1
|
Rius N, Delprat A, Ruiz A. A divergent P element and its associated MITE, BuT5, generate chromosomal inversions and are widespread within the Drosophila repleta species group. Genome Biol Evol 2013; 5:1127-41. [PMID: 23682154 PMCID: PMC3698922 DOI: 10.1093/gbe/evt076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transposon BuT5 caused two chromosomal inversions fixed in two Drosophila species of the repleta group, D. mojavensis and D. uniseta. BuT5 copies are approximately 1-kb long, lack any coding capacity, and do not resemble any other transposable element (TE). Because of its elusive features, BuT5 has remained unclassified to date. To fully characterize BuT5, we carried out bioinformatic similarity searches in available sequenced genomes, including 21 Drosophila species. Significant hits were only recovered for D. mojavensis genome, where 48 copies were retrieved, 22 of them approximately 1-kb long. Polymerase chain reaction (PCR) and dot blot analyses on 54 Drosophila species showed that BuT5 is homogeneous in size and has a widespread distribution within the repleta group. Thus, BuT5 can be considered as a miniature inverted-repeat TE. A detailed analysis of the BuT5 hits in D. mojavensis revealed three partial copies of a transposon with ends very similar to BuT5 and a P-element-like transposase-encoding region in between. A putatively autonomous copy of this P element was isolated by PCR from D. buzzatii. This copy is 3,386-bp long and possesses a seven-exon gene coding for an 822-aa transposase. Exon–intron boundaries were confirmed by reverse transcriptase-PCR experiments. A phylogenetic tree built with insect P superfamily transposases showed that the D. buzzatii P element belongs to an early diverging lineage within the P-element family. This divergent P element is likely the master transposon mobilizing BuT5. The BuT5/P element partnership probably dates back approximately 16 Ma and is the ultimate responsible for the generation of the two chromosomal inversions in the Drosophila repleta species group.
Collapse
Affiliation(s)
- Nuria Rius
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
2
|
New Drosophila P-like elements and reclassification of Drosophila P-elements subfamilies. Mol Genet Genomics 2012; 287:531-40. [PMID: 22610468 DOI: 10.1007/s00438-012-0691-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Genomic searches for P-like transposable elements were performed (1) in silico in the 12 available Drosophila genomes and (2) by PCR using degenerate primers in 21 Neotropical Drosophila species. In silico searches revealed P-like sequences only in Drosophila persimilis and Drosophila willistoni. Sixteen new P-like elements were obtained by PCR. These sequences were added to sequences of previously described P-like elements, and a phylogenetic analysis was performed. The subfamilies of P-elements described in the literature (Canonical, M, O, T, and K) were included in the reconstructed tree, and all were monophyletic. However, we suggest that some subfamilies can be enlarged, other subdivided, and some new subfamilies may be proposed, totalizing eleven subfamilies, most of which contain new P-like sequences. Our analyses support the monophyly of P-like elements in Drosophilidae. We suggest that, once these elements need host-specific factors to be mobilizable, the horizontal transfer (HT) of P-like elements may be inhibited among more distant taxa. Nevertheless, HT among Drosophilidae species appears to be a common phenomenon.
Collapse
|
3
|
Fernández-Medina RD, Struchiner CJ, Ribeiro JMC. Novel transposable elements from Anopheles gambiae. BMC Genomics 2011; 12:260. [PMID: 21605407 PMCID: PMC3212995 DOI: 10.1186/1471-2164-12-260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/23/2011] [Indexed: 12/25/2022] Open
Abstract
Background Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the Anopheles gambiae genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of An. gambiae. Results Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed. Conclusions Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio Arouca, Av, Brasil, 4365, 21040 360, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
4
|
Kennedy RC, Unger MF, Christley S, Collins FH, Madey GR. An automated homology-based approach for identifying transposable elements. BMC Bioinformatics 2011; 12:130. [PMID: 21535899 PMCID: PMC3107183 DOI: 10.1186/1471-2105-12-130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background Transposable elements (TEs) are mobile sequences found in nearly all eukaryotic genomes. They have the ability to move and replicate within a genome, often influencing genome evolution and gene expression. The identification of TEs is an important part of every genome project. The number of sequenced genomes is rapidly rising, and the need to identify TEs within them is also growing. The ability to do this automatically and effectively in a manner similar to the methods used for genes is of increasing importance. There exist many difficulties in identifying TEs, including their tendency to degrade over time and that many do not adhere to a conserved structure. In this work, we describe a homology-based approach for the automatic identification of high-quality consensus TEs, aimed for use in the analysis of newly sequenced genomes. Results We describe a homology-based approach for the automatic identification of TEs in genomes. Our modular approach is dependent on a thorough and high-quality library of representative TEs. The implementation of the approach, named TESeeker, is BLAST-based, but also makes use of the CAP3 assembly program and the ClustalW2 multiple sequence alignment tool, as well as numerous BioPerl scripts. We apply our approach to newly sequenced genomes and successfully identify consensus TEs that are up to 99% identical to manually annotated TEs. Conclusions While TEs are known to be a major force in the evolution of genomes, the automatic identification of TEs in genomes is far from mature. In particular, there is a lack of automated homology-based approaches that produce high-quality TEs. Our approach is able to generate high-quality consensus TE sequences automatically, requiring the user to only provide a few basic parameters. This approach is intentionally modular, allowing researchers to use components separately or iteratively. Our approach is most effective for TEs with intact reading frames. The implementation, TESeeker, is available for download as a virtual appliance, while the library of representative TEs is available as a separate download.
Collapse
Affiliation(s)
- Ryan C Kennedy
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA.
| | | | | | | | | |
Collapse
|
5
|
Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool. Mol Cell Biochem 2011; 354:301-9. [PMID: 21516337 DOI: 10.1007/s11010-011-0832-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/15/2011] [Indexed: 12/16/2022]
Abstract
Transposons have been promising elements for gene integration, and the Sleeping Beauty (SB) system has been the major one for many years, although there have been several other transposon systems available, for example, Tol2. However, recently another system known as PiggyBac (PB) has been introduced and developed for fulfilling the same purposes, for example, mutagenesis, transgenesis and gene therapy and in some cases with improved transposition efficiency and advantages over the Sleeping Beauty transposon system, although improved hyperactive transposase has highly increased the transposition efficacy for SB. The PB systems have been used in many different scientific research fields; therefore, the purpose of this review is to describe some of these versatile uses of the PiggyBac system to give readers an overview on the usage of PiggyBac system.
Collapse
|
6
|
de Setta N, Costa APP, Lopes FR, Van Sluys MA, Carareto CMA. Transposon display supports transpositional activity of P elements in species of the saltans group of Drosophila. J Genet 2007; 86:37-43. [PMID: 17656847 DOI: 10.1007/s12041-007-0005-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mobilization of two P element subfamilies (canonical and O-type) from Drosophila sturtevanti and D. saltans was evaluated for copy number and transposition activity using the transposon display (TD) technique. Pairwise distances between strains regarding the insertion polymorphism profile were estimated. Amplification of the P element based on copy number estimates was highly variable among the strains (D. sturtevanti, canonical 20.11, O-type 9.00; D. saltans, canonical 16.4, O-type 12.60 insertions, on average). The larger values obtained by TD compared to our previous data by Southern blotting support the higher sensitivity of TD over Southern analysis for estimating transposable element copy numbers. The higher numbers of the canonical P element and the greater divergence in its distribution within the genome of D. sturtevanti (24.8%) compared to the O-type (16.7%), as well as the greater divergence in the distribution of the canonical P element, between the D. sturtevanti (24.8%) and the D. saltans (18.3%) strains, suggest that the canonical element occupies more sites within the D. sturtevanti genome, most probably due to recent transposition activity. These data corroborate the hypothesis that the O-type is the oldest subfamily of P elements in the saltans group and suggest that the canonical P element is or has been transpositionally active until more recently in D. sturtevanti.
Collapse
Affiliation(s)
- Nathalia de Setta
- Universidade Estadual Paulista, Departamento de Biologia, São José do Rio Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
7
|
Quesneville H, Nouaud D, Anxolabéhère D. P elements and MITE relatives in the whole genome sequence of Anopheles gambiae. BMC Genomics 2006; 7:214. [PMID: 16919158 PMCID: PMC1562414 DOI: 10.1186/1471-2164-7-214] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 08/18/2006] [Indexed: 11/25/2022] Open
Abstract
Background Miniature Inverted-repeat Terminal Elements (MITEs), which are particular class-II transposable elements (TEs), play an important role in genome evolution, because they have very high copy numbers and display recurrent bursts of transposition. The 5' and 3' subterminal regions of a given MITE family often show a high sequence similarity with the corresponding regions of an autonomous Class-II TE family. However, the sustained presence over a prolonged evolutionary time of MITEs and TE master copies able to promote their mobility has been rarely reported within the same genome, and this raises fascinating evolutionary questions. Results We report here the presence of P transposable elements with related MITE families in the Anopheles gambiae genome. Using a TE annotation pipeline we have identified and analyzed all the P sequences in the sequenced A. gambiae PEST strain genome. More than 0.49% of the genome consists of P elements and derivates. P elements can be divided into 9 different subfamilies, separated by more than 30% of nucleotide divergence. Seven of them present full length copies. Ten MITE families are associated with 6 out of the 9 Psubfamilies. Comparing their intra-element nucleotide diversities and their structures allows us to propose the putative dynamics of their emergence. In particular, one MITE family which has a hybrid structure, with ends each of which is related to a different P-subfamily, suggests a new mechanism for their emergence and their mobility. Conclusion This work contributes to a greater understanding of the relationship between full-length class-II TEs and MITEs, in this case P elements and their derivatives in the genome of A. gambiae. Moreover, it provides the most comprehensive catalogue to date of P-like transposons in this genome and provides convincing yet indirect evidence that some of the subfamilies have been recently active.
Collapse
Affiliation(s)
- Hadi Quesneville
- Dynamique du Génome et Evolution, Institut Jacques Monod, CNRS, Universités P.M. Curie and D. Diderot 2, Place Jussieu, 75252 Paris, France
- Bioinformatics and Genomics Lab, Institut Jacques Monod, CNRS, Universités P.M. Curie and D. Diderot 2, Place Jussieu, 75252 Paris, France
| | - Danielle Nouaud
- Dynamique du Génome et Evolution, Institut Jacques Monod, CNRS, Universités P.M. Curie and D. Diderot 2, Place Jussieu, 75252 Paris, France
| | - Dominique Anxolabéhère
- Dynamique du Génome et Evolution, Institut Jacques Monod, CNRS, Universités P.M. Curie and D. Diderot 2, Place Jussieu, 75252 Paris, France
| |
Collapse
|
8
|
Germanos E, Mota NR, Loreto EL. Transposable elements from the mesophragmatica group of Drosophila. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000400026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Elgion L.S. Loreto
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
9
|
Boulesteix M, Biémont C. Transposable elements in mosquitoes. Cytogenet Genome Res 2005; 110:500-9. [PMID: 16093703 DOI: 10.1159/000084983] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 01/27/2004] [Indexed: 11/19/2022] Open
Abstract
We describe the current state of knowledge about transposable elements (TEs) in different mosquito species. DNA-based elements (class II elements), non-LTR retrotransposons (class I elements), and MITEs (Miniature Inverted Repeat Transposable Elements) are found in the three genera, Anopheles, Aedes and Culex, whereas LTR retrotransposons (class I elements) are found only in Anopheles and Aedes. Mosquitoes were the first insects in which MITEs were reported; they have several LTR retrotransposons belonging to the Pao family, which is distinct from the Gypsy-Ty3 and Copia-Ty1 families. The number of TE copies shows huge variations between classes of TEs within a given species (from 1 to 1000), in sharp contrast to Drosophila, which shows only relatively minor differences in copy number between elements (from 1 to 100). The genomes of these insects therefore display major differences in the amount of TEs and therefore in their structure and global composition. We emphasize the need for more population genetic data about the activity of TEs, their distribution over chromosomes and their frequencies in natural populations of mosquitoes, to further the current attempts to develop a transgenic mosquito unable to transmit malaria that is intended to replace the natural populations.
Collapse
Affiliation(s)
- M Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
10
|
Silva JC, Kidwell MG. Evolution of P elements in natural populations of Drosophila willistoni and D. sturtevanti. Genetics 2005; 168:1323-35. [PMID: 15579688 PMCID: PMC1448778 DOI: 10.1534/genetics.103.025775] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine how population structure of the host species affects the spread of transposable elements and to assess the strength of selection acting on different structural regions, we sequenced P elements from strains of Drosophila willistoni and Drosophila sturtevanti sampled from across the distributions of these species. Elements from D. sturtevanti exhibited considerable sequence variation, and similarity among them was correlated to geographic distance between collection sites. By contrast, all D. willistoni elements sampled were essentially identical (pi < 0.2%) and exhibited patterns typical of a recent population expansion. While the canonical P elements sampled from D. sturtevanti appear to be long-time residents in that species, a rapid expansion of a very young canonical P-element lineage is suggested in D. willistoni, overcoming barriers such as large geographical distances and moderate levels of population subdivision. Between-species comparisons reveal selective constraints on P-element evolution, as indicated by significantly different substitution rates in noncoding, silent, and replacement sites. Most remarkably, in addition to replacement sites, selection pressure appears to be strong in the first and third introns and in the 3' and 5' flanking regions.
Collapse
Affiliation(s)
- Joana C Silva
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
11
|
Polachini de Castro J, Carareto CMA. P elements in the saltans group of Drosophila: a new evaluation of their distribution and number of genomic insertion sites. Mol Phylogenet Evol 2005; 32:383-7. [PMID: 15186822 DOI: 10.1016/j.ympev.2004.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 01/02/2004] [Indexed: 11/28/2022]
Abstract
Few are studies on P elements that have addressed the saltans group. These studies had shown that species from the cordata and elliptica subgroups were devoid of any discernible P homologous sequences, while species from the parasaltans, sturtevanti, and saltans subgroups all contain P element sequences. Our analyses showed the presence of one to 15 P element insertion sites in species of the saltans group, including Drosophila neocordata and Drosophila emarginata (cordata and elliptica subgroups, respectively). From these species, only those from the parasaltans, sturtevanti, and saltans subgroups harbor canonical P elements and, only those of the last two subgroups seem to harbor putative full-sized elements. Due to the low similarity of the sequences found in D. neocordata and D. emarginata to those earlier described, we suggest that these sequences might be rudimental P element derivatives that were present in the ancestral of the subgenus Sophophora.
Collapse
Affiliation(s)
- Juliana Polachini de Castro
- Departamento de Biologia, Universidade Estadual Paulista-UNESP, Rua Cristóvão Colombo 2265, CEP 15054-000, São José do Rio Preto-SP, Brazil
| | | |
Collapse
|
12
|
Hammer SE, Strehl S, Hagemann S. Homologs of Drosophila P transposons were mobile in zebrafish but have been domesticated in a common ancestor of chicken and human. Mol Biol Evol 2004; 22:833-44. [PMID: 15616143 DOI: 10.1093/molbev/msi068] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A substantial fraction of vertebrate and invertebrate genomes is composed of mobile elements and their derivatives. One of the most intensively studied transposon families, the P elements of Drosophila, was thought to exist exclusively in the genomes of dipteran insects. Based on the data provided by the human genome project, in 2001 our group has identified a P element-homologous sequence in the human genome. This P element-homologous human gene, named Phsa, is 19,533 nucleotides long, comprises six exons and five introns, and encodes a protein of still unknown function with a length of 903 amino acid residues. The N-terminal THAP domain of the putative Phsa protein shows similarities to the site-specific DNA-binding domain of the Drosophila P element transposase. In the present study, FISH analysis and the screening of a human lambda genomic library revealed a single copy of Phsa located on the long arm of chromosome 4, upstream of a gene coding for the hypothetical protein DKFZp686L1814. The same gene arrangement was found for the homologous gene Pgga in the genome of chicken, thus, displaying Pgga at orthologous position on the long arm of chromosome 4. The single-copy gene status and the absence of terminal inverted repeats and target-site duplications indicate that Phsa and Pgga constitute domesticated stationary sequences. In contrast, a considerable number of P-homologous sequences with terminal inverted repeats and intact target-site duplications could be identified in zebrafish, strongly indicating that Pdre elements were mobile within the zebrafish genome. Pdre elements are the first P-like transposons identified in a vertebrate species. With respect to Phsa, gene expression studies showed that Phsa is expressed in a broad range of human tissues, suggesting that the putative Phsa protein plays a not yet understood but essential role in a specific metabolic pathway. We demonstrate that P-homologous DNA sequences occur in the genomes of 21 analyzed vertebrates but only as rudiments in the rodents. Finally, the evolutionary history of P element-homologous vertebrate sequences is discussed in the context of the "molecular domestication" hypothesis versus the "source gene hypothesis."
Collapse
Affiliation(s)
- Sabine E Hammer
- Laboratories of Genome Dynamics, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
13
|
Arensburger P, Kim YJ, Orsetti J, Aluvihare C, O'Brochta DA, Atkinson PW. An active transposable element, Herves, from the African malaria mosquito Anopheles gambiae. Genetics 2004; 169:697-708. [PMID: 15545643 PMCID: PMC1449121 DOI: 10.1534/genetics.104.036145] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements have proven to be invaluable tools for genetically manipulating a wide variety of plants, animals, and microbes. Some have suggested that they could be used to spread desirable genes, such as refractoriness to Plasmodium infection, through target populations of Anopheles gambiae, thereby disabling the mosquito's ability to transmit malaria. To achieve this, a transposon must remain mobile and intact after the initial introduction into the genome. Endogenous, active class II transposable elements from An. gambiae have not been exploited as gene vectors/drivers because none have been isolated. We report the discovery of an active class II transposable element, Herves, from the mosquito An. gambiae. Herves is a member of a distinct subfamily of hAT elements that includes the hopper-we element from Bactrocera dorsalis and B. cucurbitae. Herves was transpositionally active in mobility assays performed in Drosophila melanogaster S2 cells and developing embryos and was used as a germ-line transformation vector in D. melanogaster. Herves displays an altered target-site preference from the distantly related hAT elements, Hermes and hobo. Herves is also present in An. arabiensis and An. merus with copy numbers similar to that found in An. gambiae. Preliminary data from an East African population are consistent with the element being transpositionally active in mosquitoes.
Collapse
Affiliation(s)
- Peter Arensburger
- Department of Entomology, University of California, Riverside, California 92521-0314, USA
| | | | | | | | | | | |
Collapse
|
14
|
Tu Z, Coates C. Mosquito transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:631-644. [PMID: 15242704 DOI: 10.1016/j.ibmb.2004.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
The completion of the genome assembly for the African malaria mosquito, Anopheles gambiae, and continuing genomic efforts for the yellow fever mosquito, Aedes aegypti, have allowed the use of bioinformatics tools to identify and characterize a diverse array of transposable elements (TEs) in these and other mosquito genomes. An overview of the types and number of both RNA-mediated and DNA-mediated TEs that are found in mosquito genomes is presented. A number of novel and interesting TEs from these species are discussed in more detail. These findings have significant implications for our understanding of mosquito genome evolution and for future modifications of natural mosquito populations through the use of TE-mediated genetic transformation.
Collapse
Affiliation(s)
- Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
15
|
Oliveira de Carvalho M, Silva JC, Loreto ELS. Analyses of P-like transposable element sequences from the genome of Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2004; 13:55-63. [PMID: 14728667 DOI: 10.1111/j.1365-2583.2004.00461.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have identified 50 P element-homologous sequences in the genome of Anopheles gambiae by performing homology searches against the public genome database of A. gambiae using the canonical P element from Drosophila melanogaster as a query sequence. While most of these sequences belong to P subfamilies previously described from anopheline mosquitoes, at least four new subfamilies were identified. One of these A. gambiae P elements, which we termed AgPLS, was analysed in detail. AgPLS consists of three exons and does not have inverted terminal repeats. This element retains several of the structural features of other P-encoded peptides, such as motifs involved in DNA-protein and protein-protein interaction, and a motif involved in GTP utilization. Strong sequence and structural similarity to functional P elements, a number of nonsynonymous substitutions that is smaller than that of synonymous substitutions and the presence of putative nuclear localization signals suggest that the A. gambiae elements may retain the capacity for transposition or its repression. These sequences seem to be most closely related to P elements described from Musca domestica and Lucilia cuprina, the only P element hosts known outside the family Drosophilidae.
Collapse
Affiliation(s)
- M Oliveira de Carvalho
- Departamento de Biologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
16
|
Castro JPD, Carareto CM. Characterization of two full-sized P elements from Drosophila sturtevanti and Drosophila prosaltans. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|