Morel F, Renoux M, Alziari S. Mitochondrial biochemical activities and heteroplasmy evolution in established D. subobscura cell line.
In Vitro Cell Dev Biol Anim 2006;
42:201-7. [PMID:
16948501 DOI:
10.1290/0601003.1]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A mutant strain of drosophila (D. subobscura) has two types of mitochondrial genomes: a small population (20%) identical to that of the wild strain (15.9 kb) and a predominant population (80%) which has undergone a 5-kb deletion affecting more than 30% of the coding zone. Two cell lines were established from homogenates of embryos from mutant and wild strains. The activities of the respiratory complexes measured in the different cell lines are much lower than in the flies, indicating a glycolytic metabolism. Various modifications of the medium composition did not change this metabolic pathway. The mutant cell line has two types of populations of mitochondrial genomes and the heteroplasmy is equivalent to that measured in the mutant strain. However, the biochemical characteristics differ from those observed in the flies (i.e., the decrease of complex I and III activities), and the various systems of compensation for the consequences of the deletion that are showed in the mutant strain are no longer observed. Furthermore, in contrast with observations made on mutant flies, the heteroplasmy appears unstable in the mutant cell lines: after 60 or so generations, it progressively decreases until it disappears completely. The limited importance of mitochondrial energy metabolism in cells may explain the low impact of the mutation on the established cell line, in contrast to what is seen in the mutant strain.
Collapse