mie.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
R-loop proteins present a stable and robust blockade to the progression of a DNA replication fork during S-phase. The consequences of this block can include mutagenesis and other irreversible chromosomal catastrophes, causing genomic instability and disease. As such, further investigation into the molecular mechanisms underlying R-loop protein resolution is warranted. The critical role of non-replicative accessory helicases in R-loop protein resolution has increasingly come into light in recent years. Such helicases include the Pif1-family, monomeric helicases that have been studied in many different contexts and that have been ascribed to a multitude of separable protective functions in the cell. In this chapter, we present protocols to study R-loop protein resolution by Pif1 helicase at stalled replication forks using purified proteins, both at the biochemical and single-molecule level. Our system uses recombinant proteins expressed in Saccharomyces cerevisiae but could apply to practically any organism of interest due to the high interspecies homology of the proteins involved in DNA replication. The methods we outline are extensible to many systems and should be applicable to studying R-loop clearance by any Superfamily (SF) 1B helicase. These techniques will further enable mechanistic research on these critical but understudied components of the genomic maintenance program.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Sreeya Kairamkonda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
5
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
6
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
7
|
Meir A, Greene EC. Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function. Genes (Basel) 2021; 12:1319. [PMID: 34573298 PMCID: PMC8469786 DOI: 10.3390/genes12091319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
8
|
Lu KY, Xin BG, Zhang T, Liu NN, Li D, Rety S, Xi XG. Structural study of the function of Candida Albicans Pif1. Biochem Biophys Res Commun 2021; 567:190-194. [PMID: 34166917 DOI: 10.1016/j.bbrc.2021.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Pif1 helicases, conserved in eukaryotes, are involved in maintaining genome stability in both the nucleus and mitochondria. Here, we report the crystal structure of a truncated Candida Albicans Pif1 (CaPif1368-883) in complex with ssDNA and an ATP analog. Our results show that the Q-motif is responsible for identifying adenine bases, and CaPif1 preferentially utilizes ATP/dATP during dsDNA unwinding. Although CaPif1 shares structural similarities with Saccharomyces cerevisiae Pif1, CaPif1 can contact the thymidine bases of DNA by hydrogen bonds, whereas ScPif1 cannot. More importantly, the crosslinking and mutant experiments have demonstrated that the conformational change of domain 2B is necessary for CaPif1 to unwind dsDNA. These findings contribute to further the understanding of the unwinding mechanism of Pif1.
Collapse
Affiliation(s)
- Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ben-Ge Xin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Teng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG. Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 2021; 49:4129-4143. [PMID: 33784404 PMCID: PMC8053095 DOI: 10.1093/nar/gkab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.
Collapse
Affiliation(s)
- Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D'Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France
| |
Collapse
|
10
|
Ononye OE, Sausen CW, Balakrishnan L, Bochman ML. Lysine acetylation regulates the activity of nuclear Pif1. J Biol Chem 2020; 295:15482-15497. [PMID: 32878983 DOI: 10.1074/jbc.ra120.015164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
In Saccharomyces cerevisiae, the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated in vivo Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation of nuclear Pif1. MS analysis revealed that Pif1 was modified in several domains throughout the protein's sequence on the N terminus (Lys-118 and Lys-129), helicase domain (Lys-525, Lys-639, and Lys-725), and C terminus (Lys-800). Acetylation of Pif1 exacerbated its overexpression toxicity phenotype, which was alleviated upon deletion of its N terminus. Biochemical assays demonstrated that acetylation of Pif1 stimulated its helicase, ATPase, and DNA-binding activities, whereas maintaining its substrate preferences. Limited proteolysis assays indicate that acetylation of Pif1 induces a conformational change that may account for its altered enzymatic properties. We propose that acetylation is involved in regulating of Pif1 activities, influencing a multitude of DNA transactions vital to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, USA.
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
11
|
Muellner J, Schmidt KH. Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family. Genes (Basel) 2020; 11:genes11020224. [PMID: 32093266 PMCID: PMC7073672 DOI: 10.3390/genes11020224] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
The two PIF1 family helicases in Saccharomyces cerevisiae, Rrm3, and ScPif1, associate with thousands of sites throughout the genome where they perform overlapping and distinct roles in telomere length maintenance, replication through non-histone proteins and G4 structures, lagging strand replication, replication fork convergence, the repair of DNA double-strand break ends, and transposable element mobility. ScPif1 and its fission yeast homolog Pfh1 also localize to mitochondria where they protect mitochondrial genome integrity. In addition to yeast serving as a model system for the rapid functional evaluation of human Pif1 variants, yeast cells lacking Rrm3 have proven useful for elucidating the cellular response to replication fork pausing at endogenous sites. Here, we review the increasingly important cellular functions of the yeast PIF1 helicases in maintaining genome integrity, and highlight recent advances in our understanding of their roles in facilitating fork progression through replisome barriers, their functional interactions with DNA repair, and replication stress response pathways.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
12
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction. Molecules 2019; 24:molecules24030396. [PMID: 30678288 PMCID: PMC6384609 DOI: 10.3390/molecules24030396] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the binding between the G-quadruplex structures and related binding proteins. This review will explore the feasibility of G-quadruplex ligands acting as anti-tumor drugs, from basis to application. Meanwhile, since helicase is the most well-defined G-quadruplex-related protein, the most extensive research on the relationship between helicase and G-quadruplexes, and its meaning in drug design, is emphasized.
Collapse
|
14
|
Two Pif1 Family DNA Helicases Cooperate in Centromere Replication and Segregation in Saccharomyces cerevisiae. Genetics 2018; 211:105-119. [PMID: 30442759 PMCID: PMC6325707 DOI: 10.1534/genetics.118.301710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Pif1 family helicases are found in virtually all eukaryotes. Saccharomyces cerevisiae (Sc) encodes two Pif1 family helicases, ScPif1 and Rrm3 ScPif1 is multifunctional, required not only for maintenance of mitochondrial DNA but also for multiple distinct nuclear functions. Rrm3 moves with the replication fork and promotes movement of the fork through ∼1400 hard-to-replicate sites, including centromeres. Here we show that ScPif1, like Rrm3, bound robustly to yeast centromeres but only if the centromere was active. While Rrm3 binding to centromeres occurred in early to mid S phase, about the same time as centromere replication, ScPif1 binding occurred later in the cell cycle when replication of most centromeres is complete. However, the timing of Rrm3 and ScPif1 centromere binding was altered by the absence of the other helicase, such that Rrm3 centromere binding occurred later in pif1-m2 cells and ScPif1 centromere binding occurred earlier in rrm3Δ cells. As shown previously, the modest pausing of replication forks at centromeres seen in wild-type cells was increased in the absence of Rrm3 While a lack of ScPif1 did not result in increased fork pausing at centromeres, pausing was even higher in rrm3Δ pif1Δ cells than in rrm3Δ cells. Likewise, centromere function as monitored by the loss rate of a centromere plasmid was increased in rrm3Δ but not pif1Δ cells, and was even higher in rrm3Δ pif1Δ cells than in rrm3Δ cells. Thus, ScPif1 promotes centromere replication and segregation, but only in the absence of Rrm3 These data also hint at a potential post-S phase function for ScPif1 at centromeres. These studies add to the growing list of ScPif1 functions that promote chromosome stability.
Collapse
|
15
|
Ma JB, Jia Q, Xu CH, Li JH, Huang XY, Ma DF, Li M, Xi XG, Lu Y. Asynchrony of Base-Pair Breaking and Nucleotide Releasing of Helicases in DNA Unwinding. J Phys Chem B 2018; 122:5790-5796. [PMID: 29733603 DOI: 10.1021/acs.jpcb.8b01470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helicases harness the energy of nucleotide triphosphate hydrolysis to unwind double-stranded DNA (dsDNA) in discrete steps. In spite of intensive studies, the mechanism of stepping is still poorly understood. Here, we applied single-molecule fluorescent resonant energy transfer to characterize the stepping of two nonring helicases, Escherichia coli RecQ ( E. coli RecQ) and Saccharomyces cerevisiae Pif1 (ScPif1). Our data showed that when forked dsDNA with free overhangs are used as substrates, both E. coli RecQ and ScPif1 unwind the dsDNA in nonuniform steps that distribute over broad ranges. When tension is exerted on the overhangs, the overall profile of the step-size distribution of ScPif1 is narrowed, whereas that of E. coli RecQ remains unchanged. Moreover, the measured step sizes of the both helicases concentrate on integral multiples of a half base pair. We propose a universal stepping mechanism, in which a helicase breaks one base pair at a time and sequesters the nascent nucleotides and then releases them after a random number of base-pair breaking events. The mechanism can interpret the observed unwinding patterns quantitatively and provides a general view of the helicase activity.
Collapse
Affiliation(s)
- Jian-Bing Ma
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jing-Hua Li
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xing-Yuan Huang
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dong-Fei Ma
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China.,School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu-Guang Xi
- College of Life Sciences , Northwest A&F University , Yangling 712100 , Shaanxi , China.,LBPA, ENS de Cachan , CNRS, Université Paris-Saclay , Cachan F-94235 , France
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
16
|
Lin W, Ma J, Nong D, Xu C, Zhang B, Li J, Jia Q, Dou S, Ye F, Xi X, Lu Y, Li M. Helicase Stepping Investigated with One-Nucleotide Resolution Fluorescence Resonance Energy Transfer. PHYSICAL REVIEW LETTERS 2017; 119:138102. [PMID: 29341672 DOI: 10.1103/physrevlett.119.138102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 06/07/2023]
Abstract
Single-molecule Förster resonance energy transfer is widely applied to study helicases by detecting distance changes between a pair of dyes anchored to overhangs of a forked DNA. However, it has been lacking single-base pair (1-bp) resolution required for revealing stepping kinetics of helicases. We designed a nanotensioner in which a short DNA is bent to exert force on the overhangs, just as in optical or magnetic tweezers. The strategy improved the resolution of Förster resonance energy transfer to 0.5 bp, high enough to uncover differences in DNA unwinding by yeast Pif1 and E. coli RecQ whose unwinding behaviors cannot be differentiated by currently practiced methods. We found that Pif1 exhibits 1-bp-stepping kinetics, while RecQ breaks 1 bp at a time but sequesters the nascent nucleotides and releases them randomly. The high-resolution data allowed us to propose a three-parameter model to quantitatively interpret the apparently different unwinding behaviors of the two helicases which belong to two superfamilies.
Collapse
Affiliation(s)
- Wenxia Lin
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daguan Nong
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghua Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoxing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuguang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, F-94235 Cachan, France
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Structure and function of Pif1 helicase. Biochem Soc Trans 2017; 45:1159-1171. [PMID: 28900015 DOI: 10.1042/bst20170096] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Pif1 family helicases have multiple roles in the maintenance of nuclear and mitochondrial DNA in eukaryotes. Saccharomyces cerevisiae Pif1 is involved in replication through barriers to replication, such as G-quadruplexes and protein blocks, and reduces genetic instability at these sites. Another Pif1 family helicase in S. cerevisiae, Rrm3, assists in fork progression through replication fork barriers at the rDNA locus and tRNA genes. ScPif1 (Saccharomyces cerevisiae Pif1) also negatively regulates telomerase, facilitates Okazaki fragment processing, and acts with polymerase δ in break-induced repair. Recent crystal structures of bacterial Pif1 helicases and the helicase domain of human PIF1 combined with several biochemical and biological studies on the activities of Pif1 helicases have increased our understanding of the function of these proteins. This review article focuses on these structures and the mechanism(s) proposed for Pif1's various activities on DNA.
Collapse
|
18
|
Wei XB, Zhang B, Bazeille N, Yu Y, Liu NN, René B, Mauffret O, Xi XG. A 3'-5' exonuclease activity embedded in the helicase core domain of Candida albicans Pif1 helicase. Sci Rep 2017; 7:42865. [PMID: 28216645 PMCID: PMC5316945 DOI: 10.1038/srep42865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 11/11/2022] Open
Abstract
3′-5′ exonucleases are frequently found to be associated to polymerases or helicases domains in the same enzyme or could function as autonomous entities. Here we uncovered that Candida albicans Pif1 (CaPif1) displays a 3′-5′ exonuclease activity besides its main helicase activity. These two latter activities appear to reside on the same polypeptide and the new exonuclease activity could be mapped to the helicase core domain. We clearly show that CaPif1 displays exclusively exonuclease activity and unambiguously establish the directionality of the exonuclease activity as the 3′-to-5′ polarity. The enzyme appears to follow the two-metal-ion driven hydrolyzing activity exhibited by most of the nucleases, as shown by its dependence of magnesium and also by the identification of aspartic residues. Interestingly, an excellent correlation could be found between the presence of the conserved residues and the exonuclease activity when testing activities on Pif1 enzymes from eight fungal organisms. In contrast to others proteins endowed with the double helicase/exonuclease functionality, CaPif1 differs in the fact that the two activities are embedded in the same helicase domain and not located on separated domains. Our findings may suggest a biochemical basis for mechanistic studies of Pif1 family helicases.
Collapse
Affiliation(s)
- Xiao-Bin Wei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nicolas Bazeille
- LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Ying Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Brigitte René
- LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Olivier Mauffret
- LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
19
|
Li JH, Lin WX, Zhang B, Nong DG, Ju HP, Ma JB, Xu CH, Ye FF, Xi XG, Li M, Lu Y, Dou SX. Pif1 is a force-regulated helicase. Nucleic Acids Res 2016; 44:4330-9. [PMID: 27098034 PMCID: PMC4872122 DOI: 10.1093/nar/gkw295] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Pif1 is a prototypical member of the 5′ to 3′ DNA helicase family conserved from bacteria to human. It has a high binding affinity for DNA, but unwinds double-stranded DNA (dsDNA) with a low processivity. Efficient DNA unwinding has been observed only at high protein concentrations that favor dimerization of Pif1. In this research, we used single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) to study the DNA unwinding activity of Saccharomyces cerevisiae Pif1 (Pif1) under different forces exerted on the tails of a forked dsDNA. We found that Pif1 can unwind the forked DNA repetitively for many unwinding-rezipping cycles at zero force. However, Pif1 was found to have a very limited processivity in each cycle because it loosened its strong association with the tracking strand readily, which explains why Pif1 cannot be observed to unwind DNA efficiently in bulk assays at low protein concentrations. The force enhanced the unwinding rate and the total unwinding length of Pif1 significantly. With a force of 9 pN, the rate and length were enhanced by more than 3- and 20-fold, respectively. Our results imply that the DNA unwinding activity of Pif1 can be regulated by force. The relevance of this characteristic of Pif1 to its cellular functions is discussed.
Collapse
Affiliation(s)
- Jing-Hua Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xia Lin
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Zhang
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Da-Guan Nong
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hai-Peng Ju
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Bing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang-Fu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Guang Xi
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, F-94235 Cachan, France
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Singh SP, Koc KN, Stodola JL, Galletto R. A Monomer of Pif1 Unwinds Double-Stranded DNA and It Is Regulated by the Nature of the Non-Translocating Strand at the 3'-End. J Mol Biol 2016; 428:1053-1067. [PMID: 26908222 DOI: 10.1016/j.jmb.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/17/2022]
Abstract
Using a DNA polymerase coupled assay and FRET (Förster resonance energy transfer)-based helicase assays, in this work, we show that a monomer of Saccharomyces cerevisiae Pif1 can unwind dsDNA (double-stranded DNA). The helicase activity of a Pif1 monomer is modulated by the nature of the 3'-ssDNA (single-stranded DNA) tail of the substrate and its effect on a Pif1-dependent re-winding activity that is coupled to the opening of dsDNA. We propose that, in addition to the ssDNA site on the protein that interacts with the translocating strand, Pif1 has a second site that binds the 3'-ssDNA of the substrate. Interaction of DNA with this site modulates the degree to which re-winding counteracts unwinding. Depending on the nature of the 3'-tail and the length of the duplex DNA to be unwound, this activity is sufficiently strong to mask the helicase activity of a monomer. In excess Pif1 over the DNA, the Pif1-dependent re-winding of the opened DNA strongly limits unwinding, independent of the 3'-tail. We propose that, in this case, binding of DNA to the second site is precluded and modulation of the Pif1-dependent re-winding activity is largely lost.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
21
|
Mendoza O, Bourdoncle A, Boulé JB, Brosh RM, Mergny JL. G-quadruplexes and helicases. Nucleic Acids Res 2016; 44:1989-2006. [PMID: 26883636 PMCID: PMC4797304 DOI: 10.1093/nar/gkw079] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.
Collapse
Affiliation(s)
- Oscar Mendoza
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Jean-Baptiste Boulé
- CNRS UMR 7196, INSERM U1154, MNHN, F-75005 Paris, France Sorbonne Universités, F-75005 Paris, France
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| |
Collapse
|
22
|
Chamieh H, Ibrahim H, Kozah J. Genome-wide identification of SF1 and SF2 helicases from archaea. Gene 2015; 576:214-28. [PMID: 26456193 DOI: 10.1016/j.gene.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022]
Abstract
Archaea microorganisms have long been used as model organisms for the study of protein molecular machines. Archaeal proteins are particularly appealing to study since archaea, even though prokaryotic, possess eukaryotic-like cellular processes. Super Family I (SF1) and Super Family II (SF2) helicase families have been studied in many model organisms, little is known about their presence and distribution in archaea. We performed an exhaustive search of homologs of SF1 and SF2 helicase proteins in 95 complete archaeal genomes. In the present study, we identified the complete sets of SF1 and SF2 helicases in archaea. Comparative analysis between archaea, human and the bacteria E. coli SF1 and SF2 helicases, resulted in the identification of seven helicase families conserved among representatives of the domains of life. This analysis suggests that these helicase families are highly conserved throughout evolution. We highlight the conserved motifs of each family and characteristic domains of the detected families. Distribution of SF1/SF2 families show that Ski2-like, Lhr, Sfth and Rad3-like helicases are ubiquitous among archaeal genomes while the other families are specific to certain archaeal groups. We also report the presence of a novel SF2 helicase specific to archaea domain named Archaea Specific Helicase (ASH). Phylogenetic analysis indicated that ASH has evolved in Euryarchaeota and is evolutionary related to the Ski2-like family with specific characteristic domains. Our study provides the first exhaustive analysis of SF1 and SF2 helicases from archaea. It expands the variety of SF1 and SF2 archaeal helicases known to exist to date and provides a starting point for new biochemical and genetic studies needed to validate their biological functions.
Collapse
Affiliation(s)
- Hala Chamieh
- Faculty of Science, Department of Biology, Lebanese University, Tripoli, Lebanon; Centre AZM pour la Recherche en Biotechnologie et ses Applications, Laboratoire de Biotechnologie Appliquée, Ecole Doctorale Sciences et Technologies, Mitein Street, Tripoli, Lebanon.
| | - Hiba Ibrahim
- Faculty of Science, Department of Environmental and Biological Science, Beirut Arab University, Tripoli, Lebanon
| | - Juliana Kozah
- Faculty of Science, Université Saint Esprit de Kaslik, Jounieh, Lebanon
| |
Collapse
|
23
|
Liu NN, Duan XL, Ai X, Yang YT, Li M, Dou SX, Rety S, Deprez E, Xi XG. The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase. Nucleic Acids Res 2015; 43:8942-54. [PMID: 26384418 PMCID: PMC4605326 DOI: 10.1093/nar/gkv916] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022] Open
Abstract
ScPif1 DNA helicase is the prototypical member of a 5′-to-3′ helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5′-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA–RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.
Collapse
Affiliation(s)
- Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Stephane Rety
- Institut de Biochimie et Chimie des protéines, CNRS UMR5086, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS UMR8113, IDA FR3242, F-94235 Cachan, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS UMR8113, IDA FR3242, F-94235 Cachan, France
| |
Collapse
|
24
|
Molecular mechanism of G-quadruplex unwinding helicase: sequential and repetitive unfolding of G-quadruplex by Pif1 helicase. Biochem J 2015; 466:189-99. [PMID: 25471447 DOI: 10.1042/bj20140997] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in G-quadruplex (G4) studies have confirmed that G4 structures exist in living cells and may have detrimental effects on various DNA transactions. How helicases resolve G4, however, has just begun to be studied and remains largely unknown. In the present paper, we use single-molecule fluorescence assays to probe Pif1-catalysed unfolding of G4 in a DNA construct resembling an ongoing synthesis of lagging strand stalled by G4. Strikingly, Pif1 unfolds and then halts at the ss/dsDNA junction, followed by rapid reformation of G4 and 'acrobatic' re-initiation of unfolding by the same monomer. Thus, Pif1 unfolds single G4 structures repetitively. Furthermore, it is found that Pif1 unfolds G4 sequentially in two large steps. Our study has revealed that, as a stable intermediate, G-triplex (G3) plays an essential role in this process. The repetitive unfolding activity may facilitate Pif1 disrupting the continuously reforming obstructive G4 structures to rescue a stalled replication fork. The proposed mechanism for step-wise unfolding of G4 is probably applicable to other helicases that resolve G4 structures for maintaining genome stability.
Collapse
|
25
|
Li JR, Yu TY, Chien IC, Lu CY, Lin JJ, Li HW. Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends. Nucleic Acids Res 2014; 42:8527-36. [PMID: 24981509 PMCID: PMC4117769 DOI: 10.1093/nar/gku541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomerase, a ribonucleoprotein complex, is responsible for maintaining the telomere length at chromosome ends. Using its RNA component as a template, telomerase uses its reverse transcriptase activity to extend the 3'-end single-stranded, repetitive telomeric DNA sequence. Pif1, a 5'-to-3' helicase, has been suggested to regulate telomerase activity. We used single-molecule experiments to directly show that Pif1 helicase regulates telomerase activity by removing telomerase from telomere ends, allowing the cycling of the telomerase for additional extension processes. This telomerase removal efficiency increases at longer ssDNA gaps and at higher Pif1 concentrations. The enhanced telomerase removal efficiency by Pif1 at the longer single-stranded telomeric DNA suggests a way of how Pif1 regulates telomerase activity and maintains telomere length.
Collapse
Affiliation(s)
- Jing-Ru Li
- Department of Chemistry, National Taiwan University, Taiwan
| | - Tai-Yuan Yu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - I-Chieh Chien
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - Chia-Ying Lu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taiwan
| |
Collapse
|
26
|
Chung WH. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis. J Microbiol 2014; 52:89-98. [PMID: 24500472 DOI: 10.1007/s12275-014-3524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea,
| |
Collapse
|
27
|
Gu Y, Wang J, Li S, Kamiya K, Chen X, Zhou P. Determination of the biochemical properties of full-length human PIF1 ATPase. Prion 2013; 7:341-7. [PMID: 23924759 DOI: 10.4161/pri.26022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The PIF1 helicase family performs many cellular functions. To better understand the functions of the human PIF1 helicase, we characterized the biochemical properties of its ATPase. PIF1 is very sensitive to temperature, whereas it is not affected by pH, and the ATPase activity of human PIF1 is dependent on the divalent cations Mg (2+) and Mn (2+) but not Ca (2+) and Zn (2+). Inhibition was observed when single-stranded DNA was coated with RPA or SSB. Moreover, the ATPase activity of PIF1 proportionally decreased with decreasing oligonucleotide length due to a decreased binding ability. A minimum of 10 oligonucleotide bases are required for PIF1 binding and the hydrolysis of ATP. The analysis of the biochemical properties of PIF1 together with numerous genetic observations should aid in the understanding of its cellular functions.
Collapse
Affiliation(s)
- Yongqing Gu
- Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine; Beijing, PR China; School of Medicine; Shihezi University; Shihezi, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Galletto R, Tomko EJ. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 2013; 41:4613-27. [PMID: 23446274 PMCID: PMC3632115 DOI: 10.1093/nar/gkt117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalysed DNA unwinding. In this work we show that monomers of Pif1 are able to translocate on single-stranded DNA with 5′ to 3′ directionality. We provide evidence that the translocation activity of Pif1 could be used in activities other than unwinding, possibly to displace proteins from ssDNA. Moreover, we show that monomers of Pif1 retain some unwinding activity although a dimer is clearly a better helicase, suggesting that regulation of the oligomeric state of Pif1 could play a role in its functioning as a helicase or a translocase. Finally, although we show that Pif1 can translocate on ssDNA, the translocation profiles suggest the presence on ssDNA of two populations of Pif1, both able to translocate with 5′ to 3′ directionality.
Collapse
Affiliation(s)
- Roberto Galletto
- 252 McDonnell Science Building, Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, 660 South Euclid Avenue, MS8231, Saint Louis, MO 63110,
| | | |
Collapse
|
29
|
Ramanagoudr-Bhojappa R, Blair LP, Tackett AJ, Raney KD. Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 2012; 41:1029-46. [PMID: 23175612 PMCID: PMC3553982 DOI: 10.1093/nar/gks1088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pif1 helicase plays various roles in the maintenance of nuclear and mitochondrial genome integrity in most eukaryotes. Here, we used a proteomics approach called isotopic differentiation of interactions as random or targeted to identify specific protein complexes of Saccharomyces cerevisiae Pif1. We identified a stable association between Pif1 and a mitochondrial SSB, Rim1. In vitro co-precipitation experiments using recombinant proteins indicated a direct interaction between Pif1 and Rim1. Fluorescently labeled Rim1 was titrated with Pif1 resulting in an increase in anisotropy and a Kd value of 0.69 µM. Deletion mutagenesis revealed that the OB-fold domain and the C-terminal tail of Rim1 are both involved in interaction with Pif1. However, a Rim1 C-terminal truncation (Rim1ΔC18) exhibited a nearly 4-fold higher Kd value. Rim1 stimulated Pif1 DNA helicase activity by 4- to 5-fold, whereas Rim1ΔC18 stimulated Pif1 by 2-fold. Hence, two regions of Rim1, the OB-fold domain and the C-terminal domain, interact with Pif1. One of these interactions occurs through the N-terminal domain of Pif1 because a deletion mutant of Pif1 (Pif1ΔN) retained interaction with Rim1 but did not exhibit stimulation of helicase activity. In light of our in vivo and in vitro data, and previous work, it is likely that the Rim1–Pif1 interaction plays a role in coordination of their functions in mtDNA metabolism.
Collapse
|
30
|
Cocca E, De Iorio S, Capriglione T. Identification of a novel helitron transposon in the genome of Antarctic fish. Mol Phylogenet Evol 2011; 58:439-46. [PMID: 21241813 DOI: 10.1016/j.ympev.2010.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 01/18/2023]
Abstract
Rolling-circle (RC) eukaryotic transposons, known as helitrons, are found in a wide range of organisms, from protist to mammals. Autonomous helitrons have a distinctive open reading frame (ORF) encoding a polypeptide that contains typical domains for RC replication (RCR): the Rep (RCR initiator) and the DNA helicase domains. These elements are believed to have an important role in the host genome evolution, owing to their frequent capture of host genes, some of which can evolve into novel genes or become essential for helitron transposition. We conducted a molecular analysis of the suborder Notothenioidei, a group of Perciformes that currently dominate the Antarctic waters by virtue of their remarkable cold-adaptation ability. A novel helitron from the genome of the icefish species Chionodraco hamatus, belonging to the Channichthyidae, the most derived Notothenioids family, was isolated, characterized and designated as HeliNoto (8.9 kb). Its ORF was compared to homologous sequences from different species in a comprehensive phylogenetic analysis. For the first time the putative functional domains of a helitron were subjected to a well accurate structural analysis including chromosomal localization. Finally, the distribution of HeliNoto among Notothenioids was investigated.
Collapse
Affiliation(s)
- Ennio Cocca
- Institute of Protein Biochemistry, National Research Council (CNR), Naples, Italy.
| | | | | |
Collapse
|
31
|
Barranco-Medina S, Galletto R. DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry 2010; 49:8445-54. [PMID: 20795654 DOI: 10.1021/bi100984j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, Pif1 is involved in a wide range of DNA transactions. It operates both in mitochondria and in the nucleus, where it has telomeric and non-telomeric functions. All of the activities of Pif1 rely on its ability to bind to DNA. We have determined the mode of Pif1 binding to different DNA substrates. While Pif1 is a monomer in solution, we show that binding of ssDNA to Pif1 induces protein dimerization. DNA-induced dimerization of Pif1 is also observed on tailed- and forked-dsDNA substrates, suggesting that on the latter formation of a Pif1 dimer prevents binding of additional Pif1 molecules. A dimer of Pif1 also forms on ssDNA of random composition and in the presence of saturating concentrations of nonhydrolyzable ATP analogues. The observation that a Pif1 dimer is formed on unwinding substrates in the presence of ATP analogues suggests that a dimeric form of the enzyme might constitute the pre-initiation complex leading to its unwinding activity.
Collapse
Affiliation(s)
- Sergio Barranco-Medina
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
32
|
Abstract
Pif1p is the prototype member of a family of helicases that is highly conserved from yeast to humans. In yeast, Pif1p is involved in many aspects of the preservation of genome stability. In particular, Pif1p is involved in the maintenance of mitochondrial DNA and in the direct inhibition of telomerase at telomeres and double-stranded breaks. Here we describe methods to purify Pif1p and study in vitro its enzymatic properties and functional interaction with telomerase.
Collapse
|
33
|
Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010; 20:313-24. [PMID: 20456941 DOI: 10.1016/j.sbi.2010.03.011] [Citation(s) in RCA: 688] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/29/2010] [Indexed: 12/25/2022]
Abstract
Helicases of the superfamily (SF) 1 and 2 are involved in virtually all aspects of RNA and DNA metabolism. SF1 and SF2 helicases share a catalytic core with high structural similarity, but different enzymes even within each SF perform a wide spectrum of distinct functions on diverse substrates. To rationalize similarities and differences between these helicases, we outline a classification based on protein families that are characterized by typical sequence, structural, and mechanistic features. This classification complements and extends existing SF1 and SF2 helicase categorizations and highlights major structural and functional themes for these proteins. We discuss recent data in the context of this unifying view of SF1 and SF2 helicases.
Collapse
Affiliation(s)
- Margaret E Fairman-Williams
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
34
|
Makovets S, Blackburn EH. DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 2009; 11:1383-6. [PMID: 19838171 PMCID: PMC2806817 DOI: 10.1038/ncb1985] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022]
Abstract
The response to DNA damage involves regulation of several essential processes to maximize the accuracy of DNA damage repair and cell survival. Telomerase has the potential to interfere with repair by inappropriately adding telomeres to DNA breaks. It was unknown whether cells modulate telomerase in response to DNA damage to increase the accuracy of repair. Here, we report that telomerase action is regulated as a part of the cellular response to DNA double-strand breaks (DSBs). Using yeast, we show that the main ATR/Mec1 DNA damage signalling pathway regulates telomerase action at DSBs. After DNA damage, MEC1-RAD53-DUN1-dependent phosphorylation of the telomerase inhibitor Pif1 occurs. Using a separation of function PIF1 mutation, we show that this phosphorylation is specifically required for the Pif1-mediated telomerase inhibition that takes place at DNA breaks, but not for that at telomeres. Hence DNA damage signalling down-modulates telomerase action at DNA breaks through Pif1 phosphorylation, thus preventing aberrant healing of broken DNA ends by telomerase. These findings uncover a new regulatory mechanism that coordinates competing DNA end-processing activities and thereby promotes DNA repair accuracy and genome integrity.
Collapse
Affiliation(s)
- Svetlana Makovets
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Elizabeth H. Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| |
Collapse
|
35
|
Pike JE, Burgers PMJ, Campbell JL, Bambara RA. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 2009; 284:25170-80. [PMID: 19605347 PMCID: PMC2757220 DOI: 10.1074/jbc.m109.023325] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/25/2009] [Indexed: 11/06/2022] Open
Abstract
We have developed a system to reconstitute all of the proposed steps of Okazaki fragment processing using purified yeast proteins and model substrates. DNA polymerase delta was shown to extend an upstream fragment to displace a downstream fragment into a flap. In most cases, the flap was removed by flap endonuclease 1 (FEN1), in a reaction required to remove initiator RNA in vivo. The nick left after flap removal could be sealed by DNA ligase I to complete fragment joining. An alternative pathway involving FEN1 and the nuclease/helicase Dna2 has been proposed for flaps that become long enough to bind replication protein A (RPA). RPA binding can inhibit FEN1, but Dna2 can shorten RPA-bound flaps so that RPA dissociates. Recent reconstitution results indicated that Pif1 helicase, a known component of fragment processing, accelerated flap displacement, allowing the inhibitory action of RPA. In results presented here, Pif1 promoted DNA polymerase delta to displace strands that achieve a length to bind RPA, but also to be Dna2 substrates. Significantly, RPA binding to long flaps inhibited the formation of the final ligation products in the reconstituted system without Dna2. However, Dna2 reversed that inhibition to restore efficient ligation. These results suggest that the two-nuclease pathway is employed in cells to process long flap intermediates promoted by Pif1.
Collapse
Affiliation(s)
- Jason E. Pike
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Peter M. J. Burgers
- the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Robert A. Bambara
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
36
|
George T, Wen Q, Griffiths R, Ganesh A, Meuth M, Sanders CM. Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks. Nucleic Acids Res 2009; 37:6491-502. [PMID: 19700773 PMCID: PMC2770657 DOI: 10.1093/nar/gkp671] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.
Collapse
Affiliation(s)
- Tresa George
- Institute for Cancer Studies, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | | | | | |
Collapse
|
37
|
Trypanosomes have six mitochondrial DNA helicases with one controlling kinetoplast maxicircle replication. Mol Cell 2009; 35:490-501. [PMID: 19646907 DOI: 10.1016/j.molcel.2009.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/19/2009] [Accepted: 07/14/2009] [Indexed: 11/23/2022]
Abstract
Kinetoplast DNA (kDNA), the trypanosome mitochondrial DNA, contains thousands of minicircles and dozens of maxicircles interlocked in a giant network. Remarkably, Trypanosoma brucei's genome encodes 8 PIF1-like helicases, 6 of which are mitochondrial. We now show that TbPIF2 is essential for maxicircle replication. Maxicircle abundance is controlled by TbPIF2 level, as RNAi of this helicase caused maxicircle loss, and its overexpression caused a 3- to 6-fold increase in maxicircle abundance. This regulation of maxicircle level is mediated by the TbHslVU protease. Previous experiments demonstrated that RNAi knockdown of TbHslVU dramatically increased abundance of minicircles and maxicircles, presumably because a positive regulator of their synthesis escaped proteolysis and allowed synthesis to continue. Here, we found that TbPIF2 level increases following RNAi of the protease. Therefore, this helicase is a TbHslVU substrate and an example of a positive regulator, thus providing a molecular mechanism for controlling maxicircle replication.
Collapse
|
38
|
Cheng X, Qin Y, Ivessa AS. Loss of mitochondrial DNA under genotoxic stress conditions in the absence of the yeast DNA helicase Pif1p occurs independently of the DNA helicase Rrm3p. Mol Genet Genomics 2009; 281:635-45. [PMID: 19277716 DOI: 10.1007/s00438-009-0438-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/21/2009] [Indexed: 11/28/2022]
Abstract
How the cellular amount of mitochondrial DNA (mtDNA) is regulated under normal conditions and in the presence of genotoxic stress is less understood. We demonstrate that the inefficient mtDNA replication process of mutant yeast cells lacking the PIF1 DNA helicase is partly rescued in the absence of the DNA helicase RRM3. The rescue effect is likely due to the increase in the deoxynucleoside triphosphates (dNTPs) pool caused by the lack of RRM3. In contrast, the Pif1p-dependent mtDNA breakage in the presence and absence of genotoxic stress is not suppressed if RRM3 is lacking suggesting that this phenotype is likely independent of the dNTP pool. Pif1 protein (Pif1p) was found to stimulate the incorporation of dNTPs into newly synthesised mtDNA of gradient-purified mitochondria. We propose that Pif1p that acts likely as a DNA helicase in mitochondria affects mtDNA replication directly. Possible roles of Pif1p include the resolution of secondary DNA and/or DNA/RNA structures, the temporarily displacement of tightly bound mtDNA-binding proteins, or the stabilization of the mitochondrial replication complex during mtDNA replication.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
39
|
Budd ME, Campbell JL. Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS One 2009; 4:e4267. [PMID: 19165339 PMCID: PMC2625443 DOI: 10.1371/journal.pone.0004267] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 11/22/2022] Open
Abstract
The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway.
Collapse
Affiliation(s)
- Martin E Budd
- Divisions of Biology and Chemistry, Caltech, Braun Laboratories, Pasadena, California, United States of America
| | | |
Collapse
|
40
|
Griffiths LM, Doudican NA, Shadel GS, Doetsch PW. Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevisiae. Methods Mol Biol 2009; 554:267-86. [PMID: 19513680 DOI: 10.1007/978-1-59745-521-3_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutation of human mitochondrial DNA (mtDNA) has been linked to maternally inherited neuromuscular disorders and is implicated in more common diseases such as cancer, diabetes, and Parkinson's disease. Mutations in mtDNA also accumulate with age and are therefore believed to contribute to aging and age-related pathology. Housed within the mitochondrial matrix, mtDNA encodes several of the proteins involved in the production of ATP via the process of oxidative phosphorylation, which involves the flow of high-energy electrons through the electron transport chain (ETC). Because of its proximity to the ETC, mtDNA is highly vulnerable to oxidative damage mediated by reactive oxygen species (ROS) such as hydrogen peroxide, superoxide, and hydroxyl radicals that are constantly produced by this system. Therefore, it is important to be able to measure oxidative mtDNA damage under normal physiologic conditions and during environmental or disease-associated stress. The budding yeast, Saccharomyces cerevisiae, is a facile and informative model system in which to study such mtDNA oxidative damage because it is a unicellular eukaryotic facultative anaerobe that is conditionally dependent on mitochondrial oxidative phosphorylation for viability. Here, we describe methods for quantifying oxidative mtDNA damage and mutagenesis in S. cerevisiae, several of which could be applied to the development of similar assays in mammalian cells and tissues. These methods include measuring the number of point mutations that occur in mtDNA with the erythromycin resistance assay, quantifying the amount of oxidative DNA damage utilizing a modified Southern blot assay, and measuring mtDNA integrity with the "petite induction" assay.
Collapse
|
41
|
Gu Y, Masuda Y, Kamiya K. Biochemical analysis of human PIF1 helicase and functions of its N-terminal domain. Nucleic Acids Res 2008; 36:6295-308. [PMID: 18835853 PMCID: PMC2577353 DOI: 10.1093/nar/gkn609] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolutionary conserved PIF1 DNA helicase family appears to have largely nonoverlapping cellular functions. To better understand the functions of human PIF1, we investigated biochemical properties of this protein. Analysis of single-stranded (ss) DNA-dependent ATPase activity revealed nonstructural ssDNA to greatly stimulate ATPase activity due to a high affinity for PIF1, even though PIF1 preferentially unwinds forked substrates. This suggests that PIF1 needs a ssDNA region for loading and a forked structure for translocation entrance into a double strand region. Deletion analysis demonstrated novel functions of a unique N-terminal portion, named the PIF1 N-terminal (PINT) domain. When the PINT domain was truncated, apparent affinity for ssDNA and unwinding activity were much reduced, even though the maximum velocity of ATPase activity and K(m) value for ATP were not affected. We suggest that the PINT domain contributes to enhancing the interaction with ssDNA through intrinsic binding activity. In addition, we found DNA strand-annealing activity, also residing in the PINT domain. Notably, the unwinding and annealing activities were inhibited by replication protein A. These results suggest that the functions of PIF1 might be restricted with particular situations and DNA structures.
Collapse
Affiliation(s)
- Yongqing Gu
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | |
Collapse
|
42
|
Rossi ML, Pike JE, Wang W, Burgers PMJ, Campbell JL, Bambara RA. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem 2008; 283:27483-27493. [PMID: 18689797 DOI: 10.1074/jbc.m804550200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic Okazaki fragment maturation requires complete removal of the initiating RNA primer before ligation occurs. Polymerase delta (Pol delta) extends the upstream Okazaki fragment and displaces the 5'-end of the downstream primer into a single nucleotide flap, which is removed by FEN1 nuclease cleavage. This process is repeated until all RNA is removed. However, a small fraction of flaps escapes cleavage and grows long enough to be coated with RPA and requires the consecutive action of the Dna2 and FEN1 nucleases for processing. Here we tested whether RPA inhibits FEN1 cleavage of long flaps as proposed. Surprisingly, we determined that RPA binding to long flaps made dynamically by polymerase delta only slightly inhibited FEN1 cleavage, apparently obviating the need for Dna2. Therefore, we asked whether other relevant proteins promote long flap cleavage via the Dna2 pathway. The Pif1 helicase, implicated in Okazaki maturation from genetic studies, improved flap displacement and increased RPA inhibition of long flap cleavage by FEN1. These results suggest that Pif1 accelerates long flap growth, allowing RPA to bind before FEN1 can act, thereby inhibiting FEN1 cleavage. Therefore, Pif1 directs long flaps toward the two-nuclease pathway, requiring Dna2 cleavage for primer removal.
Collapse
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jason E Pike
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Wensheng Wang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | - Robert A Bambara
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
| |
Collapse
|
43
|
Rogers CW, Challen MP, Muthumeenakshi S, Sreenivasaprasad S, Whipps JM. Disruption of the Coniothyrium minitans PIF1 DNA helicase gene impairs growth and capacity for sclerotial mycoparasitism. MICROBIOLOGY-SGM 2008; 154:1628-1636. [PMID: 18524917 DOI: 10.1099/mic.0.2008/017020-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A non-mycoparasitic restriction enzyme-mediated DNA integration (REMI) mutant of Coniothyrium minitans (R2427) contains two tandem plasmid copies integrated towards the 3' end of an ORF. The predicted polypeptide (845 aa) exhibits high similarity with DNA-helicase proteins from other filamentous fungi and yeasts that play a role in mitochondrial DNA maintenance and repair. Disruption of the C. minitans PIF1 DNA helicase gene results in altered morphology, reduced growth rates and a concomitant loss in ability to mycoparasitize sclerotia of Sclerotinia sclerotiorum. In infection bioassays, R2427 exhibited sparse mycelial growth on the surface of live sclerotia, but no mycelia were detected inside the sclerotia. Conversely, R2427 readily colonized autoclaved sclerotia. Complementation of the mutant with wild-type PIF1 restored normal mycelial growth and mycoparasitic capability, confirming a functional role in the host-pathogen interaction. The C. minitans PIF1 DNA helicase may maintain mitochondrial stability in response to reactive oxygen species, either produced endogenously within the mycoparasite, or exogenously from the sclerotial host.
Collapse
Affiliation(s)
| | - Michael P Challen
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| | | | | | - John M Whipps
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| |
Collapse
|
44
|
Abstract
Pif1p is the prototypical member of the PIF1 family of DNA helicases, a subfamily of SFI helicases conserved from yeast to humans. Baker's yeast Pif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and may also have a general role in chromosomal replication by affecting Okazaki fragment maturation. Here we investigate the substrate preferences for Pif1p. The enzyme was preferentially active on RNA–DNA hybrids, as seen by faster unwinding rates on RNA–DNA hybrids compared to DNA–DNA hybrids. When using forked substrates, which have been shown previously to stimulate the enzyme, Pif1p demonstrated a preference for RNA–DNA hybrids. This preferential unwinding could not be correlated to preferential binding of Pif1p to the substrates that were the most readily unwound. Although the addition of the single-strand DNA-binding protein replication protein A (RPA) stimulated the helicase reaction on all substrates, it did not diminish the preference of Pif1p for RNA–DNA substrates. Thus, forked RNA–DNA substrates are the favored substrates for Pif1p in vitro. We discuss these findings in terms of the known biological roles of the enzyme.
Collapse
Affiliation(s)
- Jean-Baptiste Boulé
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
45
|
Wu L, Hickson ID. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu Rev Genet 2007; 40:279-306. [PMID: 16856806 DOI: 10.1146/annurev.genet.40.110405.090636] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA helicases are found in all kingdoms of life and function in all DNA metabolic processes where the two strands of duplex DNA require to be separated. Here, we review recent developments in our understanding of the roles that helicases play in the intimately linked processes of replication fork repair and homologous recombination, and highlight how the cell has evolved many distinct, and sometimes antagonistic, uses for these enzymes.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | | |
Collapse
|
46
|
Futami K, Shimamoto A, Furuichi Y. Mitochondrial and Nuclear Localization of Human Pif1 Helicase. Biol Pharm Bull 2007; 30:1685-92. [PMID: 17827721 DOI: 10.1248/bpb.30.1685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yeast Pif1 DNA helicase is the prototype member of a helicase subfamily participating in the maintenance of telomere, ribosome, and mitochondria DNAs. The Pif1 DNA helicase family is highly conserved from yeast to human, but the biochemical nature of human homologues remains to be clarified. To this end, we investigated the transcriptional unit of human Pif1 gene and its encoded protein hPif1. The results showed that the hPif1 gene product has at least two isoforms consisting of the conserved helicase motif and differential C-terminal regions derived from alternative splicing of the gene transcript. Deletion mutant analysis showed that Pif1 helicase has nuclear localization signal and mitochondria targeting signal at the N-terminal and C-terminal regions, respectively. In HeLa cells, hPif1 helicase expression was induced by the release of cells from serum starvation, suggesting that hPif1 has roles in the S phase. Consistently, the down regulation of the hPif1 helicase by RNA interference with siRNA caused a cell cycle delay at the S phase. These findings suggest that hPif1 in the nucleus may be involved in chromosome maintenance in association with DNA replication, while the function of hPif1 remains to be clarified.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute Co., Ltd, Kamakura, Kanagawa 247-0063, Japan.
| | | | | |
Collapse
|
47
|
Cheng X, Dunaway S, Ivessa AS. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Mitochondrion 2006; 7:211-22. [PMID: 17257907 DOI: 10.1016/j.mito.2006.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 11/19/2022]
Abstract
Mitochondrial DNA (mtDNA) is highly susceptible to oxidative and chemically induced damage, and these insults lead to a number of diseases. In Saccharomyces cerevisiae, the DNA helicase Pif1p is localized to the nucleus and mitochondria. We show that pif1 mutant cells are sensitive to ethidium bromide-induced damage and this mtDNA is prone to fragmentation. We also show that Pif1p associates with mtDNA. In pif1 mutant cells, mtDNA breaks at specific sites that exhibit Pif1-dependent recombination. We conclude that Pif1p participates in the protection from double-stranded (ds) DNA breaks or alternatively in the repair process of dsDNA breaks in mtDNA.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
48
|
Snow BE, Mateyak M, Paderova J, Wakeham A, Iorio C, Zakian V, Squire J, Harrington L. Murine Pif1 interacts with telomerase and is dispensable for telomere function in vivo. Mol Cell Biol 2006; 27:1017-26. [PMID: 17130244 PMCID: PMC1800700 DOI: 10.1128/mcb.01866-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pif1 is a 5'-to-3' DNA helicase critical to DNA replication and telomere length maintenance in the budding yeast Saccharomyces cerevisiae. ScPif1 is a negative regulator of telomeric repeat synthesis by telomerase, and recombinant ScPif1 promotes the dissociation of the telomerase RNA template from telomeric DNA in vitro. In order to dissect the role of mPif1 in mammals, we cloned and disrupted the mPif1 gene. In wild-type animals, mPif1 expression was detected only in embryonic and hematopoietic lineages. mPif1(-/-) mice were viable at expected frequencies, displayed no visible abnormalities, and showed no reproducible alteration in telomere length in two different null backgrounds, even after several generations. Spectral karyotyping of mPif1(-/-) fibroblasts and splenocytes revealed no significant change in chromosomal rearrangements. Furthermore, induction of apoptosis or DNA damage revealed no differences in cell viability compared to what was found for wild-type fibroblasts and splenocytes. Despite a novel association of mPif1 with telomerase, mPif1 did not affect the elongation activity of telomerase in vitro. Thus, in contrast to what occurs with ScPif1, murine telomere homeostasis or genetic stability does not depend on mPif1, perhaps due to fundamental differences in the regulation of telomerase and/or telomere length between mice and yeast or due to genetic redundancy with other DNA helicases.
Collapse
Affiliation(s)
- Bryan E Snow
- Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Room 706, Toronto M5G 2C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wagner M, Price G, Rothstein R. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics 2006; 174:555-73. [PMID: 16816432 PMCID: PMC1602079 DOI: 10.1534/genetics.104.036905] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 06/30/2006] [Indexed: 12/25/2022] Open
Abstract
RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.
Collapse
Affiliation(s)
- Marisa Wagner
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
50
|
Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA, Kutish GF, Rock DL. Genome of invertebrate iridescent virus type 3 (mosquito iridescent virus). J Virol 2006; 80:8439-49. [PMID: 16912294 PMCID: PMC1563875 DOI: 10.1128/jvi.00464-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iridoviruses (IVs) are classified into five genera: Iridovirus and Chloriridovirus, whose members infect invertebrates, and Ranavirus, Lymphocystivirus, and Megalocytivirus, whose members infect vertebrates. Until now, Chloriridovirus was the only IV genus for which a representative and complete genomic sequence was not available. Here, we report the genome sequence and comparative analysis of a field isolate of Invertebrate iridescent virus type 3 (IIV-3), also known as mosquito iridescent virus, currently the sole member of the genus Chloriridovirus. Approximately 20% of the 190-kbp IIV-3 genome was repetitive DNA, with DNA repeats localized in 15 apparently noncoding regions. Of the 126 predicted IIV-3 genes, 27 had homologues in all currently sequenced IVs, suggesting a genetic core for the family Iridoviridae. Fifty-two IIV-3 genes, including those encoding DNA topoisomerase II, NAD-dependent DNA ligase, SF1 helicase, IAP, and BRO protein, are present in IIV-6 (Chilo iridescent virus, prototype species of the genus Iridovirus) but not in vertebrate IVs, likely reflecting distinct evolutionary histories for vertebrate and invertebrate IVs and potentially indicative of genes that function in aspects of virus-invertebrate host interactions. Thirty-three IIV-3 genes lack homologues in other IVs. Most of these encode proteins of unknown function but also encode IIV3-053L, a protein with similarity to DNA-dependent RNA polymerase subunit 7; IIV3-044L, a putative serine/threonine protein kinase; and IIV3-080R, a protein with similarity to poxvirus MutT-like proteins. The absence of genes present in other IVs, including IIV-6; the lack of obvious colinearity with any sequenced IV; the low levels of amino acid identity of predicted proteins to IV homologues; and phylogenetic analyses of conserved proteins indicate that IIV-3 is distantly related to other IV genera.
Collapse
Affiliation(s)
- Gustavo Delhon
- Plum Island Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Greenport, New York 11944, USA.
| | | | | | | | | | | | | | | |
Collapse
|