1
|
Zhang M, Jiang S, Zhang W, Xiong Y, Jin S, Wang J, Qiao H, Fu H. Functional Study of the Role of the Methyl Farnesoate Epoxidase Gene in the Ovarian Development of Macrobrachium nipponense. Int J Mol Sci 2024; 25:7318. [PMID: 39000423 PMCID: PMC11242038 DOI: 10.3390/ijms25137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.
Collapse
Affiliation(s)
- Mengying Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| |
Collapse
|
2
|
Hou J, Guo X, Li H, Zhang W, Zhang Y, Zhang F, Li H, Wei J, Li X. Precise Regulation of Juvenile Hormone III R-Stereoisomer Synthesis by Apis mellifera through Specifically Binding Methyl-(2 E,6 E)-farnesoate and Strictly Controlling Its Titer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20155-20166. [PMID: 38051952 DOI: 10.1021/acs.jafc.3c05385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Juvenile hormone III (JH III) is a crucial hormone synthesized exclusively as R-stereoisomer in most insects. Herein, we established a mature Tris-HCl culture system for essential biochemical reactions and applied stable instrumental detection methods to analyze JH III, methyl farnesoate (MF) and juvenile hormone acid (JHA) using UPLC-MS/MS. Our results revealed that the R-JH III terminal synthesis pathway in Apis mellifera follows the "esterify then epoxidize" sequence, with precise methyl-(2E,6E)-farnesoate titer regulation and its spatial cis-trans isomerism, achieving selective R-JH III synthesis. Furthermore, we observed that the preferred generation of S/R-JH III chiral enantiomers varied depending on the spatial cis-trans isomerism of different MFs. Our results suggest that S-JH III could theoretically exist in insects, offering a novel perspective for understanding the synthesis mechanism of diverse complex juvenile hormones in different insect species.
Collapse
Affiliation(s)
- Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaxia Guo
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Fu Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
3
|
Bian HX, Chen DB, Li YP, Tan EG, Su X, Huang JC, Su JF, Liu YQ. Transcriptomic analysis of Bombyx mori corpora allata with comparison to prothoracic glands in the final instar larvae. Gene 2021; 813:146095. [PMID: 34902509 DOI: 10.1016/j.gene.2021.146095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The corpus allatum (CA) is an endocrine organ of insects that synthesizes juvenile hormone (JH). Yet little is known regarding the global gene expression profile for the CA, although JH signaling pathway has been well-studied in insects. Here, we report the availability of the transcriptome resource of the isolated CA from the final (fifth) instar larvae of the silkworm, Bombyx mori when the JH titer is low. We also compare it with prothoracic gland (PG) that produces the precursor of 20-hydroxyecdysone (20E), to find some common features in the JH and 20E related genes between the two organs. A total of 17,262 genes were generated using a combination of genome-guided assembly and annotation, in which 10,878 unigenes were enriched in 58 Gene Ontology terms, representing almost all expressed genes in the CA of the 5th instar larvae of B. mori. Transcriptome analysis confirmed that gene for Torso, the receptor of prothoracicotropic hormone (PTTH), is present in the PG but not in the CA. Transcriptome comparison and quantitative real time-PCR indicated that 11 genes related to JH biosynthesis and regulation and six genes for 20E are expressed in both the CA and PG, suggesting that the two organs may cross talk with each other through these genes. The temporal expression profiles of the two genes for the multifunctional neurohormonal factor sericotropin precursor and the uncharacterized protein LOC114249572, the most abundant in the CA and PG transcriptomes respectively, suggested that they might play important roles in the JH and 20E biosynthesis. The present work provides new insights into the CA and PG.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - En-Guang Tan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xin Su
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jing-Chao Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jun-Fang Su
- Center for Experimental Teaching, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
4
|
Li YM, Kai ZP, Huang J, Tobe SS. Lepidopteran HMG-CoA reductase is a potential selective target for pest control. PeerJ 2017; 5:e2881. [PMID: 28133568 PMCID: PMC5251934 DOI: 10.7717/peerj.2881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022] Open
Abstract
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets.
Collapse
Affiliation(s)
- Yuan-mei Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhen-peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Bomtorin AD, Mackert A, Rosa GCC, Moda LM, Martins JR, Bitondi MMG, Hartfelder K, Simões ZLP. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes. PLoS One 2014; 9:e86923. [PMID: 24489805 PMCID: PMC3906101 DOI: 10.1371/journal.pone.0086923] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution.
Collapse
Affiliation(s)
- Ana Durvalina Bomtorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aline Mackert
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Ciências do Ambiente, Universidade Federal de Mato Grosso do Sul, Campus do Pantanal, Corumbá, Brazil
| | - Gustavo Conrado Couto Rosa
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Livia Maria Moda
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana Ramos Martins
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
6
|
Bendena WG, Tobe SS. Families of allatoregulator sequences: a 2011 perspective1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three different peptide families have been named “allatostatins” (ASTs), based on their initial purifications which were based on their ability to inhibit juvenile hormone (JH) biosynthesis. These include (i) a family of peptides that have a consensus C-terminal sequence Y/FXFGL-NH2; (ii) a family of peptides with a conserved C-terminal sequence W(X)6W-NH2; and(iii) a family of peptides with C-terminal sequence PISCF, some of which are C-terminally-amidated. Each allatostatin family has functions distinct and apart from the inhibition of JH biosynthesis. A peptide family known as the “allatotropins” serve to stimulate JH biosynthesis. This family of peptides also has been proven to exert multiple effects dependent on the species in question. Genome and peptidome projects are uncovering new members of these families and it is clear that these structures are not just confined to Insecta but are found in a range of invertebrates. The receptors for these neuropeptides have been identified and tested experimentally for specific ligand binding. The Y/FXFGLa-ASTs exert their action through galanin-like receptors, W(X)6Wa-ASTs through a sex peptide-binding receptor, and PISCF-ASTs through somatostatin-like receptors. These receptors are conserved through evolutionary time and are being identified in numerous invertebrates by way of genome projects.
Collapse
Affiliation(s)
- William G. Bendena
- Department of Biology and Centre for Neurosciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Stephen S. Tobe
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
7
|
Żółtowska K, Lipiński Z, Łopieńska-Biernat E, Farjan M, Dmitryjuk M. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:22. [PMID: 22943407 PMCID: PMC3471771 DOI: 10.1673/031.012.2201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 10/17/2011] [Indexed: 06/01/2023]
Abstract
The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.
Collapse
Affiliation(s)
- Krystyna Żółtowska
- Biochemistry Department, Faculty of Biology, University of Warmia and Mazury, Oczapowskiego 1A Str., 10-719 Olsztyn, Poland
| | - Zbigniew Lipiński
- Veterinary Diagnostic Laboratory BIOLAB, Grunwaldzka 62 Str., 14-100 Ostróda, Poland
| | - Elżbieta Łopieńska-Biernat
- Biochemistry Department, Faculty of Biology, University of Warmia and Mazury, Oczapowskiego 1A Str., 10-719 Olsztyn, Poland
| | - Marek Farjan
- Biochemistry Department, Faculty of Biology, University of Warmia and Mazury, Oczapowskiego 1A Str., 10-719 Olsztyn, Poland
| | - Małgorzata Dmitryjuk
- Biochemistry Department, Faculty of Biology, University of Warmia and Mazury, Oczapowskiego 1A Str., 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Boerjan B, Cardoen D, Bogaerts A, Landuyt B, Schoofs L, Verleyen P. Mass spectrometric profiling of (neuro)-peptides in the worker honeybee, Apis mellifera. Neuropharmacology 2009; 58:248-58. [PMID: 19576913 DOI: 10.1016/j.neuropharm.2009.06.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/03/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022]
Abstract
The honeybee is the economically most important beneficial insect and a model for studying immunity, development and social behavior. Hence, this species was selected for genome sequencing and annotation. An intensive interplay between bioinformatics and mass spectrometry (MS) resulted in the annotation of 36 neuropeptide genes (Hummon et al., 2006). Exactly 100 peptides were demonstrated by a variety of MS techniques. In this follow-up study we dissected and analysed separately all ganglia of the central nervous system (CNS) of adult worker bees in three repeats. The combined MALDI-TOF spectra enabled the accurate mapping of 67 peptides, encoded by 20 precursors. We also demonstrated the expression of an additional but already predicted peptide. In addition to putative bioactive peptides we also list and discuss spacer peptides, propeptides and truncated peptides. The majority of such peptides have a more restricted distribution pattern. Their presence provides some information on the precursor turnover and/or the location of neural cell bodies in which they are produced. Of a given precursor, the (neuro)-peptides with the widest distribution pattern are likely to be the best candidates to interact with receptors. The separate analysis of a neuroendocrine complex and the mushroom body yields suggestions as to which (neuro)-peptides might act as hormones and which neuropeptides might be involved in the complex spectrum of non-hormone driven honeybee behaviour, at these sites. Our data complement immunohistochemical studies of (neuro)-peptides in the honeybee, and form a reference for comparative studies in other insect or arthropod models, in particular in the light of recent or upcoming genome projects. Finally, they also form a firm basis for physiological, functional and/or differential peptidomics studies in the honeybee.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
9
|
Li X. Juvenile hormone and methyl farnesoate production in cockroach embryos in relation to dorsal closure and the reproductive modes of different species of cockroaches. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:159-168. [PMID: 18000875 DOI: 10.1002/arch.20207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Juvenile hormone (JH), produced by the corpora allata (CA), is first detectable after dorsal closure, a conspicuous event in embryogenesis. The present research found that the timing of dorsal closure was consistently at about 45% of the total embryonic development time across most of the oviparous and ovoviviparous cockroach species examined. These included the ovoviviparous cockroaches Blaberus discoidalis, Byrsotria fumigata, Rhyparobia maderae, Nauphoeta cinerea, Phoetalia pallida, Schultesia lampyridiformis, and Panchlora nivea, as well as the oviparous cockroaches Blatta orientalis, Periplaneta americana, Eurycotis floridana, and Supella longipalpa. However, the only known viviparous cockroach Diploptera punctata completed dorsal closure at 20.8% of embryo development time. Methyl farnesoate (MF), the immediate precursor of JH III, is considered a functional molecule in crustaceans; however, in insects its function is still unclear. To understand the role of JH and MF in cockroach embryos, I compared JH and MF biosynthesis and release in several cockroach species of known phylogenetic relationships. Using a radiochemical assay, the present research showed that cockroach embryos representing all three reproductive modes produced and released both JH and MF, as previously shown for B. germanica, N. cinerea, and D. punctata. Members of a pair of embryonic CA from B. discoidalis, B. fumigata, R. maderae, and D. punctata were incubated with and without farnesol. MF accumulated in large amounts only in CA of R. maderae in the presence of farnesol, which indicates that control of the last step of biosynthesis of JH, conversion of MF into JH by MF epoxidase, is probably a rate-limiting step in this species.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
10
|
Kuczer M, Rosiński G, Konopińska D. Insect gonadotropic peptide hormones: some recent developments. J Pept Sci 2007; 13:16-26. [PMID: 17031875 DOI: 10.1002/psc.792] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonadotropic peptides are a new generation of peptide hormone regulators of insect reproduction. They have been isolated from ovaries, oviducts, or brains of insects. The subject of this paper is insect peptides that exert stimulatory or inhibitory effects on ovarian development and oocyte maturation. On the basis of the literature data and the results of our investigations, the structure and biological properties of different groups of peptides are presented.
Collapse
Affiliation(s)
- Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
| | | | | |
Collapse
|
11
|
Wheeler DE, Buck N, Evans JD. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. INSECT MOLECULAR BIOLOGY 2006; 15:597-602. [PMID: 17069635 PMCID: PMC1761130 DOI: 10.1111/j.1365-2583.2006.00681.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Female honeybees have two castes, queens and workers. Developmental fate is determined by larval diet. Coding sequences made available through the Honey Bee Genome Sequencing Consortium allow for a pathway-based approach to understanding caste determination. We examined the expression of several genes of the insulin signalling pathway, which is central to regulation of growth based on nutrition. We found one insulin-like peptide expressed at very high levels in queen but not worker larvae. Also, the gene for an insulin receptor was expressed at higher levels in queen larvae during the 2nd larval instar. These results demonstrate that the insulin pathway is a compelling candidate for pursing the relationship between diet and downstream signals involved in caste determination and differentiation.
Collapse
Affiliation(s)
- D E Wheeler
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| | | | | |
Collapse
|
12
|
Rachinsky A, Mizoguchi A, Srinivasan A, Ramaswamy SB. Allatotropin-like peptide in Heliothis virescens: tissue localization and quantification. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:11-25. [PMID: 16612808 DOI: 10.1002/arch.20117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mating-induced increase in juvenile hormone (JH) biosynthesis in Heliothis virescens females may be stimulated by production and/or release of stimulatory neuropeptides such as allatotropins (AT). Although there is evidence that H. virescens allatotropin may be structurally related to Manduca sexta allatotropin (Manse-AT), little is known of its occurrence and distribution in H. virescens. An enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody against Manse-AT was used to quantify concentrations of Manse-AT immunoreactivity in tissue extracts of H. virescens. In mated females, the highest concentrations of Manse-AT-like material occurred in the brain. The ventral nervous system and the accessory glands also contained considerable amounts of Manse-AT-like material, whereas concentrations were very low in ovaries, fat body, and flight muscle. The Manse-AT antibody was used for whole-mount immunocytochemistry to localize Manse-AT-immunoreactivity in the central nervous system. Several groups of Manse-AT-immunoreactive cells were discovered in the brain, subesophageal ganglion, and thoracic and abdominal ganglia of H. virescens females and males. Strong immunoreactivity was detected in axons going through the corpora cardiaca and branching out over the surface of the corpora allata. The presence of Manse-AT-like material in various locations in the central nervous system suggests that these peptides may have other as yet unknown functions. At the posterior margin of the terminal ganglion of males, a group of large immunoreactive cells was observed that was not present in females. Other than that, there were no obvious differences between virgin and mated females or males. The lack of differences in AT distribution in mated and virgin females suggests that mating-induced differences in female JH biosynthesis rates may be caused by changes in cellular response to AT at the level of the CA, rather than by changes in the amounts of AT acting on the CA.
Collapse
Affiliation(s)
- Anna Rachinsky
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA.
| | | | | | | |
Collapse
|
13
|
Rankin SM, Kwok R, Seymour ML, Shaon Rahman U, Tobe SS. Effects of Manduca allatotropin and localization of Manduca allatotropin-immunoreactive cells in earwigs. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:113-22. [PMID: 16019245 DOI: 10.1016/j.cbpc.2005.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
Manduca sexta allatotropin (Manse-AT) was first isolated on the basis of its ability to stimulate production of juvenile hormone in that insect. We examined whether this neuropeptide affects corpus allatum activity and visceral muscle contraction in adult females of the earwig, Euborellia annulipes. We also assessed the presence of allatotropin-like material in tissues using immunocytochemistry. Manse-AT at 1 nM to 10 muM stimulated juvenile hormone production in vitro by glands of low activity from 2-day virgin females. In glands of high activity from 12-day mated females, 1 and 100 nM allatotropin were effective, but 10 muM was not. Similarly, hindguts of 2-day and 12-day females significantly increased in motility in vitro in response to Manse-AT. A monoclonal antibody to Manse-AT was used to demonstrate allatotropin-like material throughout the nervous system of 2-day, virgin females. Immunoreactivity was most pronounced within varicosities of the corpora cardiaca and perisympathetic organs. No immunofluorescence was observed in gut tissue. Lastly, we showed that extract of retrocerebral complexes also enhanced in vitro hindgut motility from 2-day virgin females, in a dose-dependent manner. These results indicate material similar to M. sexta allatotropin in female earwigs and that such peptides may modulate juvenile hormone biosynthesis and visceral muscle contractions. Sensitivity to the peptides may change with physiological stage.
Collapse
Affiliation(s)
- Susan M Rankin
- Department of Biology, Allegheny College, Meadville, PA 16335, USA.
| | | | | | | | | |
Collapse
|
14
|
Glasscock JM, Mizoguchi A, Rachinsky A. Immunocytochemical localization of an allatotropin in developmental stages of Heliothis virescens and Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:345-55. [PMID: 15890177 DOI: 10.1016/j.jinsphys.2004.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Revised: 11/30/2004] [Accepted: 12/20/2004] [Indexed: 05/02/2023]
Abstract
Juvenile hormone biosynthesis by the corpora allata is regulated by stimulatory neuropeptides called allatotropins and inhibitory neuropeptides called allatostatins. This study localized Manduca sexta allatotropin-like material in developmental stages of the noctuid moth Heliothis virescens and the honeybee Apis mellifera. Immunocytochemical methods using both fluorescence-tagged antibodies and enzyme-coupled antibodies were used to stain the central nervous tissue of both species. H. virescens contains M. sexta allatotropin (Manse-AT)-like material consistently throughout larval development. The distribution patterns of Manse-AT immunoreactive cell bodies in the CNS persisted from one larval instar to the next. It will be discussed how larval Manse-AT distribution patterns differed from those in adults. The total number of AT-containing cells in brain and subesophageal ganglion gradually increased during larval development, whereas in the thoracic and abdominal ganglia, the number of AT-containing neurons remained constant. In the honeybee A. mellifera, Manse-AT immunoreactive cells were only found in a few brains from late last instar larvae (prepupae). Manse-AT-like material was present in a group of 6-8 cells in the pars intercerebralis. However, we did not find any Manse-AT-like material in brains of early last instar larvae, whose corpora allata (CA) are more sensitive to in vitro stimulation by Manse-AT than prepupal CA.
Collapse
Affiliation(s)
- Julie M Glasscock
- Department of Biology, University of Minnesota Duluth, 211 Life Science Building, 55812, USA
| | | | | |
Collapse
|
15
|
Li S, Ouyang YC, Ostrowski E, Borst DW. Allatotropin regulation of juvenile hormone synthesis by the corpora allata from the lubber grasshopper, Romalea microptera. Peptides 2005; 26:63-72. [PMID: 15626505 DOI: 10.1016/j.peptides.2004.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
The in vitro synthesis of juvenile hormone (JH) by corpora allata (CA) from the lubber grasshopper (Romalea microptera) was stimulated by low concentrations of brain extract and this effect was reduced at higher concentrations, suggesting the presence of allatotropin (AT) and allatostatin (AST) factors in the brain. The AT activity of brain extracts caused a rapid and reversible stimulation and appeared to be a peptide(s). Reversed phase (C18) HPLC analysis of brain extracts disclosed two peaks of AT activity but no significant AST activity. Manse-AT, Schgr-NPF, and Locmi-FLRF had no effect on JH synthesis by lubber CA, indicating that the Rommi-AT factors are distinct from these peptides. High concentrations of Dippu-AST-7 and Grybi-AST-1 inhibited JH synthesis, implying that AST factors might be present in lubber grasshoppers. CA response to AT activity of brain extracts varied during the oviposition cycle ( approximately 35 days), with the maximum response occurring on days 16-18. AT activity of brain extracts also varied during the cycle, being highest on day 25. Our data suggest that the lubber CA is largely regulated by AT activity, and that JH synthesis reflects both CA response to AT activity and the level of AT activity in the brain.
Collapse
Affiliation(s)
- Sheng Li
- Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| | | | | | | |
Collapse
|
16
|
Rachinsky A, Srinivasan A, Ramaswamy SB. Regulation of juvenile hormone biosynthesis in Heliothis virescens by Manduca sexta allatotropin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 54:121-133. [PMID: 14571506 DOI: 10.1002/arch.10107] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In Heliothis virescens, reproduction is strictly dependent on juvenile hormone (JH). In females, mating induces a sharp increase in JH titers, which stimulates increased vitellogenin biosynthesis and higher rates of egg production. JH biosynthesis is presumably stimulated by production and/or release of stimulatory neuropeptides such as allatotropins. There is evidence that allatotropin of H. virescens may be structurally related to Manduca sexta allatotropin (Manse-AT). In a radiochemical in vitro assay, synthetic Manse-AT stimulated JH biosynthesis by corpora allata (CA) of virgin H. virescens females in a dose-dependent manner, but had no effect on CA activity in H. virescens males. In females, the CA showed a transient increase in sensitivity to Manse-AT shortly after mating. Several structurally related peptides stimulated CA activity to a similar extent as Manse-AT. Corpora allata activity was stimulated by a Ca2+ ionophore, A23187. A membrane-permeable Ca2+ chelator, BAPTA/AM, antagonized the stimulatory effects of Manse-AT, suggesting that Manse-AT may enhance CA activity by increasing intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Anna Rachinsky
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA.
| | | | | |
Collapse
|
17
|
Stay B. A review of the role of neurosecretion in the control of juvenile hormone synthesis: a tribute to Berta Scharrer. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:653-662. [PMID: 10876108 DOI: 10.1016/s0965-1748(00)00036-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the 1950s, Berta Scharrer predicted that neurosecretions from the brain regulated corpus allatum activity based upon the observation of the change in localization of neurosecretory material in the brain and change in gland activity after severance of nerves between the brain and corpus allatum. Isolation and characterization of neuropeptide regulators of juvenile hormone production by the corpora allata in the late 1980s has confirmed this prediction. Both a stimulatory allatotropin and an inhibitory allatostatin have been isolated from moth brains. Two families of allatostatins, both quite different from each other and that of moths, have been isolated from cockroaches and crickets. The wide distribution of these peptides in the nervous system, in nerves to visceral muscle, in endocrine cells of the midgut and in blood cells, indicate multifunctions in the insects in which they are allatoregulatory. Some of these other functions have been demonstrated in these insects and in insects in which these neuropeptides occur but do not act as corpus allatum regulators. For the latter group, the neuropeptide regulators of the corpora allata have yet to be isolated. The families of neurosecretory regulators will continue to grow.
Collapse
Affiliation(s)
- B Stay
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|