1
|
Venkateswarulu TC, Prabhakar KV, Kumar RB. Optimization of nutritional components of medium by response surface methodology for enhanced production of lactase. 3 Biotech 2017; 7:202. [PMID: 28667642 PMCID: PMC5493568 DOI: 10.1007/s13205-017-0805-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022] Open
Abstract
Lactase has excellent applications in dairy industry and commercially this enzyme is produced from bacterial sources but not in high yields. In this work, the production of lactase was improved by designing of nutrient components in fermentation medium by one factor at a time. Lactose and yeast extract were selected as preferable carbon and nitrogen sources for lactase production with tryptophan and MgSO4 showing enhanced production. Statistical analysis proved to be a useful and powerful tool in developing optimum fermentation conditions. The individual and interactive role of lactose, yeast extract, magnesium sulfate, and tryptophan concentration on lactase production was examined by central composite design. Submerged fermentation with Bacillus subtilis strain VUVD001 produced lactase activity of 63.54 U/ml in optimized medium. The activity was threefold higher in comparison to an unoptimized medium. This result confirmed that the designed medium was useful for producing higher yields of lactase.
Collapse
Affiliation(s)
- T C Venkateswarulu
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research University, Vadlamudi, Andhra Pradesh, 522213, India.
| | - K Vidya Prabhakar
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, 524003, India
| | - R Bharath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research University, Vadlamudi, Andhra Pradesh, 522213, India
| |
Collapse
|
2
|
Utilization of agro-industrial waste for β-galactosidase production under solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate. 3 Biotech 2015; 5:411-421. [PMID: 28324562 PMCID: PMC4522723 DOI: 10.1007/s13205-014-0236-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/17/2014] [Indexed: 10/26/2022] Open
Abstract
A halotolerant fungal isolate Aspergillus tubingensis GR1 was isolated from the man-made solar saltern located at Khambhat, Gujarat, India, and identified using 28S rDNA partial genome sequencing. This isolate was studied for β-galactosidase production under solid state fermentation using wheat bran and deproteinized acid cheese whey. The influence of various agro-industrial wastes, nitrogen source and other growth conditions on β-galactosidase production was investigated using 'one-factor-at-a-time' approach. Among various variables screened along with wheat bran and deproteinized acid cheese whey as major growth substrate, corn steep liquor and MgSO4 were found to be most significant. The optimum concentrations of these significant parameters were determined employing the response surface central composite design, revealing corn steep liquor concentration (2 mL) and magnesium sulphate (50 mg) per 5 g of wheat bran and 20 mL of deproteinized acid cheese whey for highest enzyme production (15,936 U/gds). These results suggest the feasibility of industrial large-scale production of β-galactosidase known to be valuable in whey hydrolysis and removal of galactosyl residue from polysaccharide.
Collapse
|
3
|
Gofman Y, Schärfe C, Marks DS, Haliloglu T, Ben-Tal N. Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel. PLoS Comput Biol 2014; 10:e1003976. [PMID: 25474149 PMCID: PMC4256070 DOI: 10.1371/journal.pcbi.1003976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels, essential for visual and olfactory sensory transduction. Although the channels include voltage-sensor domains (VSDs), their conductance is thought to be independent of the membrane potential, and their gating regulated by cytosolic cyclic nucleotide-binding domains. Mutations in these channels result in severe, degenerative retinal diseases, which remain untreatable. The lack of structural information on CNG channels has prevented mechanistic understanding of disease-causing mutations, precluded structure-based drug design, and hampered in silico investigation of the gating mechanism. To address this, we built a 3D model of the cone tetrameric CNG channel, based on homology to two distinct templates with known structures: the transmembrane (TM) domain of a bacterial channel, and the cyclic nucleotide-binding domain of the mouse HCN2 channel. Since the TM-domain template had low sequence-similarity to the TM domains of the CNG channels, and to reconcile conflicts between the two templates, we developed a novel, hybrid approach, combining homology modeling with evolutionary coupling constraints. Next, we used elastic network analysis of the model structure to investigate global motions of the channel and to elucidate its gating mechanism. We found the following: (i) In the main mode of motion, the TM and cytosolic domains counter-rotated around the membrane normal. We related this motion to gating, a proposition that is supported by previous experimental data, and by comparison to the known gating mechanism of the bacterial KirBac channel. (ii) The VSDs could facilitate gating (supplementing the pore gate), explaining their presence in such 'voltage-insensitive' channels. (iii) Our elastic network model analysis of the CNGA3 channel supports a modular model of allosteric gating, according to which protein domains are quasi-independent: they can move independently, but are coupled to each other allosterically.
Collapse
Affiliation(s)
- Yana Gofman
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Charlotta Schärfe
- Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, Tübingen University, Tübingen, Germany
- Department of Systems Biology, Harvard University, Boston, Massachusetts, United States of America
| | - Debora S. Marks
- Department of Systems Biology, Harvard University, Boston, Massachusetts, United States of America
| | - Turkan Haliloglu
- Polymer Research Centre and Chemical Engineering Department, Bogazici University, Bebek-Istanbul, Turkey
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
4
|
Wu W, Gardner A, Sanguinetti MC. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels. J Physiol 2014; 592:4465-80. [PMID: 25063820 DOI: 10.1113/jphysiol.2014.277483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
At depolarized membrane potentials, the conductance of some voltage-gated K(+) channels is reduced by C-type inactivation. This gating process is voltage independent in Kv1 and involves a conformational change in the selectivity filter that is mediated by cooperative subunit interactions. C-type inactivation in hERG1 K(+) channels is voltage-dependent, much faster in onset and greatly attenuates currents at positive potentials. Here we investigate the potential role of subunit interactions in C-type inactivation of hERG1 channels. Point mutations in hERG1 known to eliminate (G628C/S631C), inhibit (S620T or S631A) or enhance (T618A or M645C) C-type inactivation were introduced into subunits that were combined with wild-type subunits to form concatenated tetrameric channels with defined subunit composition and stoichiometry. Channels were heterologously expressed in Xenopus oocytes and the two-microelectrode voltage clamp was used to measure the kinetics and steady-state properties of inactivation of whole cell currents. The effect of S631A or T618A mutations on inactivation was a graded function of the number of mutant subunits within a concatenated tetramer as predicted by a sequential model of cooperative subunit interactions, whereas M645C subunits increased the rate of inactivation of concatemers, as predicted for subunits that act independently of one another. For mutations located within the inactivation gate proper (S620T or G628C/S631C), the presence of a single subunit in a concatenated hERG1 tetramer disrupted gating to the same extent as that observed for mutant homotetramers. Together, our findings indicate that the final step of C-type inactivation of hERG1 channels involves a concerted, all-or-none cooperative interaction between all four subunits, and that probing the mechanisms of channel gating with concatenated heterotypic channels should be interpreted with care, as conclusions regarding the nature of subunit interactions may depend on the specific mutation used to probe the gating process.
Collapse
Affiliation(s)
- Wei Wu
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Alison Gardner
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research & Training Institute Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Bhargava Y, Rettinger J, Mourot A. Allosteric nature of P2X receptor activation probed by photoaffinity labelling. Br J Pharmacol 2013; 167:1301-10. [PMID: 22725669 DOI: 10.1111/j.1476-5381.2012.02083.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera - BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding.
Collapse
Affiliation(s)
- Y Bhargava
- Department of Biophysical Chemistry, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
6
|
The propagation of allosteric states in large multiprotein complexes. J Mol Biol 2012; 425:1410-4. [PMID: 23274139 DOI: 10.1016/j.jmb.2012.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 11/21/2022]
Abstract
A statistical view of allostery leads to a more nuanced and physically realistic picture of protein cooperativity. If the conformational state of one protein molecule in a multiprotein complex influences the probability of a particular conformation in a neighbouring protein, then changes can propagate. Given suitable parameters, linear or two-dimensional arrays of allosteric subunits will then behave similar to an Ising model, exhibiting hypersharp responses to external conditions. Predictions based on this concept find good quantitative agreement in a number of experimental systems including switching of the bacterial flagellar motor, amplification of ligand signals in the Escherichia coli chemotaxis receptors, and termination of calcium sparks in cardiac muscle. A similar mechanism could potentially provide a universal mechanism of integration within living cells.
Collapse
|
7
|
Stelmashenko O, Lalo U, Yang Y, Bragg L, North RA, Compan V. Activation of trimeric P2X2 receptors by fewer than three ATP molecules. Mol Pharmacol 2012; 82:760-6. [PMID: 22828800 DOI: 10.1124/mol.112.080903] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2X receptors are trimeric membrane proteins. When they bind extracellular ATP, a conformational change occurs that opens a transmembrane ion channel. The ATP-binding pocket is formed in a cleft between two subunits, and a critical amino acid residue for ATP contact is Lys⁶⁹ (P2X2 numbering). In the present work, we sought to determine whether the binding of fewer than three ATP molecules could open the ion channel. We expressed eight concatenated cDNAs in human embryonic kidney cells, which encoded three serially joined, epitope-tagged, subunits with either Lys or Ala at position 69 (denoted as KKK, KKA, KAK, AKK, KAA, AKA, AAK, and AAA). Western blotting of surface-biotinylated proteins indicated that breakdown of concatemers to individual subunits was minimal. Recording of membrane currents in response to ATP (whole cell and excised outside-out patch) showed that all formed functional channels except AAK, AKA, and AAA. There was no difference in the kinetics of activation and deactivation among KKK, KKA, KAK, and AKK channels, and amplitude of the unitary conductances was in all cases not different from that found after expression of a single wild-type subunit. Currents through KKA and KAK receptors were larger than those observed for AKK receptors. The results indicate that trimeric P2X receptors containing only two intact binding sites can be readily activated by ATP.
Collapse
Affiliation(s)
- Olga Stelmashenko
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Lefurgy ST, Leyh TS. Analytical expressions for the homotropic binding of ligand to protein dimers and trimers. Anal Biochem 2011; 421:433-8. [PMID: 22230282 DOI: 10.1016/j.ab.2011.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 11/16/2022]
Abstract
Cooperative binding of a ligand to multiple subsites on a protein is a common theme among enzymes and receptors. The analysis of cooperative binding data (either positive or negative) often relies on the assumption that free ligand concentration, L, can be approximated by the total ligand concentration, L(T). When this approximation does not hold, such analyses result in inaccurate estimates of dissociation constants. Presented here are exact analytical expressions for equilibrium concentrations of all enzyme and ligand species (in terms of K(d) values and total concentrations of protein and ligand) for homotropic dimeric and trimeric protein-ligand systems. These equations circumvent the need to approximate L and are provided in Excel worksheets suitable for simulation and least-squares fitting. The equations and worksheets are expanded to treat cases where binding signals vary with distinct site occupancy.
Collapse
Affiliation(s)
- Scott T Lefurgy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
9
|
Ribrault C, Sekimoto K, Triller A. From the stochasticity of molecular processes to the variability of synaptic transmission. Nat Rev Neurosci 2011; 12:375-87. [PMID: 21685931 DOI: 10.1038/nrn3025] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The variability of the postsynaptic response following a single action potential arises from two sources: the neurotransmitter release is probabilistic, and the postsynaptic response to neurotransmitter release has variable timing and amplitude. At individual synapses, the number of molecules of a given type that are involved in these processes is small enough that the stochastic (random) properties of molecular events cannot be neglected. How the stochasticity of molecular processes contributes to the variability of synaptic transmission, its sensitivity and its robustness to molecular fluctuations has important implications for our understanding of the mechanistic basis of synaptic transmission and of synaptic plasticity.
Collapse
Affiliation(s)
- Claire Ribrault
- Laboratoire Matières et Systèmes Complexes, CNRS-UMR7057, Université Paris 7, F-75205 Paris cedex 13, France
| | | | | |
Collapse
|
10
|
Bai F, Branch RW, Nicolau DV, Pilizota T, Steel BC, Maini PK, Berry RM. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 2010; 327:685-9. [PMID: 20133571 DOI: 10.1126/science.1182105] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread--the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes.
Collapse
Affiliation(s)
- Fan Bai
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Pless SA, Lynch JW. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits. J Neurochem 2009; 108:1585-94. [DOI: 10.1111/j.1471-4159.2009.05930.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Karoly R, Mike A, Illes P, Gerevich Z. The Unusual State-Dependent Affinity of P2X3 Receptors Can Be Explained by an Allosteric Two-Open-State Model. Mol Pharmacol 2007; 73:224-34. [DOI: 10.1124/mol.107.038901] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Kristensen AS, Geballe MT, Snyder JP, Traynelis SF. Glutamate receptors: variation in structure-function coupling. Trends Pharmacol Sci 2006; 27:65-9. [PMID: 16406088 DOI: 10.1016/j.tips.2005.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/14/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of new structural information about the agonist-binding site. Recent studies suggest that despite many structural similarities different family members use different mechanisms to translate agonist binding into channel opening.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | |
Collapse
|
14
|
Brown RL, Strassmaier T, Brady JD, Karpen JW. The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des 2006; 12:3597-613. [PMID: 17073662 PMCID: PMC2467446 DOI: 10.2174/138161206778522100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some information, but there is a pressing need for potent and specific pharmacological agents directed at CNG channels. To date there has been very little systematic effort in this direction - most of what can be termed CNG channel pharmacology arose from testing reagents known to target protein kinases or other ion channels, or by accident when researchers were investigating other intracellular pathways that may regulate the activity of CNG channels. Predictably, these studies have not produced selective agents. However, taking advantage of emerging structural information and the increasing knowledge of the biophysical properties of these channels, some promising compounds and strategies have begun to emerge. In this review we discuss progress on two fronts, cyclic nucleotide analogs as both activators and competitive inhibitors, and inhibitors that target the pore or gating machinery of the channel. We also discuss the potential of these compounds for treating certain forms of retinal degeneration.
Collapse
Affiliation(s)
- R. Lane Brown
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy Strassmaier
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James D. Brady
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W. Karpen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Erreger K, Dravid SM, Banke TG, Wyllie DJA, Traynelis SF. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 2005; 563:345-58. [PMID: 15649985 PMCID: PMC1665591 DOI: 10.1113/jphysiol.2004.080028] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NR2A and NR2B are the predominant NR2 NMDA receptor subunits expressed in cortex and hippocampus. The relative expression level of NR2A and NR2B is regulated developmentally and these two subunits have been suggested to play distinct roles in long-term synaptic plasticity. We have used patch-clamp recording of recombinant NMDA receptors expressed in HEK293 cells to characterize the activation properties of both NR1/NR2A and NR1/NR2B receptors. Recordings from outside-out patches that contain a single active channel show that NR2A-containing receptors have a higher probability of opening at least once in response to a brief synaptic-like pulse of glutamate than NR2B-containing receptors (NR2A, 0.80; NR2B, 0.56), a higher peak open probability (NR2A, 0.50; NR2B, 0.12), and a higher open probability within an activation (NR2A, 0.67; NR2B, 0.37). Analysis of the sequence of single-channel open and closed intervals shows that both NR2A- and NR2B-containing receptors undergo multiple conformational changes prior to opening of the channel, with at least one of these steps being faster for NR2A than NR2B. These distinct properties produce profoundly different temporal signalling profiles for NR2A- and NR2B-containing receptors. Simulations of synaptic responses demonstrate that at low frequencies typically used to induce long-term depression (LTD; 1 Hz), NR1/NR2B makes a larger contribution to total charge transfer and therefore calcium influx than NR1/NR2A. However, under high-frequency tetanic stimulation (100 Hz; > 100 ms) typically used to induce long-term potentiation (LTP), the charge transfer mediated by NR1/NR2A considerably exceeds that of NR1/NR2B.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322-3090, USA.
| | | | | | | | | |
Collapse
|
16
|
Viappiani C, Bettati S, Bruno S, Ronda L, Abbruzzetti S, Mozzarelli A, Eaton WA. New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Proc Natl Acad Sci U S A 2004; 101:14414-9. [PMID: 15385676 PMCID: PMC521967 DOI: 10.1073/pnas.0405987101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Indexed: 11/18/2022] Open
Abstract
To understand why the classical two-state allosteric model of Monod, Wyman, and Changeux explains cooperative oxygen binding by hemoglobin but does not explain changes in oxygen affinity by allosteric inhibitors, we have investigated the kinetic properties of unstable conformations transiently trapped by encapsulation in silica gels. Conformational trapping reveals that after nanosecond photodissociation of carbon monoxide a large fraction of the subunits of the T quaternary structure has kinetic properties almost identical to those of subunits of the R quaternary structure. Addition of allosteric inhibitors reduces both the fraction of R-like subunits and the oxygen affinity of the T quaternary structure. These kinetic and equilibrium results are readily explained by a recently proposed generalization of the Monod-Wyman-Changeux model in which a pre-equilibrium between two functionally different tertiary, rather than quaternary, conformations plays the central role.
Collapse
|
17
|
Karpen JW. Ion channel structure and the promise of bacteria: cyclic nucleotide-gated channels in the queue. J Gen Physiol 2004; 124:199-201. [PMID: 15337818 PMCID: PMC2233882 DOI: 10.1085/jgp.200409165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jeffrey W Karpen
- Dept. of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., L334, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Dahan DS, Dibas MI, Petersson EJ, Auyeung VC, Chanda B, Bezanilla F, Dougherty DA, Lester HA. A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. Proc Natl Acad Sci U S A 2004; 101:10195-200. [PMID: 15218096 PMCID: PMC454187 DOI: 10.1073/pnas.0301885101] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study conformational transitions at the muscle nicotinic acetylcholine (ACh) receptor (nAChR), a rhodamine fluorophore was tethered to a Cys side chain introduced at the beta 19' position in the M2 region of the nAChR expressed in Xenopus oocytes. This procedure led to only minor changes in receptor function. During agonist application, fluorescence increased by (Delta F/F) approximately 10%, and the emission peak shifted to lower wavelengths, indicating a more hydrophobic environment for the fluorophore. The dose-response relations for Delta F agreed well with those for epibatidine-induced currents, but were shifted approximately 100-fold to the left of those for ACh-induced currents. Because (i) epibatidine binds more tightly to the alpha gamma-binding site than to the alpha delta site and (ii) ACh binds with reverse-site selectivity, these data suggest that Delta F monitors an event linked to binding specifically at the alpha delta-subunit interface. In experiments with flash-applied agonists, the earliest detectable Delta F occurs within milliseconds, i.e., during activation. At low [ACh] (< or = 10 microM), a phase of Delta F occurs with the same time constant as desensitization, presumably monitoring an increased population of agonist-bound receptors. However, recovery from Delta F is complete before the slowest phase of recovery from desensitization (time constant approximately 250 s), showing that one or more desensitized states have fluorescence like that of the resting channel. That conformational transitions at the alpha delta-binding site are not tightly coupled to channel activation suggests that sequential rather than fully concerted transitions occur during receptor gating. Thus, time-resolved fluorescence changes provide a powerful probe of nAChR conformational changes.
Collapse
Affiliation(s)
- David S Dahan
- Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|