1
|
Yang Y, Liu J, Fu X, Zhou F, Zhang S, Zhang X, Huang Q, Krupovic M, She Q, Ni J, Shen Y. A novel RHH family transcription factor aCcr1 and its viral homologs dictate cell cycle progression in archaea. Nucleic Acids Res 2023; 51:1707-1723. [PMID: 36715325 PMCID: PMC9976878 DOI: 10.1093/nar/gkad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Cell cycle regulation is of paramount importance for all forms of life. Here, we report that a conserved and essential cell cycle-specific transcription factor (designated as aCcr1) and its viral homologs control cell division in Sulfolobales. We show that the transcription level of accr1 reaches peak during active cell division (D-phase) subsequent to the expression of CdvA, an archaea-specific cell division protein. Cells over-expressing the 58-aa-long RHH (ribbon-helix-helix) family cellular transcription factor as well as the homologs encoded by large spindle-shaped viruses Acidianus two-tailed virus (ATV) and Sulfolobus monocaudavirus 3 (SMV3) display significant growth retardation and cell division failure, manifesting as enlarged cells with multiple chromosomes. aCcr1 over-expression results in downregulation of 17 genes (>4-fold), including cdvA. A conserved motif, aCcr1-box, located between the TATA-binding box and the translation initiation site of 13 out of the 17 highly repressed genes, is critical for aCcr1 binding. The aCcr1-box is present in the promoters and 5' UTRs of cdvA genes across Sulfolobales, suggesting that aCcr1-mediated cdvA repression is an evolutionarily conserved mechanism by which archaeal cells dictate cytokinesis progression, whereas their viruses take advantage of this mechanism to manipulate the host cell cycle.
Collapse
Affiliation(s)
- Yunfeng Yang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Junfeng Liu
- Correspondence may also be addressed to Junfeng Liu.
| | - Xiaofei Fu
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Fan Zhou
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuo Zhang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Xuemei Zhang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, 75015, France
| | - Qunxin She
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | | |
Collapse
|
2
|
Mauerhofer LM, Pappenreiter P, Paulik C, Seifert AH, Bernacchi S, Rittmann SKMR. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol (Praha) 2019; 64:321-360. [PMID: 30446943 PMCID: PMC6529396 DOI: 10.1007/s12223-018-0658-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Anaerobic microorganisms (anaerobes) possess a fascinating metabolic versatility. This characteristic makes anaerobes interesting candidates for physiological studies and utilizable as microbial cell factories. To investigate the physiological characteristics of an anaerobic microbial population, yield, productivity, specific growth rate, biomass production, substrate uptake, and product formation are regarded as essential variables. The determination of those variables in distinct cultivation systems may be achieved by using different techniques for sampling, measuring of growth, substrate uptake, and product formation kinetics. In this review, a comprehensive overview of methods is presented, and the applicability is discussed in the frame of anaerobic microbiology and biotechnology.
Collapse
Affiliation(s)
- Lisa-Maria Mauerhofer
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Patricia Pappenreiter
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Linz, Austria
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Linz, Austria
| | | | | | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
3
|
Liu Y, Wang J, Liu Y, Wang Y, Zhang Z, Oksanen HM, Bamford DH, Chen X. Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain. Mol Microbiol 2015; 98:1002-20. [PMID: 26331239 DOI: 10.1111/mmi.13204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziqian Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanna M Oksanen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Dennis H Bamford
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Lindås AC, Chruszcz M, Bernander R, Valegård K. Structure of crenactin, an archaeal actin homologue active at 90°C. ACTA ACUST UNITED AC 2014; 70:492-500. [DOI: 10.1107/s1399004714000935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022]
Abstract
The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90°C) crenarchaeonPyrobaculum calidifontisis reported at 3.35 Å resolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein. Crenactin-specific features are also evident, as well as elements that are shared between crenactin and eukaryotic actin but are not found in MreB. In the crystal, crenactin monomers form right-handed helices, demonstrating that the protein is capable of forming filament-like structures. Monomer interactions in the helix, as well as interactions between crenactin and ADP in the nucleotide-binding pocket, are resolved at the atomic level and compared with those of actin and MreB. The results provide insights into the structural and functional properties of a heat-stable archaeal actin and contribute to the understanding of the evolution of actin-family proteins in the three domains of life.
Collapse
|
5
|
Almendro-Vedia VG, Monroy F, Cao FJ. Mechanics of constriction during cell division: a variational approach. PLoS One 2013; 8:e69750. [PMID: 23990888 PMCID: PMC3749217 DOI: 10.1371/journal.pone.0069750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of [Formula: see text], we calculate constriction forces in the range [Formula: see text]. The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of [Formula: see text], thus evidencing that cells need a robust mechanism to stabilize constriction at midcell.
Collapse
Affiliation(s)
- Victor G. Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear and Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| |
Collapse
|
6
|
Abstract
Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|
7
|
Abstract
Genomic analyses increasingly make use of sophisticated statistical and computational approaches in investigations of genomic function and evolution. Scientists implementing and developing these approaches are often computational scientists, physicists, or mathematicians. This article aims to provide a compact overview of genome biology for these scientists. Thus, the article focuses on providing biological context to the genomic features, processes, and structures analysed by these approaches. Topics covered include (1) differences between eukaryotic and prokaryotic cells; (2) the physical structure of genomes and chromatin; (3) different categories of genomic regions, including those serving as templates for RNA and protein synthesis, regulatory regions, repetitive regions, and "architectural" or "organisational" regions, such as centromeres and telomeres; (4) the cell cycle; (5) an overview of transcription, translation, and protein structure; and (6) a glossary of relevant terms.
Collapse
|
8
|
Abstract
The cytoskeleton is a system of intracellular filaments crucial for cell shape, division, and function in all three domains of life. The simple cytoskeletons of prokaryotes show surprising plasticity in composition, with none of the core filament-forming proteins conserved in all lineages. In contrast, eukaryotic cytoskeletal function has been hugely elaborated by the addition of accessory proteins and extensive gene duplication and specialization. Much of this complexity evolved before the last common ancestor of eukaryotes. The distribution of cytoskeletal filaments puts constraints on the likely prokaryotic line that made this leap of eukaryogenesis.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK.
| | | |
Collapse
|
9
|
Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 2010; 39:3204-23. [PMID: 21169198 PMCID: PMC3082918 DOI: 10.1093/nar/gkq1228] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the 'Thaumarchaeota' and 'Korarchaeota'. Here, we show the genome sequence of Candidatus 'Caldiarchaeum subterraneum' that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subsurface Geobiology & Advanced Research Project, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhan K, He ZG. Characterization of a new RNase HII and its essential amino acid residues in the archaeon Sulfolobus tokodaii reveals a regulatory C-terminus. BIOCHEMISTRY (MOSCOW) 2010; 75:930-7. [PMID: 20673218 DOI: 10.1134/s0006297910070163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The archaea possess RNase H proteins that share features of both prokaryotic and eukaryotic forms. Although the Sulfolobus RNase HI has been reported to have unique structural and biochemical properties, its RNase HII has not yet been investigated and its biochemical properties remain unknown. In the present study, we have characterized the ST0519 RNase HII from S. tokodaii as a new form. The enzyme utilized hybrid RNA/DNA as a substrate and had an optimal temperature between 37 to 50 degrees C. The activity of wild-type protein was stimulated by Mn2+, whereas this cation significantly inhibited the activity of C-terminal truncated mutant proteins. A series of mutation assays revealed a regulatory C-terminal tail in the S. tokodaii RNase HII. One mutant, ST0519 (residues 1-195), retained only partial activity, while ST0519 (residues 1-196) completely lost its activity. Based on the presumed structure, the C-terminus might form a short alpha-helix in which two residues, I195 and L196, are essential for the cleavage activity. Our data suggest that the C-terminal alpha-helix is likely involved in the Mn2+-dependent substrate cleavage activity through stabilization of a flexible loop structure. Our findings offer important clues for further understanding the structure and function of both archaeal and eukaryotic RNase HII.
Collapse
Affiliation(s)
- Ke Zhan
- Center for Proteomics Research, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
11
|
Gribaldo S, Brochier C. Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 2009; 160:513-21. [PMID: 19631737 DOI: 10.1016/j.resmic.2009.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 12/12/2022]
Abstract
Understanding microbial evolution is essential for gathering information on the most ancient events in the history of Life on our planet. Nevertheless, the idea that it is impossible to reconstruct the evolutionary history of prokaryotes because of horizontal gene transfer has become very popular. We review this important debate and how it can be solved.
Collapse
|
12
|
Archaeal eukaryote-like Orc1/Cdc6 initiators physically interact with DNA polymerase B1 and regulate its functions. Proc Natl Acad Sci U S A 2009; 106:7792-7. [PMID: 19416914 DOI: 10.1073/pnas.0813056106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archaeal DNA replication machinery represents a core version of that found in eukaryotes. However, the proteins essential for the coordination of origin selection and the functioning of DNA polymerase have not yet been characterized in archaea, and they are still being investigated in eukaryotes. In the current study, the Orc1/Cdc6 (SsoCdc6) proteins from the crenarchaeon Sulfolobus solfataricus were found to physically interact with its DNA polymerase B1 (SsoPolB1). These SsoCdc6 proteins stimulated the DNA-binding ability of SsoPolB1 and differentially regulated both its polymerase and nuclease activities. Furthermore, the proteins also mutually regulated their interactions with SsoPolB1. In addition, SsoPolB1c467, a nuclease domain-deleted mutant of SsoPolB1 defective in DNA binding, retains the ability to physically interact with SsoCdc6 proteins. Its DNA polymerase activity could be stimulated by these proteins. We report on a linkage between the initiator protein Orc1/Cdc6 and DNA polymerase in the archaeon. Our present and previous findings indicate that archaeal Orc1/Cdc6 proteins could potentially play critical roles in the coordination of origin selection and cell-cycle control of replication.
Collapse
|
13
|
Castellano S, Farina B, Faraone-Mennella MR. The ADP-ribosylation of Sulfolobus solfataricus Sso7 modulates protein/DNA interactions in vitro. FEBS Lett 2009; 583:1154-8. [PMID: 19272378 DOI: 10.1016/j.febslet.2009.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 02/27/2009] [Accepted: 03/01/2009] [Indexed: 11/29/2022]
Abstract
The 7 kDa Sso7 is a basic protein particularly abundant in Sulfolobus solfataricus and is involved in DNA assembly. This protein undergoes in vitro ADP-ribosylation by an endogenous poly(ADP-ribose) polymerase-like enzyme. The circular dichroism spectrum of purified ADP-ribosylated Sso7 shows that this modification stabilizes the prevalent protein beta-conformation, as suggested by shifting of negative ellipticity minimum to 220 nm. Moreover, a short ADP-ribose chain (up to 6-mers) bound to Sso7 is able to reduce drastically the thermoprotective and DNA condensing ability of the protein, suggesting a possible regulatory role of ADP-ribosylation in sulfolobal DNA organization.
Collapse
Affiliation(s)
- Sabrina Castellano
- Department of Structural and Functional Biology, Faculty of Sciences MM FF NN, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Napoli, Italy
| | | | | |
Collapse
|
14
|
Abstract
The hyperthermophilic archaea Acidianus hospitalis, Aeropyrum pernix, Pyrobaculum aerophilum, Pyrobaculum calidifontis, and Sulfolobus tokodaii representing three different orders in the phylum Crenarchaeota were analyzed by flow cytometry and combined phase-contrast and epifluorescence microscopy. The overall organization of the cell cycle was found to be similar in all species, with a short prereplicative period and a dominant postreplicative period that accounted for 64 to 77% of the generation time. Thus, in all Crenarchaeota analyzed to date, cell division and initiation of chromosome replication occur in close succession, and a long time interval separates termination of replication from cell division. In Pyrobaculum, chromosome segregation overlapped with or closely followed DNA replication, and further genome separation appeared to occur concomitant with cellular growth. Cell division in P. aerophilum took place without visible constriction.
Collapse
|
15
|
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245-52. [PMID: 18274537 DOI: 10.1038/nrmicro1852] [Citation(s) in RCA: 632] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).
Collapse
|
16
|
The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation. Arch Biochem Biophys 2008; 471:176-83. [PMID: 18237540 DOI: 10.1016/j.abb.2008.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 11/24/2022]
Abstract
Archaeal replication machinery represents a core version of this in eukaryotes. The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1, SsoCdc6-2, and SsoCdc6-3). In this study, we investigate the DNA-binding activities of the N-terminal AAA+ ATPase domains of these Orc1/Cdc6 proteins, including their functional interactions with the other SsoCdc6 proteins, on duplex DNA substrates derived from the origins of S. solfataricus. We showed that the ATPase domain of SsoCdc6-2 retained to a great extent the origin DNA-binding activity, and likewise maintained its stimulating effect on SsoCdc6-3. Second, the ATPase domain of SsoCdc6-1, which also stimulated the DNA-binding ability of SsoCdc6-3, demonstrated a significantly improved DNA-binding activity at the forked substrate, but only showed a very weak ability towards the blunt DNA. Third, the ATPase domain of SsoCdc6-3, although having lost much of its DNA-binding activity from the origin, inhibited both SsoCdc6-1 and SsoCdc6-2. These imply that the N-terminal AAA+ ATPase domain of archaeal Orc1/Cdc6 protein could be differentially involved in origin recognition during DNA replication initiation even if lacking conventional C-terminal winged helix DNA-binding elements. Our findings further propose that conserved AAA+ ATPase domains of Orc1/Cdc6 proteins determine their defined and coordinated functions not only in the archaeon species but also in eukaryotes during the early events of DNA replication.
Collapse
|
17
|
Jiang PX, Feng Y, He ZG. Functional differentiation and cooperative interaction between two eukaryote-like archaeal Orc1/Cdc6 proteins on the replication origin. Biochem Biophys Res Commun 2007; 364:945-51. [PMID: 17964284 DOI: 10.1016/j.bbrc.2007.10.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/17/2007] [Indexed: 11/28/2022]
Abstract
The DNA replication apparatus of archaea represents a core version of that in eukaryotes. Archaeal Orc1/Cdc6s can be an integral component in the replication machineries cooperatively regulating DNA replication. We investigated the DNA-binding activities of two eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1 and -2) and interactions between them on the different structural duplex DNA substrates derived from oriC1 of Sulfolobus solfataricus. The results showed that two Orc1/Cdc6 proteins stimulated mutual DNA-binding activities at lower concentrations and formed bigger SsoCdc6-1/SsoCdc6-2/DNA complex at higher concentrations. Furthermore, SsoCdc6-2 stimulated the DNA-binding activity of SsoMCM and demonstrated a high affinity to the 5-forked DNA. In contrast, SsoCdc6-1 inhibited the binding of SsoMCM and demonstrated better affinity to the sequence-specific blunt DNA substrate. Finally, we found that the two proteins physically interacted with each other and with SsoMCM. Thus, the two Orc1/Cdc6 proteins were functionally different, but they may keep the coordinated interaction on the replication origin.
Collapse
Affiliation(s)
- Pei-Xia Jiang
- Center for Proteomics Research, National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
18
|
Abstract
Analyses of DNA pattern provide an excellent tool to determine activity states of bacteria. Bacterial cell cycle behaviour is generally different from the eukaryotic one and is pre-determined by the bacteria's diversity within the phylogenetic tree, and their metabolic traits. As a result, every species creates its specific proliferation pattern that differs from every other one. Up to now, just few bacterial species have been investigated and little information is available concerning DNA cycling even in already known species. This prevents understanding of the complexity and diversity of ongoing bacterial interactions in many ecosystems or in biotechnology. Flow cytometry is the only possible technique to shed light on the dynamics of bacterial communities and DNA patterns will help to unlock the hidden principles of their life. This review provides basic knowledge about the molecular background of bacterial cell cycling, discusses modes of cell cycle phases and presents techniques to both obtain DNA patterns and to combine the contained information with physiological cell states.
Collapse
Affiliation(s)
- S Müller
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig-Halle, Leipzig, Germany.
| |
Collapse
|
19
|
Abstract
Much of the current information about the archaeal cell cycle has been generated through studies of the genus Sulfolobus. The overall organization of the cell cycle in these species is well understood, and information about the regulatory principles that govern cell cycle progression is rapidly accumulating. Exciting progress regarding the control and molecular details of the chromosome replication process is evident, and the first insights into the elusive crenarchaeal mitosis and cytokinesis machineries are within reach.
Collapse
Affiliation(s)
- Rolf Bernander
- Department of Molecular Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
20
|
Wang J, Jiang PX, Feng H, Feng Y, He ZG. Three eukaryote-like Orc1/Cdc6 proteins functionally interact and mutually regulate their activities of binding to the replication origin in the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochem Biophys Res Commun 2007; 363:63-70. [PMID: 17825793 DOI: 10.1016/j.bbrc.2007.08.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/18/2007] [Indexed: 11/17/2022]
Abstract
The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins. However, it is not known whether these SsoCdc6 proteins can functionally interact and collectively contribute to DNA replication initiation. In the current work, we found that SsoCdc6-1 stimulates DNA-binding activities of SsoCdc6-3. In contrast, SsoCdc6-3 inhibits those of both SsoCdc6-1 and SsoCdc6-2. These regulatory functions are differentially affected by the C-terminal domains of these SsoCdc6 proteins. These data, in conjunction with studies on physical interactions between these replication initiators by bacterial two-hybrid and pull-down/Western blot assays, lead us to propose the possibility that multiple SsoCdc6 proteins might coordinately regulate DNA replication in the archaeon species. This is the first report on the functional interaction among the archaeal multiple Cdc6 proteins to regulate DNA replication.
Collapse
Affiliation(s)
- Jun Wang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
21
|
Lundgren M, Bernander R. Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci U S A 2007; 104:2939-44. [PMID: 17307872 PMCID: PMC1815285 DOI: 10.1073/pnas.0611333104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Relative RNA abundance was measured at different cell-cycle stages in synchronized cultures of the hyperthermophilic archaeon Sulfolobus acidocaldarius. Cyclic induction was observed for >160 genes, demonstrating central roles for transcriptional regulation and cell-cycle-specific gene expression in archaeal cell-cycle progression. Many replication genes were induced in a cell-cycle-specific manner, and novel replisome components are likely to be among the genes of unknown function with similar induction patterns. Candidate genes for the unknown genome segregation and cell division machineries were also identified, as well as seven transcription factors likely to be involved in cell-cycle control. Two serine-threonine protein kinases showed distinct cell-cycle-specific induction, suggesting regulation of the archaeal cell cycle also through protein modification. Two candidate recognition elements, CCR boxes, for transcription factors in control of cell-cycle regulons were identified among gene sets with similar induction kinetics. The results allow detailed characterization of the genome segregation, division, and replication processes and may, because of the extensive homologies between the archaeal and eukaryotic information machineries, also be applicable to core features of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Rolf Bernander
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Sun C, Zhou M, Li Y, Xiang H. Molecular characterization of the minimal replicon and the unidirectional theta replication of pSCM201 in extremely halophilic archaea. J Bacteriol 2006; 188:8136-44. [PMID: 16997958 PMCID: PMC1698213 DOI: 10.1128/jb.00988-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A 3,463-bp plasmid, pSCM201, was isolated from a halophilic archaeon, Haloarcula sp. strain AS7094. The minimal replicon that is essential and sufficient for autonomous replication and stable maintenance in Haloarcula hispanica was determined by deletion analysis of the plasmid. This minimal replicon ( approximately 1.8 kb) consisted of only two functionally related segments: (i) a putative origin (ori201) containing an AT-rich region and sets of repeats and (ii) an adjacent gene encoding a putative replication initiation protein (Rep201). Electron microscopic observation and Southern blotting analysis demonstrated that pSCM201 replicates via a theta mechanism. Precise mapping of the putative origin suggested that the replication initiated from a fixed site close to the AT-rich region and proceeded unidirectionally toward the downstream rep201 gene, which was further confirmed by electron microscopic analysis of the ClaI-digested replication intermediates. To our knowledge, this is the first unidirectional theta replication plasmid experimentally identified in the domain of archaea. It provides a novel plasmid system to conduct research on archaeal DNA replication.
Collapse
Affiliation(s)
- Chaomin Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Das S, Paul S, Bag SK, Dutta C. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 2006; 7:186. [PMID: 16869956 PMCID: PMC1574309 DOI: 10.1186/1471-2164-7-186] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/25/2006] [Indexed: 11/24/2022] Open
Abstract
Background Nanoarchaeum equitans, the only known hyperthermophilic archaeon exhibiting parasitic life style, has raised some new questions about the evolution of the Archaea and provided a model of choice to study the genome landmarks correlated with thermo-parasitic adaptation. In this context, we have analyzed the genome and proteome composition of N. equitans and compared the same with those of other mesophiles, hyperthermophiles and obligatory host-associated organisms. Results Analysis of nucleotide, codon and amino acid usage patterns in N. equitans indicates the presence of distinct selective constraints, probably due to its adaptation to a thermo-parasitic life-style. Among the conspicuous characteristics featuring its hyperthermophilic adaptation are overrepresentation of purine bases in protein coding sequences, higher GC-content in tRNA/rRNA sequences, distinct synonymous codon usage, enhanced usage of aromatic and positively charged residues, and decreased frequencies of polar uncharged residues, as compared to those in mesophilic organisms. Positively charged amino acid residues are relatively abundant in the encoded gene-products of N. equitans and other hyperthermophiles, which is reflected in their isoelectric point distribution. Pairwise comparison of 105 orthologous protein sequences shows a strong bias towards replacement of uncharged polar residues of mesophilic proteins by Lys/Arg, Tyr and some hydrophobic residues in their Nanoarchaeal orthologs. The traits potentially attributable to the symbiotic/parasitic life-style of the organism include the presence of apparently weak translational selection in synonymous codon usage and a marked heterogeneity in membrane-associated proteins, which may be important for N. equitans to interact with the host and hence, may help the organism to adapt to the strictly host-associated life style. Despite being strictly host-dependent, N. equitans follows cost minimization hypothesis. Conclusion The present study reveals that the genome and proteome composition of N. equitans are marked with the signatures of dual adaptation – one to high temperature and the other to obligatory parasitism. While the analysis of nucleotide/amino acid preferences in N. equitans offers an insight into the molecular strategies taken by the archaeon for thermo-parasitic adaptation, the comparative study of the compositional characteristics of mesophiles, hyperthermophiles and obligatory host-associated organisms demonstrates the generality of such strategies in the microbial world.
Collapse
Affiliation(s)
- Sabyasachi Das
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Sandip Paul
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Sumit K Bag
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Chitra Dutta
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
- Human Genetics & Genomics Division, Indian Institute of Chemical Biology, Kolkata–700032, India
| |
Collapse
|
24
|
Frey G, Michel CJ. An analytical model of gene evolution with six mutation parameters: an application to archaeal circular codes. Comput Biol Chem 2006; 30:1-11. [PMID: 16324886 DOI: 10.1016/j.compbiolchem.2005.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 09/04/2005] [Accepted: 09/05/2005] [Indexed: 11/17/2022]
Abstract
We develop here an analytical evolutionary model based on a trinucleotide mutation matrix 64 x 64 with six substitution parameters associated with the transitions and transversions in the three trinucleotide sites. It generalizes the previous models based on the nucleotide mutation matrices 4 x 4 and the trinucleotide mutation matrix 64 x 64 with three parameters. It determines at some time t the exact occurrence probabilities of trinucleotides mutating randomly according to six substitution parameters. An application of this model allows an evolutionary study of the common circular code COM and the 15 archaeal circular codes X which have been recently identified in several archaeal genomes. The main property of a circular code is the retrieval of the reading frames in genes, both locally, i.e. anywhere in genes and in particular without a start codon, and automatically with a window of a few nucleotides. In genes, the circular code is superimposed on the traditional genetic one. Very unexpectedly, the evolutionary model demonstrates that the archaeal circular codes can derive from the common circular code subjected to random substitutions with particular values for six substitutions parameters. It has a strong correlation with the statistical observations of three archaeal codes in actual genes. Furthermore, the properties of these substitution rates allow proposal of an evolutionary classification of the 15 archaeal codes into three main classes according to this model. In almost all the cases, they agree with the actual degeneracy of the genetic code with substitutions more frequent in the third trinucleotide site and with transitions more frequent that transversions in any trinucleotide site.
Collapse
Affiliation(s)
- Gabriel Frey
- Equipe de Bioinformatique Théorique, LSIIT (UMR CNRS-ULP 7005), Université Louis Pasteur de Strasbourg, Pôle API, Boulevard Sébastien Brant, 67400 Illkirch, France.
| | | |
Collapse
|
25
|
Abstract
The origin of the eukaryotic cell nucleus and the selective forces that drove its evolution remain unknown and are a matter of controversy. Autogenous models state that both the nucleus and endoplasmic reticulum (ER) derived from the invagination of the plasma membrane, but most of them do not advance clear selective forces for this process. Alternative models proposing an endosymbiotic origin of the nucleus fail to provide a pathway fully compatible with our knowledge of cell biology. We propose here an evolutionary scenario that reconciles both an ancestral endosymbiotic origin of the eukaryotic nucleus (endosymbiosis of a methanogenic archaeon within a fermentative myxobacterium) with an autogenous generation of the contemporary nuclear membrane and ER from the bacterial membrane. We specifically state two selective forces that operated sequentially during its evolution: (1) metabolic compartmentation to avoid deleterious co-existence of anabolic (autotrophic synthesis by the methanogen) and catabolic (fermentation by the myxobacterium) pathways in the cell, and (2) avoidance of aberrant protein synthesis due to intron spreading in the ancient archaeal genome following mitochondrial acquisition and loss of methanogenesis.
Collapse
Affiliation(s)
- Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR8079, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | |
Collapse
|
26
|
Lundgren M, Bernander R. Archaeal cell cycle progress. Curr Opin Microbiol 2005; 8:662-8. [PMID: 16249118 DOI: 10.1016/j.mib.2005.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
The discovery of multiple chromosome replication origins in Sulfolobus species has added yet another eukaryotic trait to the archaea, and brought new levels of complexity to the cell cycle in terms of initiation of chromosome replication, replication termination and chromosome decatenation. Conserved repeated DNA elements--origin recognition boxes--have been identified in the origins of replication, and shown to bind the Orc1/Cdc6 proteins involved in cell cycle control. The origin recognition boxes aid in the identification and characterization of new origins, and their conservation suggests that most archaea have a similar replication initiation mechanism. Cell-cycle-dependent variation in Orc1/Cdc6 levels has been demonstrated, reminiscent of variations in cyclin levels during the eukaryotic cell cycle. Information about archaeal chromosome segregation is also accumulating, including the identification of a protein that binds to short regularly spaced repeats that might constitute centromere-like elements. In addition, studies of cell-cycle-specific gene expression have potential to reveal, in the near future, missing components in crenarchaeal chromosome replication, genome segregation and cell division. Together with an increased number of physiological and cytological investigations of the overall organization of the cell cycle, rapid progress of the archaeal cell cycle field is evident, and archaea, in particular Sulfolobus species, are emerging as simple and powerful models for the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | | |
Collapse
|
27
|
Zhang R, Zhang CT. Identification of replication origins in archaeal genomes based on the Z-curve method. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:335-46. [PMID: 15876567 PMCID: PMC2685548 DOI: 10.1155/2005/509646] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Z-curve is a three-dimensional curve that constitutes a unique representation of a DNA sequence, i.e., both the Z-curve and the given DNA sequence can be uniquely reconstructed from the other. We employed Z-curve analysis to identify one replication origin in the Methanocaldococcus jannaschii genome, two replication origins in the Halobacterium species NRC-1 genome and one replication origin in the Methanosarcina mazei genome. One of the predicted replication origins of Halobacterium species NRC-1 is the same as a replication origin later identified by in vivo experiments. The Z-curve analysis of the Sulfolobus solfataricus P2 genome suggested the existence of three replication origins, which is also consistent with later experimental results. This review aims to summarize applications of the Z-curve in identifying replication origins of archaeal genomes, and to provide clues about the locations of as yet unidentified replication origins of the Aeropyrum pernix K1, Methanococcus maripaludis S2, Picrophilus torridus DSM 9790 and Pyrobaculum aerophilum str. IM2 genomes.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, China
| | - Chun-Ting Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China
- Corresponding author ()
| |
Collapse
|
28
|
Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 2005; 14:2221-34. [PMID: 15520287 PMCID: PMC525680 DOI: 10.1101/gr.2700304] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report the complete sequence of the 4,274,642-bp genome of Haloarcula marismortui, a halophilic archaeal isolate from the Dead Sea. The genome is organized into nine circular replicons of varying G+C compositions ranging from 54% to 62%. Comparison of the genome architectures of Halobacterium sp. NRC-1 and H. marismortui suggests a common ancestor for the two organisms and a genome of significantly reduced size in the former. Both of these halophilic archaea use the same strategy of high surface negative charge of folded proteins as means to circumvent the salting-out phenomenon in a hypersaline cytoplasm. A multitiered annotation approach, including primary sequence similarities, protein family signatures, structure prediction, and a protein function association network, has assigned putative functions for at least 58% of the 4242 predicted proteins, a far larger number than is usually achieved in most newly sequenced microorganisms. Among these assigned functions were genes encoding six opsins, 19 MCP and/or HAMP domain signal transducers, and an unusually large number of environmental response regulators-nearly five times as many as those encoded in Halobacterium sp. NRC-1--suggesting H. marismortui is significantly more physiologically capable of exploiting diverse environments. In comparing the physiologies of the two halophilic archaea, in addition to the expected extensive similarity, we discovered several differences in their metabolic strategies and physiological responses such as distinct pathways for arginine breakdown in each halophile. Finally, as expected from the larger genome, H. marismortui encodes many more functions and seems to have fewer nutritional requirements for survival than does Halobacterium sp. NRC-1.
Collapse
Affiliation(s)
- Nitin S Baliga
- Institute for Systems Biology, Seattle, Washington 98103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Capaldi SA, Berger JM. Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus. Nucleic Acids Res 2004; 32:4821-32. [PMID: 15358831 PMCID: PMC519113 DOI: 10.1093/nar/gkh819] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal cell division cycle protein 6 (Cdc6)/Origin Replication Complex subunit 1 (Orc1) proteins share sequence homology with eukaryotic DNA replication initiation factors but are also structurally similar to the bacterial initiator DnaA. To better understand whether Cdc6/Orc1 functions in an eukaryotic or bacterial-like manner, we have characterized the interaction of two Cdc6/Orc1 paralogs (mthCdc6-1 and mthCdc6-2) with the replication origin from Methanothermobacter thermoautotrophicus. We show that while both proteins display a low affinity for a small dsDNA of random sequence, mthCdc6-1 binds tightly to a short duplex containing a single copy of a 13 bp sequence that is repeated throughout the origin. Surprisingly, sequence comparisons show that this 13 bp sequence is a minimized version of the Origin Recognition Box element found in many euryarchaeotal origins. Analysis of mthCdc6-1 mutants demonstrates that the helix-turn-helix motif in the winged-helix domain mediates the interaction with this sequence. Association of both mthCdc6/Orc1 paralogs with the duplex containing the minimized Origin Recognition Box fits to an independent binding sites model, but their interaction with longer DNA ligands is cooperative. Together, our data provide the first detailed biophysical characterization of the association of an archaeal DNA replication initiator with its origin. Our observations also indicate that the origin-binding properties of Cdc6/Orc1 proteins closely resemble those of bacterial DnaA.
Collapse
Affiliation(s)
- Stephanie A Capaldi
- Department of Molecular and Cell Biology, 227 Hildebrand Hall #3206, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
31
|
Zhang R, Zhang CT. Identification of replication origins in the genome of the methanogenic archaeon, Methanocaldococcus jannaschii. Extremophiles 2004; 8:253-8. [PMID: 15197606 DOI: 10.1007/s00792-004-0385-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
Methanocaldococcus jannaschii has been notorious as an archaeon in which the replication origins are difficult to identify. Although extensive efforts have been exerted on this issue, the locations of replication origins still remain elusive 7 years after the publication of its complete genome sequence in 1996. Ambiguous results were obtained in identifying the replication origins of M. jannaschii based on all theoretical and experimental approaches. In the genome of M. jannaschii, we found that an ORF (MJ0774), annotated as a hypothetical protein, is a homologue of the Cdc6 protein. The position of the gene is at a global minimum of the x component of the Z curve, i.e., RY disparity curve, which has been used to identify replication origins in other Archaea. In addition, an intergenic region (694,540-695,226 bp) that is between the cdc6 gene and an adjacent ORF shows almost all the characteristics of known replication origins, i.e., it is highly rich in AT composition (80%) and contains multiple copies of repeat elements and AT stretches. Therefore, these lines of evidence strongly suggest that the identified region is a replication origin, which is designated as oriC1. The analysis of the y component of the Z curve, i.e., MK disparity curve, suggests the presence of another replication origin corresponding to one of the peaks in the MK disparity curve at around 1,388 kb of the genome.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, 300060 Tianjin, China
| | | |
Collapse
|
32
|
Laksanalamai P, Whitehead TA, Robb FT. Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2004; 2:315-24. [PMID: 15031730 DOI: 10.1038/nrmicro866] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pongpan Laksanalamai
- Center of Marine Biotechnology, University of Maryland, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
33
|
Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 2004; 116:25-38. [PMID: 14718164 DOI: 10.1016/s0092-8674(03)01034-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eukaryotic chromosomes possess multiple origins of replication, whereas bacterial chromosomes are replicated from a single origin. The archaeon Pyrococcus abyssi also appears to have a single origin, suggesting a common rule for prokaryotes. However, in the current work, we describe the identification of two active origins of replication in the single chromosome of the hyperthermophilic archaeon Sulfolobus solfataricus. Further, we identify conserved sequence motifs within the origins that are recognized by a family of three Sulfolobus proteins that are homologous to the eukaryotic initiator proteins Orc1 and Cdc6. We demonstrate that the two origins are recognized by distinct subsets of these Orc1/Cdc6 homologs. These data, in conjunction with an analysis of the levels of the three Orc1/Cdc6 proteins in different growth phases and cell cycle stages, lead us to propose a model for the roles for these proteins in modulating origin activity.
Collapse
Affiliation(s)
- Nicholas P Robinson
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
A new statistical method associating each trinucleotide with a frame is developed for identifying circular codes. Its sensibility allows the detection of several circular codes in the (protein coding) genes of archaeal genomes. Several properties of these circular codes are described, in particular the lengths of the minimal windows to retrieve the construction frames, a new definition of a parameter for measuring some probabilities of words generated by the circular codes, and the types of nucleotides in the trinucleotide sites. Some biological consequences are presented in Discussion.
Collapse
Affiliation(s)
- Gabriel Frey
- Equipe de Bioinformatique Théorique, LSIIT, UMR CNRS-ULP 7005, Université Louis Pasteur de Strasbourg, Pôle API, Boulevard Sébastien Brant, 67400 Illkirch, France.
| | | |
Collapse
|
35
|
Abstract
Bacterial chromosomes are highly compacted structures and share many properties with their eukaryote counterparts, despite not being organized into chromatin or being contained within a cell nucleus. Proteins conserved across all branches of life act in chromosome organization, and common mechanisms maintain genome integrity and ensure faithful replication. The principles that underlie chromosome segregation in bacteria and eukaryotes share similarities, although bacteria segregate DNA as it replicates and lack a eukaryote-like mitotic apparatus for segregating chromosomes. This may be because the distances that newly replicated bacterial chromosomes move apart before cell division are small as compared to those in eukaryotes. Bacteria specify positional information, which determines where cell division will occur and which places the replication machinery and chromosomal loci at defined locations that change during cell cycle progression.
Collapse
Affiliation(s)
- David J Sherratt
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
Abstract
The recently discovered structural similarities between the archaeal Orc1/Cdc6 and bacterial DnaA initiator proteins for chromosome replication have exciting implications for cell cycle regulation. Together with current attempts to identify archaeal chromosome replication origins, the information is likely to yield fundamental insights into replication control in both archaea and eukaryotes within the near future. Several proteins that affect, or are likely to affect, chromatin structure and genome segregation in archaea have been described recently, including Sph1 and 2, ScpA and B, Sir2, Alba and Rio1p. Important insights into the properties of the MinD and FtsZ cell division proteins, and of putative cytoskeletal elements, have recently been gained in bacteria. As these proteins also are present among archaea, it is likely that the new information will also be essential for understanding archaeal genome segregation and cell division. A series of interesting cell cycle issues has been brought to light through the discovery of the novel Nanoarchaeota phylum, and these are outlined briefly. Exciting areas for extended cell cycle investigations of archaea are identified, including termination of chromosome replication, application of in situ cytological techniques for localization of cell cycle proteins and the regulatory roles of GTP-binding proteins and small RNAs.
Collapse
Affiliation(s)
- Rolf Bernander
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
37
|
Ye X, Ou J, Ni L, Shi W, Shen P. Characterization of a novel plasmid from extremely halophilic Archaea: nucleotide sequence and function analysis. FEMS Microbiol Lett 2003; 221:53-7. [PMID: 12694910 DOI: 10.1016/s0378-1097(03)00175-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We determined the complete nucleotide sequence of the 16341 bp plasmid pHH205 of the extremely halophilic archaeon Halobacterium salinarum J7. The plasmid has a G+C content of 61.1%. A number of direct and inverted repeat sequences were found in pHH205, while no insertion sequences were found. Thirty-eight large open reading frames (ORFs) were identified in both strands, and most of them had no significant similarities to known proteins. A putative protein encoded by ORF31 showed 20-41% homology to some hypothetical proteins, which are annotated in several archaeal genome databases as predicted nucleic acid-binding proteins containing PIN domain. Sequence analysis using the GC skew procedure predicted a possible origin of replication. A 4.8 kb PvuII-SnaBI fragment containing both this region and ORF31 was shown to be able to restore replicate of pWL102, a replicon-deficient plasmid in Haloferax volcanii and in H. salinarum R1. Several methods failed to completely cure H. salinarum J7 of pHH205, suggesting that the plasmid probably played an important role in the growth and metabolism of the host. Our work describes a novel haloarchaeal replicon, which may be useful in the construction of cloning and shuttle vectors.
Collapse
Affiliation(s)
- Xuecheng Ye
- Department of Microbiology, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
38
|
Zhang R, Zhang CT. Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun 2003; 302:728-34. [PMID: 12646230 DOI: 10.1016/s0006-291x(03)00252-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genomic sequence of the halophilic archaeon Halobacterium NRC-1 has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents a given DNA sequence. Based on the known behaviors of the Z curves for the archaea whose replication origins have been identified, the analysis of the Z curve for the genome of Halobacterium NRC-1 strongly suggests that the large genome has two replication origins, oriC1 (921,863-922,014) and oriC2 (1,806,444-1,807,229), which are located at two sharp peaks of the Z curve. These two regions are next to the cdc6 genes and contain multiple copies of stretches of G and C, i.e., ggggtgggg and ccccacccc, which may also be regarded as direct and inverted repeats. Based on the above analysis, a model of replication of Halobacterium NRC-1 with two replication origins and two termini has been proposed. The experimental confirmation of this model would constitute the first example of multiple replication origins of archaea, which will finally provide much insight into the understanding of replication mechanisms of eukaryotic organisms, including human. In addition, the potential multiple replication origins of the archaeon Sulfolobus solfataricus are suggested by the analysis based on the Z curve method.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, China
| | | |
Collapse
|
39
|
Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 2003; 11:275-82. [PMID: 12535540 DOI: 10.1016/s1097-2765(02)00824-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sliding clamp, PCNA, of the archaeon Sulfolobus solfataricus P2 is a heterotrimer of three distinct subunits (PCNA1, 2, and 3) that assembles in a defined manner. The PCNA heterotrimer, but not individual subunits, stimulates the activities of the DNA polymerase, DNA ligase I, and the flap endonuclease (FEN1) of S. solfataricus. Distinct PCNA subunits contact DNA polymerase, DNA ligase, or FEN1, imposing a defined architecture at the lagging strand fork and suggesting the existence of a preformed scanning complex at the fork. This provides a mechanism to tightly couple DNA synthesis and Okazaki fragment maturation. Additionally, unique subunit-specific interactions between components of the clamp loader, RFC, suggest a model for clamp loading of PCNA.
Collapse
Affiliation(s)
- Isabelle Dionne
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Zhang R, Zhang CT. Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method. Biochem Biophys Res Commun 2002; 297:396-400. [PMID: 12237132 DOI: 10.1016/s0006-291x(02)02214-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genomic sequence of the archaeon Methanosarcina mazei has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents the given DNA sequence. The three-dimensional Z curve and its x and y components for the genome of M. mazei show a sharp peak and relatively broad peak, respectively. The cdc6 gene is located exactly at the position of the sharp peak. Based on the known behavior of the Z curves for the archaea whose replication origins have been identified, we hypothesize that the replication origin and termination sites correspond to the positions of the sharp peak and broad peak, respectively. We have located an intergenic region that is between the cdc6 gene (MM1314) and the gene for an adjacent protein (MM1315), which shows strong characteristics of the known replication origins. This region is highly rich in AT and contains multiple copies of consecutive repeats. Our results strongly suggest that the single replication origin of M. mazei is situated at the intergenic region between the cdc6 gene and the gene for the adjacent protein, from 1,564,657 to 1,566,241 bp of the genome.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, China
| | | |
Collapse
|
41
|
Erzberger JP, Pirruccello MM, Berger JM. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 2002; 21:4763-73. [PMID: 12234917 PMCID: PMC126292 DOI: 10.1093/emboj/cdf496] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The initiation of DNA replication is a key event in the cell cycle of all organisms. In bacteria, replication initiation occurs at specific origin sequences that are recognized and processed by an oligomeric complex of the initiator protein DnaA. We have determined the structure of the conserved core of the Aquifex aeolicus DnaA protein to 2.7 A resolution. The protein comprises an AAA+ nucleotide-binding fold linked through a long, helical connector to an all-helical DNA-binding domain. The structure serves as a template for understanding the physical consequences of a variety of DnaA mutations, and conserved motifs in the protein suggest how two critical aspects of origin processing, DNA binding and homo-oligomerization, are mediated. The spatial arrangement of these motifs in DnaA is similar to that of the eukaryotic-like archaeal replication initiation factor Cdc6/Orc1, demonstrating that mechanistic elements of origin processing may be conserved across bacterial, archaeal and eukaryotic domains of life.
Collapse
Affiliation(s)
| | | | - James M. Berger
- Biochemistry and Molecular Biology Division, Department of Molecular and Cell Biology, 229 Stanley Hall, University of California, Berkeley, CA 94720, USA
Corresponding author e-mail:
| |
Collapse
|
42
|
Maisnier-Patin S, Malandrin L, Birkeland NK, Bernander R. Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii. Mol Microbiol 2002; 45:1443-50. [PMID: 12207709 DOI: 10.1046/j.1365-2958.2002.03111.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed chromosome replication patterns in the two hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus(Methanococcus) jannaschii by marker frequency analysis (MFA). For A. fulgidus, the central region of the chromosomal physical map displayed a higher relative abundance in gene dosage during exponential growth, with two continuous gradients to a region of lower abundance at the diametrically opposite side of the genome map. This suggests bidirectional replication of the A. fulgidus chromosome from a single origin. The organization of the putative replication origin region relative to the cdc6, mcm and DNA polymerase genes differed from that reported for Pyrococcus species. No single replication origin or termination regions could be identified for M. jannaschii, adding to the list of unusual properties of this organism. The organization of the A. fulgidus cell cycle was characterized by flow cytometry analysis of the samples from which genomic DNA was extracted for MFA. The relative lengths of the cell cycle periods were found to be similar to those of crenarchaea.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden.
| | | | | | | |
Collapse
|
43
|
Soppa J, Kobayashi K, Noirot-Gros MF, Oesterhelt D, Ehrlich SD, Dervyn E, Ogasawara N, Moriya S. Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB. Mol Microbiol 2002; 45:59-71. [PMID: 12100548 DOI: 10.1046/j.1365-2958.2002.03012.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structural maintenance of chromosomes (SMC) proteins are present in all eukaryotes and in many prokaryotes. Eukaryotic SMC proteins form complexes with various non-SMC subunits, which affect their function, whereas the prokaryotic homologues had no known non-SMC partners and were thought to act as simple homodimers. Here we describe two novel families of proteins, widespread in archaea and (Gram-positive) bacteria, which we denote 'segregation and condensation proteins' (Scps). ScpA genes are localized next to smc genes in nearly all SMC- containing archaea, suggesting that they belong to the same operon and are thus involved in a common process in the cell. The function of ScpA was studied in Bacillus subtilis, which also harbours a well characterized smc gene. Here we show that scpA mutants display characteristic phenotypes nearly identical to those of smc mutants, including temperature- sensitive growth, production of anucleate cells, formation of aberrant nucleoids, and chromosome splitting by the so-called guillotine effect. Thus, both SMC and ScpA are required for chromosome segregation and condensation. Interestingly, mutants of another B. subtilis gene, scpB, which is localized downstream from scpA, display the same phenotypes, which indicate that ScpB is also involved in these functions. ScpB is generally present in species that also encode ScpA. The physical interaction of ScpA and SMC was proven (i) by the use of the yeast two-hybrid system and (ii) by the isolation of a complex containing both proteins from cell extracts of B. subtilis. By extension, we speculate that interaction of orthologues of the two proteins is important for chromosome segregation in many archaea and bacteria, and propose that SMC proteins generally have non-SMC protein partners that affect their function not only in eukaryotes but also in prokaryotes.
Collapse
Affiliation(s)
- Jörg Soppa
- J. W. Goethe-Universität, Biozentrum, Institut für Mikrobiologie, Franfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Archaea, members of the third domain of life, are bacterial-looking prokaryotes that harbour many unique genotypic and phenotypic properties, testifying for their peculiar evolutionary status. The archaeal ancestor was probably a hyperthermophilic anaerobe. Two archaeal phyla are presently recognized, the Euryarchaeota and the Crenarchaeota. Methanogenesis was the main invention that occurred in the euryarchaeal phylum and is now shared by several archaeal groups. Adaptation to aerobic conditions occurred several times independently in both Euryarchaeota and Crenarchaeota. Recently, many new groups of Archaea that have not yet been cultured have been detected by PCR amplification of 16S ribosomal RNA from environmental samples. The phenotypic and genotypic characterization of these new groups is now a top priority for further studies on archaeal evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bat 409, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
45
|
Abstract
Until recently, phylogenetic analyses of Archaea have mainly been based on ribosomal RNA (rRNA) sequence comparisons, leading to the distinction of the two major archaeal phyla: the Euryarchaeota and the Crenarchaeota. Here, thanks to the recent sequencing of several archaeal genomes, we have constructed a phylogeny based on the fusion of the sequences of the 53 ribosomal proteins present in most of the archaeal species. This phylogeny was remarkably congruent with the rRNA phylogeny, suggesting that both reflected the actual phylogeny of the domain Archaea even if some nodes remained unresolved. In both cases, the branches leading to hyperthermophilic species were short, suggesting that the evolutionary rate of their genes has been slowed down by structural constraints related to environmental adaptation. In addition, to estimate the impact of lateral gene transfer (LGT) on our tree reconstruction, we used a new method that revealed that 8 genes out of the 53 ribosomal proteins used in our study were likely affected by LGT. This strongly suggested that a core of 45 nontransferred ribosomal protein genes existed in Archaea that can be tentatively used to infer the phylogeny of this domain. Interestingly, the tree obtained using only the eight ribosomal proteins likely affected by LGT was not very different from the consensus tree, indicating that LGT mainly brought random phylogenetic noise. The major difference involves organisms living in similar environments, suggesting that LGTs are mainly directed by the physical proximity of the organisms rather than by their phylogenetic proximity.
Collapse
|
46
|
Carpentieri F, De Felice M, De Falco M, Rossi M, Pisani FM. Physical and functional interaction between the mini-chromosome maintenance-like DNA helicase and the single-stranded DNA binding protein from the crenarchaeon Sulfolobus solfataricus. J Biol Chem 2002; 277:12118-27. [PMID: 11821426 DOI: 10.1074/jbc.m200091200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mini-chromosome Maintenance (MCM) proteins play an essential role in both initiation and elongation phases of DNA replication in Eukarya. Genes encoding MCM homologs are present also in the genomic sequence of Archaea and the MCM-like protein from the euryarchaeon Methanobacterium thermoautotrophicum (Mth MCM) was shown to possess a robust ATP-dependent 3'-5' DNA helicase activity in vitro. Herein, we report the first biochemical characterization of a MCM homolog from a crenarchaeon, the thermoacidophile Sulfolobus solfataricus (Sso MCM). Gel filtration and glycerol gradient centrifugation experiments indicate that the Sso MCM forms single hexamers (470 kDa) in solution, whereas the Mth MCM assembles into double hexamers. The Sso MCM has NTPase and DNA helicase activity, which preferentially acts on DNA duplexes containing a 5'-tail and is stimulated by the single-stranded DNA binding protein from S. solfataricus (Sso SSB). In support of this functional interaction, we demonstrated by immunological methods that the Sso MCM and SSB form protein.protein complexes. These findings provide the first in vitro biochemical evidence of a physical/functional interaction between a MCM complex and another replication factor and suggest that the two proteins may function together in vivo in important DNA metabolic pathways.
Collapse
Affiliation(s)
- Floriana Carpentieri
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, Napoli 80131, Italy
| | | | | | | | | |
Collapse
|
47
|
Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A 2002; 99:984-9. [PMID: 11792869 PMCID: PMC117417 DOI: 10.1073/pnas.241636498] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2001] [Indexed: 11/18/2022] Open
Abstract
We determined and annotated the complete 2.2-megabase genome sequence of Pyrobaculum aerophilum, a facultatively aerobic nitrate-reducing hyperthermophilic (T(opt) = 100 degrees C) crenarchaeon. Clues were found suggesting explanations of the organism's surprising intolerance to sulfur, which may aid in the development of methods for genetic studies of the organism. Many interesting features worthy of further genetic studies were revealed. Whole genome computational analysis confirmed experiments showing that P. aerophilum (and perhaps all crenarchaea) lack 5' untranslated regions in their mRNAs and thus appear not to use a ribosome-binding site (Shine-Dalgarno)-based mechanism for translation initiation at the 5' end of transcripts. Inspection of the lengths and distribution of mononucleotide repeat-tracts revealed some interesting features. For instance, it was seen that mononucleotide repeat-tracts of Gs (or Cs) are highly unstable, a pattern expected for an organism deficient in mismatch repair. This result, together with an independent study on mutation rates, suggests a "mutator" phenotype.
Collapse
Affiliation(s)
- Sorel T Fitz-Gibbon
- Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 2002; 35:673-745. [PMID: 11700297 DOI: 10.1146/annurev.genet.35.102401.091334] [Citation(s) in RCA: 570] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The separation of sister chromatids at the metaphase to anaphase transition is one of the most dramatic of all cellular events and is a crucial aspect of all sexual and asexual reproduction. The molecular basis for this process has until recently remained obscure. New research has identified proteins that hold sisters together while they are aligned on the metaphase plate. It has also shed insight into the mechanisms that dissolve sister chromatid cohesion during both mitosis and meiosis. These findings promise to provide insights into defects in chromosome segregation that occur in cancer cells and into the pathological pathways by which aneuploidy arises during meiosis.
Collapse
Affiliation(s)
- K Nasmyth
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, Vienna, A-1030 Austria.
| |
Collapse
|
49
|
Forterre P. Genomics and early cellular evolution. The origin of the DNA world. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:1067-76. [PMID: 11803805 DOI: 10.1016/s0764-4469(01)01403-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The sequencing of several genomes from each of the three domains of life (Archaea, Bacteria and Eukarya) has provided a huge amount of data that can be used to gain insight about early cellular evolution. Some features of the universal tree of life based on rRNA polygenies have been confirmed, such as the division of the cellular living world into three domains. The monophyly of each domain is supported by comparative genomics. However, the hyperthermophilic nature of the 'last universal common ancestor' (LUCA) is not confirmed. Comparative genomics has revealed that gene transfers have been (and still are) very frequent in genome evolution. Nevertheless, a core of informational genes appears more resistant to transfer, testifying for a close relationship between archaeal and eukaryal informational processes. This observation can be explained either by a common unique history between Archaea and Eukarya or by an atypical evolution of these systems in Bacteria. At the moment, comparative genomics still does not allow to choose between a simple LUCA, possibly with an RNA genome, or a complex LUCA, with a DNA genome and informational mechanisms similar to those of Archaea and Eukarya. Further comparative studies on informational mechanisms in the three domains should help to resolve this critical question. The role of viruses in the origin and evolution of DNA genomes also appears an area worth of active investigations. I suggest here that DNA and DNA replication mechanisms appeared first in the virus world before being transferred into cellular organisms.
Collapse
Affiliation(s)
- P Forterre
- Institut de génétique et microbiologie, bat. 409, CNRS, UMR 8621, université Paris-Sud, 91405 Orsay, France.
| |
Collapse
|
50
|
Soppa J. Prokaryotic structural maintenance of chromosomes (SMC) proteins: distribution, phylogeny, and comparison with MukBs and additional prokaryotic and eukaryotic coiled-coil proteins. Gene 2001; 278:253-64. [PMID: 11707343 DOI: 10.1016/s0378-1119(01)00733-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Structural maintenance of chromosomes (SMC) proteins are known to be essential for chromosome segregation in some prokaryotes and in eukaryotes. A systematic search for the distribution of SMC proteins in prokaryotes with fully or partially sequenced genomes showed that they form a larger family than previously anticipated and raised the number of known prokaryotic homologs to 54. Secondary structure predictions revealed that the length of the globular N-terminal and C-terminal domains is extremely well conserved in contrast to the hinge domain and coiled-coil domains which are considerably shorter in several bacterial species. SMC proteins are present in all gram-positive bacteria and in nearly all archaea while they were found in less than half of the gram-negative bacteria. Phylogenetic analyses indicate that the SMC tree roughly resembles the 16S rRNA tree, but that cyanobacteria and Aquifex aeolicus obtained smc genes by lateral transfer from archaea. Fourteen out of 22 smc genes located in fully sequenced genomes seem to be co-transcribed with a second gene out of six different gene families, indicating that the deduced gene products might be involved in similar functions. The SMC proteins were compared with other prokaryotic proteins with long coiled-coil domains. The lengths of different protein domains and signature sequences allowed to differentiate SMCs, MukBs, which were found to be confined to gamma proteobacteria, and two subfamilies of COG 0419 including the SbcC nuclease from E. coli. A phylogenetic analysis was performed including the prokaryotic coiled-coil proteins as well as SMCs and Rad18 proteins from selected eukaryotes.
Collapse
Affiliation(s)
- J Soppa
- Institut für Mikrobiologie, Biozentrum Niederursel, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany.
| |
Collapse
|