1
|
Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide. Viruses 2019; 11:v11080750. [PMID: 31416162 PMCID: PMC6722660 DOI: 10.3390/v11080750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
A metatranscriptomic study of RNA viruses in cold-blooded vertebrates identified two related viruses from frogfish (Antennarius striatus) that represent a new genus Antennavirus in the family Arenaviridae (Order: Bunyavirales). Computational analyses were used to identify features common to class I viral fusion proteins (VFPs) in antennavirus glycoproteins, including an N-terminal fusion peptide, two extended alpha-helices, an intrahelical loop, and a carboxyl terminal transmembrane domain. Like mammarenavirus and hartmanivirus glycoproteins, the antennavirus glycoproteins have an intracellular zinc-binding domain and a long virion-associated stable signal peptide (SSP). The glycoproteins of reptarenaviruses are also class I VFPs, but do not contain zinc-binding domains nor do they encode SSPs. Divergent evolution from a common progenitor potentially explains similarities of antennavirus, mammarenavirus, and hartmanivirus glycoproteins, with an ancient recombination event resulting in a divergent reptarenavirus glycoprotein.
Collapse
|
2
|
Feng M, Wang X, Ren F, Zhang N, Zhou Y, Sun J. Genome-Wide Characterization of Endogenous Retroviruses in Bombyx mori Reveals the Relatives and Activity of env Genes. Front Microbiol 2018; 9:1732. [PMID: 30123193 PMCID: PMC6085415 DOI: 10.3389/fmicb.2018.01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 01/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retroviral sequences that remain fixed in the host genome, where they could play an important role. Some ERVs have been identified in insects and proven to have infectious properties. However, no information is available regarding Bombyx mori ERVs (BmERVs) to date. Here, we systematically identified 256 potential BmERVs in the silkworm genome via a whole-genome approach. BmERVs were relatively evenly distributed across each of the chromosomes and accounted for about 25% of the silkworm genome. All BmERVs were classified as young ERVs, with insertion times estimated to be less than 10 million years. Seven BmERVs possessing the env genes were identified. With the exception of the Orf133 Helicoverpa armigera nuclear polyhedrosis virus, the env sequences of BmERVs were distantly related to genes encoding F (Fa and Fb) and GP64 proteins from Group I and Group II NPVs. In addition, only the amino acid sequence of the BmERV-21 envelope protein shared a similar putative furin-like cleavage site and fusion peptide with Group II baculoviruses. All of the env genes in the seven BmERVs were verified to exist in the genome and be expressed in the midgut and fat bodies, which suggest that BmERVs might play an important role in the host biology.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiong Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Hayward A. Origin of the retroviruses: when, where, and how? Curr Opin Virol 2017; 25:23-27. [PMID: 28672160 PMCID: PMC5962544 DOI: 10.1016/j.coviro.2017.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Accepted: 06/19/2017] [Indexed: 12/04/2022]
Abstract
Retroviruses are a virus family of considerable medical and veterinary importance. Until recently, very little was known about deep retroviral origins. New research supports a marine origin of retroviruses, ∼460–550 million years ago. The evolutionary events leading to the origin of retroviruses remain obscure. Improved understanding of Metaviridae diversity and evolution are required for this.
Retroviruses are a virus family of considerable medical and veterinary importance. Additionally, it is now clear that endogenous retroviruses (ERVs) comprise significant portions of vertebrate genomes. Until recently, very little was known about the deep evolutionary origins of retroviruses. However, advances in genomics and bioinformatics have opened the way for great strides in understanding. Recent research employing a wide variety of bioinformatic approaches has demonstrated that retroviruses evolved during the early Palaeozoic Era, between 460 and 550 million years ago, providing the oldest inferred date estimate for any virus group. This finding presents an important framework to investigate the evolutionary transitions that led to the emergence of the retroviruses, offering potential insights into the infectious origins of a major group of pathogenic viruses.
Collapse
Affiliation(s)
- Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom.
| |
Collapse
|
4
|
Henriet S, Sumic S, Doufoundou-Guilengui C, Jensen MF, Grandmougin C, Fal K, Thompson E, Volff JN, Chourrout D. Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline. Nucleic Acids Res 2015; 43:3701-11. [PMID: 25779047 PMCID: PMC4402516 DOI: 10.1093/nar/gkv169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5′LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5′LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements.
Collapse
Affiliation(s)
- Simon Henriet
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Sara Sumic
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | | | - Marit Flo Jensen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Camille Grandmougin
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Kateryna Fal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Eric Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway Department of Biology, University of Bergen, Bergen, N-5020, Norway
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon - CNRS UMR 5242 - INRA USC 1370, Lyon, 69364 Lyon cedex 07, France
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| |
Collapse
|
5
|
Touret F, Guiguen F, Greenland T, Terzian C. In between: gypsy in Drosophila melanogaster reveals new insights into endogenous retrovirus evolution. Viruses 2014; 6:4914-25. [PMID: 25502325 PMCID: PMC4276936 DOI: 10.3390/v6124914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 11/16/2022] Open
Abstract
Retroviruses are RNA viruses that are able to synthesize a DNA copy of their genome and insert it into a chromosome of the host cell. Sequencing of different eukaryote genomes has revealed the presence of many such endogenous retroviral sequences. The mechanisms by which these retroviral sequences have colonized the genome are still unknown, and the endogenous retrovirus gypsy of Drosophila melanogaster is a powerful experimental model for deciphering this process in vivo. Gypsy is expressed in a layer of somatic cells, and then transferred into the oocyte by an unknown mechanism. This critical step is the start of the endogenization process. Moreover gypsy has been shown to have infectious properties, probably due to its envelope gene acquired from a baculovirus. Recently we have also shown that gypsy maternal transmission is reduced in the presence of the endosymbiotic bacterium Wolbachia. These studies demonstrate that gypsy is a unique and powerful model for understanding the endogenization of retroviruses.
Collapse
Affiliation(s)
- Franck Touret
- Pathologie Comparée, Unité Mixte de Recherche 754, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon1, Université de Lyon, Unité Mixte de Service 3444, 69367 Lyon Cedex 7, France.
| | - François Guiguen
- Pathologie Comparée, Unité Mixte de Recherche 754, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon1, Université de Lyon, Unité Mixte de Service 3444, 69367 Lyon Cedex 7, France.
| | | | - Christophe Terzian
- Pathologie Comparée, Unité Mixte de Recherche 754, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon1, Université de Lyon, Unité Mixte de Service 3444, 69367 Lyon Cedex 7, France.
| |
Collapse
|
6
|
Abstract
Endogenous retroviruses have the ability to become permanently integrated into the genomes of their host, and they are generally transmitted vertically from parent to progeny. With the exception of gypsy, few endogenous retroviruses have been identified in insects. In this study, we describe the tirant endogenous retrovirus in a subset of Drosophila simulans natural populations. By focusing on the envelope gene, we show that the entire retroviral cycle (transcription, translation, and retrotransposition) can be completed for tirant within one population of this species.
Collapse
|
7
|
Grandbastien MA, Casacuberta JM. Plant Endogenous Retroviruses? A Case of Mysterious ORFs. PLANT TRANSPOSABLE ELEMENTS 2012. [PMCID: PMC7123213 DOI: 10.1007/978-3-642-31842-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Josep M. Casacuberta
- , Centre de Recerca en Agrigenomica (CRAG), CSIC-RTA-UAB, Barcelona, 08193 Spain
| |
Collapse
|
8
|
Hafez EE, Abdel Ghany AA, Paterson AH, Zaki EA. Sequence heterogeneity of the envelope-like domain in cultivated allotetraploid Gossypium species and their diploid progenitors. J Appl Genet 2009; 50:17-23. [PMID: 19193978 DOI: 10.1007/bf03195647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retroviral envelope (env)-like sequences in 2 cultivated allotetraploid cottons and their diploid progenitors have been identified and characterized in this study. DNA sequence analysis reveals that these sequences are heterogeneous. The observed sequence diversity, however, seems to preserve coding information. This is evidenced by the detection of the transmembrane domain (TM), which is the most conserved feature of the divergent retroviral env genes. The high ratio of synonymous to nonsynonymous changes suggests that these sequences are evolving under purifying selection. Phylogenetic analysis shows that Gossypium sequences closely cluster with a lineage of plant endogenous retroviruses that have an env-like gene. These results provide evidence for the antiquity and the wide diversity of env-like sequences in the Gossypium genome.
Collapse
Affiliation(s)
- E E Hafez
- Molecular plant pathology Department, Arid land research institute, Mubarak City for Research, Alexandria, Egypt
| | | | | | | |
Collapse
|
9
|
Garry CE, Garry RF. Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class III penetrenes. Virol J 2008; 5:28. [PMID: 18282283 PMCID: PMC2288602 DOI: 10.1186/1743-422x-5-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/18/2008] [Indexed: 11/10/2022] Open
Abstract
Background Members of the Baculoviridae encode two types of proteins that mediate virus:cell membrane fusion and penetration into the host cell. Alignments of primary amino acid sequences indicate that baculovirus fusion proteins of group I nucleopolyhedroviruses (NPV) form the GP64 superfamily. The structure of these viral penetrenes has not been determined. The GP64 superfamily includes the glycoprotein (GP) encoded by members of the Thogotovirus genus of the Orthomyxoviridae. The entry proteins of other baculoviruses, group II NPV and granuloviruses, are class I penetrenes. Results Class III penetrenes encoded by members of the Rhabdoviridae and Herpesviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Similar sequences and structural/functional motifs that characterize class III penetrenes are located collinearly in GP64 of group I baculoviruses and related glycoproteins encoded by thogotoviruses. Structural models based on a prototypic class III penetrene, vesicular stomatitis virus glycoprotein (VSV G), were established for Thogoto virus (THOV) GP and Autographa california multiple NPV (AcMNPV) GP64 demonstrating feasible cysteine linkages. Glycosylation sites in THOV GP and AcMNPV GP64 appear in similar model locations to the two glycosylation sites of VSV G. Conclusion These results suggest that proteins in the GP64 superfamily are class III penetrenes.
Collapse
Affiliation(s)
- Courtney E Garry
- Department of Biology, The University of Texas at Austin, Austin, Texas, 78701, USA.
| | | |
Collapse
|
10
|
Westenberg M, Uijtdewilligen P, Vlak JM. Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells. J Gen Virol 2008; 88:3302-3306. [PMID: 18024899 DOI: 10.1099/vir.0.83240-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group II nucleopolyhedroviruses (NPVs), e.g. Helicoverpa armigera (Hear) NPV and Spodoptera exigua (Se) MNPV (multiple NPV), lack a GP64-like protein that is present in group I NPVs, e.g. Autographa californica (Ac)MNPV, but have an unrelated envelope fusion protein named F. Three AcMNPV viruses were constructed by introducing AcMNPV gp64, HearNPV f or SeMNPV f genes, respectively, into a gp64-negative AcMNPV bacmid. Sf21 cells were incubated with different amounts of inactivated budded virus to occupy receptors and were subsequently infected with a fixed amount of infectious virus to compete for attachment. The results suggest that GP64 and F act on their own and use different receptors, while the two different F proteins exploit the same receptor. Additionally, gp64-null AcMNPV pseudotyped with baculovirus F was, in contrast to GP64, unable to transduce mammalian cells, indicating that mammalian cells do not possess baculovirus F protein receptors despite the structural similarity of baculovirus F to vertebrate viral fusion proteins.
Collapse
Affiliation(s)
- Marcel Westenberg
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Peter Uijtdewilligen
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| |
Collapse
|
11
|
Gladyshev EA, Meselson M, Arkhipova IR. A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers. Gene 2006; 390:136-45. [PMID: 17129685 PMCID: PMC1839950 DOI: 10.1016/j.gene.2006.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/26/2022]
Abstract
Rotifers of class Bdelloidea, a group of aquatic invertebrates in which males and meiosis have never been documented, are also unusual in their lack of multicopy LINE-like and gypsy-like retrotransposons, groups inhabiting the genomes of nearly all other metazoans. Bdelloids do contain numerous DNA transposons, both intact and decayed, and domesticated Penelope-like retroelements Athena, concentrated at telomeric regions. Here we describe two LTR retrotransposons, each found at low copy number in a different bdelloid species, which define a clade different from previously known clades of LTR retrotransposons. Like bdelloid DNA transposons and Athena, these elements are found preferentially in telomeric regions. Unlike bdelloid DNA transposons, many of which are decayed, the newly described elements, named Vesta and Juno, inhabiting the genomes of Philodina roseola and Adineta vaga, respectively, appear to be intact and represent recent insertions, possibly from an exogenous source. We describe the retrovirus-like structure of the new elements, containing gag, pol, and env-like open reading frames, and discuss their possible origins, transmission, and behavior in bdelloid genomes.
Collapse
Affiliation(s)
- Eugene A. Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Meselson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Irina R. Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Address for correspondence: *Dr. Irina Arkhipova, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA., Tel. (617) 495-7899, Fax: (617) 496-2444, E-mail:
| |
Collapse
|
12
|
Marsano RM, Caizzi R. A genome-wide screening of BEL-Pao like retrotransposons in Anopheles gambiae by the LTR_STRUC program. Gene 2005; 357:115-21. [PMID: 16102916 DOI: 10.1016/j.gene.2005.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 04/21/2005] [Accepted: 06/02/2005] [Indexed: 11/23/2022]
Abstract
The advanced status of assembly of the nematoceran Anopheles gambiae genomic sequence allowed us to perform a wide genome analysis to looking at the presence of Long Terminal Repeats (LTRs) in the range of 10 kb by means of the LTR_STRUC tool. More than three hundred sequences were retrieved and 210 were treated as putative complete retrotransposons that were individually analysed with respect to known retrotransposons of A. gambiae and D. melanogaster. The results show that the vast majority of the retrotransposons analysed belong to the Ty3/gypsy class and only 8% to the Ty1/copia class. In addition, phylogenetic analysis allowed us to characterize in more detail the relationship of a large BEL-Pao lineage in which a single family was shown to harbour an additional env gene.
Collapse
Affiliation(s)
- Renè Massimiliano Marsano
- Dipartimento di Genetica Antropologia Evoluzione, University of Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | | |
Collapse
|
13
|
Misseri Y, Cerutti M, Devauchelle G, Bucheton A, Terzian C. Analysis of the Drosophila gypsy endogenous retrovirus envelope glycoprotein. J Gen Virol 2004; 85:3325-3331. [PMID: 15483247 DOI: 10.1099/vir.0.79911-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gypsy is the only endogenous retrovirus of Drosophila whose infectious properties have been reported. Previous studies have shown an unexpected relationship between the gene encoding the putative envelope glycoprotein (Env) of gypsy and genes encoding the fusion protein of several baculoviruses. The fact that fusion proteins mediate membrane fusion suggests that Env of insect retroviruses might also have fusogenic properties. The results reported here indicate that gypsy Env mediates cell-to-cell fusion. Cleavage of the Env precursor was also studied; it is shown that this polypeptide is cleaved at a furin-like cleavage site. This is the first report that the env-like gene of insect retroviruses encodes a fusion protein.
Collapse
Affiliation(s)
- Yolande Misseri
- Institut de Génétique Humaine CNRS, 141 rue de la cardonille, 34396 Montpellier cedex 5, France
| | - Martine Cerutti
- Laboratoire de Pathologie Comparée, 30380 Saint Christol les Ales, France
| | - Gérard Devauchelle
- Laboratoire de Pathologie Comparée, 30380 Saint Christol les Ales, France
| | - Alain Bucheton
- Institut de Génétique Humaine CNRS, 141 rue de la cardonille, 34396 Montpellier cedex 5, France
| | - Christophe Terzian
- Ecole Pratique des Hautes Etudes - UMR 7625, Université Paris 6, cc237, 7 quai Saint Bernard, 75252 Paris cedex 05, France
- Institut de Génétique Humaine CNRS, 141 rue de la cardonille, 34396 Montpellier cedex 5, France
| |
Collapse
|
14
|
Garry CE, Garry RF. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model 2004; 1:10. [PMID: 15544707 PMCID: PMC535339 DOI: 10.1186/1742-4682-1-10] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 11/15/2004] [Indexed: 12/29/2022] Open
Abstract
The Bunyaviridae family of enveloped RNA viruses includes five genuses, orthobunyaviruses, hantaviruses, phleboviruses, nairoviruses and tospoviruses. It has not been determined which Bunyavirus protein mediates virion:cell membrane fusion. Class II viral fusion proteins (beta-penetrenes), encoded by members of the Alphaviridae and Flaviviridae, are comprised of three antiparallel beta sheet domains with an internal fusion peptide located at the end of domain II. Proteomics computational analyses indicate that the carboxyl terminal glycoprotein (Gc) encoded by Sandfly fever virus (SAN), a phlebovirus, has a significant amino acid sequence similarity with envelope protein 1 (E1), the class II fusion protein of Sindbis virus (SIN), an Alphavirus. Similar sequences and common structural/functional motifs, including domains with a high propensity to interface with bilayer membranes, are located collinearly in SAN Gc and SIN E1. Gc encoded by members of each Bunyavirus genus share several sequence and structural motifs. These results suggest that Gc of Bunyaviridae, and similar proteins of Tenuiviruses and a group of Caenorhabditis elegans retroviruses, are class II viral fusion proteins. Comparisons of divergent viral fusion proteins can reveal features essential for virion:cell fusion, and suggest drug and vaccine strategies.
Collapse
Affiliation(s)
- Courtney E Garry
- Department of Microbiology and Immunology, Tulane University Heath Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112 USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University Heath Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112 USA
| |
Collapse
|