1
|
Bocanegra R, Ortíz-Rodríguez M, Zumeta L, Plaza-G A I, Faro E, Ibarra B. DNA replication machineries: Structural insights from crystallography and electron microscopy. Enzymes 2023; 54:249-271. [PMID: 37945174 DOI: 10.1016/bs.enz.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Since the discovery of DNA as the genetic material, scientists have been investigating how the information contained in this biological polymer is transmitted from generation to generation. X-ray crystallography, and more recently, cryo-electron microscopy techniques have been instrumental in providing essential information about the structure, functions and interactions of the DNA and the protein machinery (replisome) responsible for its replication. In this chapter, we highlight several works that describe the structure and structure-function relationships of the core components of the prokaryotic and eukaryotic replisomes. We also discuss the most recent studies on the structural organization of full replisomes.
Collapse
Affiliation(s)
| | | | - Lyra Zumeta
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | | | - Elías Faro
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
2
|
Oki K, Nagata M, Yamagami T, Numata T, Ishino S, Oyama T, Ishino Y. Family D DNA polymerase interacts with GINS to promote CMG-helicase in the archaeal replisome. Nucleic Acids Res 2021; 50:3601-3615. [PMID: 34568951 PMCID: PMC9023282 DOI: 10.1093/nar/gkab799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Mayanagi K, Oki K, Miyazaki N, Ishino S, Yamagami T, Morikawa K, Iwasaki K, Kohda D, Shirai T, Ishino Y. Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biol 2020; 18:152. [PMID: 33115459 PMCID: PMC7594292 DOI: 10.1186/s12915-020-00889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a β-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.
Collapse
Affiliation(s)
- Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| | - Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Present address: Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Daisuke Kohda
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan.
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
5
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
7
|
Stodola JL, Stith CM, Burgers PM. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase. J Biol Chem 2016; 291:11698-705. [PMID: 27072134 DOI: 10.1074/jbc.m116.728741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication.
Collapse
Affiliation(s)
- Joseph L Stodola
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Carrie M Stith
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter M Burgers
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
8
|
Schermerhorn KM, Gardner AF. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance. J Biol Chem 2015; 290:21800-10. [PMID: 26160179 PMCID: PMC4571936 DOI: 10.1074/jbc.m115.662841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼ 2.5 s(-1)) and especially tight nucleotide binding (Kd (dNTP) ∼ 1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3'-5' exonuclease hydrolysis activity in the presence of Mg(2+) and Mn(2+). Interestingly, substituting Mn(2+) for Mg(2+) accelerated hydrolysis rates > 40-fold (kexo ≥ 110 s(-1) versus ≥ 2.5 s(-1)). Preference for Mn(2+) over Mg(2+) in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families.
Collapse
|
9
|
Zhang Y, Baranovskiy AG, Tahirov TH, Pavlov YI. The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex. J Biol Chem 2014; 289:22021-34. [PMID: 24962573 DOI: 10.1074/jbc.m114.570333] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.
Collapse
Affiliation(s)
- Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and
| | | | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases,
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805
| |
Collapse
|
10
|
Matsui I, Matsui E, Yamasaki K, Yokoyama H. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase. Life (Basel) 2013; 3:375-85. [PMID: 25369811 PMCID: PMC4187176 DOI: 10.3390/life3030375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 02/01/2023] Open
Abstract
Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.
Collapse
Affiliation(s)
- Ikuo Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Eriko Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Hideshi Yokoyama
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
11
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
12
|
Abstract
DNA polymerase δ (Pol δ) is a member of the B-family DNA polymerases and is one of the major replicative DNA polymerases in eukaryotes. In addition to chromosomal DNA replication it is also involved in DNA repair and recombination. Pol δ is a multi-subunit complex comprised of a catalytic subunit and accessory subunits. The latter subunits play a critical role in the regulation of Pol δ functions. Recent progress in the structural characterization of Pol δ, together with a vast number of biochemical and functional studies, provides the basis for understanding the intriguing mechanisms of its regulation during DNA replication, repair and recombination. In this chapter we review the current state of the Pol δ structure-function relationship with an emphasis on the role of its accessory subunits.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA,
| |
Collapse
|
13
|
Abstract
Initiation of DNA synthesis in eukaryotic replication depends on the Pol α-primase complex, a multi-protein complex endowed with polymerase and primase activity. The Pol α-primase complex assembles the RNA-DNA primers required by the processive Pol δ and Pol ε for bulk DNA synthesis on the lagging and leading strand, respectively. During primer synthesis, the primase subunits synthesise de novo an oligomer of 7-12 ribonucleotides in length, which undergoes limited extension with deoxyribonucleotides by Pol α. Despite its central importance to DNA replication, little is known about the mechanism of primer synthesis by the Pol α-primase complex, which comprises the steps of initiation, 'counting' and hand-off of the RNA primer by the primase to Pol α, followed by primer extension with dNTPs and completion of the RNA-DNA hybrid primer. Recent biochemical and structural work has started to provide some insight into the molecular basis of initiation of DNA synthesis. Important advances include the structural characterisation of the evolutionarily related archaeal primase, the elucidation of the mechanism of interaction between Pol α and its B subunit and the observation that the regulatory subunit of the primase contains an iron-sulfur cluster domain that is essential for primer synthesis.
Collapse
|
14
|
Netz DJA, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PMJ, Pierik AJ. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 2011; 8:125-32. [PMID: 22119860 PMCID: PMC3241888 DOI: 10.1038/nchembio.721] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/03/2011] [Indexed: 11/09/2022]
Abstract
The eukaryotic replicative DNA polymerases (Pol α, δ and ɛ) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.
Collapse
Affiliation(s)
- Daili J A Netz
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brocas C, Charbonnier JB, Dhérin C, Gangloff S, Maloisel L. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair. DNA Repair (Amst) 2010; 9:1098-111. [PMID: 20813592 DOI: 10.1016/j.dnarep.2010.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 11/24/2022]
Abstract
Eukaryotic DNA polymerase δ (Pol δ) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol δ is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) and this interaction is of functional importance both in DNA replication and DNA repair. Interestingly, deletion of the last four C-terminal Pol3 residues, LSKW, in the pol3-ct mutant does not affect DNA replication but leads to defects in homologous recombination and in break-induced replication (BIR) repair pathways. The defect associated with pol3-ct could result from a defective interaction between Pol δ and a protein involved in recombination. However, we show that the LSKW motif is required for the interaction between Pol3 C-terminal end and Pol31. This loss of interaction is relevant in vivo since we found that pol3-ct confers HU sensitivity on its own and synthetic lethality with a POL32 deletion. Moreover, pol3-ct shows genetic interactions, both suppression and synthetic lethality, with POL31 mutant alleles. Structural analyses indicate that the B subunit of Pol δ displays a major conserved region at its surface and that pol31 alleles interacting with pol3-ct, correspond to substitutions of Pol31 amino acids that are situated in this particular region. Superimposition of our Pol31 model on the 3D architecture of the phylogenetically related DNA polymerase α (Pol α) suggests that Pol3 CTD interacts with the conserved region of Pol31, thus providing a molecular basis to understand the defects associated with pol3-ct. Taken together, our data highlight a stringent dependence on Pol δ complex stability in DNA repair.
Collapse
Affiliation(s)
- Clémentine Brocas
- CEA, DSV, iRCM, Bâtiment 05/BP6, Fontenay-aux-Roses, F-92265, France
| | | | | | | | | |
Collapse
|
16
|
Solution structure of the N-terminal domain of the archaeal D-family DNA polymerase small subunit reveals evolutionary relationship to eukaryotic B-family polymerases. FEBS Lett 2010; 584:3370-5. [PMID: 20598295 DOI: 10.1016/j.febslet.2010.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/09/2010] [Accepted: 06/17/2010] [Indexed: 11/20/2022]
Abstract
Archaea-specific D-family DNA polymerase forms a heterotetramer consisting of two large polymerase subunits and two small exonuclease subunits. We analyzed the structure of the N-terminal 200 amino-acid regulatory region of the small subunit by NMR and revealed that the N-terminal approximately 70 amino-acid region is folded. The structure consists of a four-alpha-helix bundle including a short parallel beta-sheet, which is similar to the N-terminal regions of the B subunits of human DNA polymerases alpha and epsilon, establishing evolutionary relationships among these archaeal and eukaryotic polymerases. We observed monomer-dimer equilibrium of this domain, which may be related to holoenzyme architecture and/or functional regulation.
Collapse
|
17
|
Huang H, Weiner BE, Zhang H, Fuller BE, Gao Y, Wile BM, Zhao K, Arnett DR, Chazin WJ, Fanning E. Structure of a DNA polymerase alpha-primase domain that docks on the SV40 helicase and activates the viral primosome. J Biol Chem 2010; 285:17112-22. [PMID: 20234039 DOI: 10.1074/jbc.m110.116830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim) plays a central role in DNA replication in higher eukaryotes, initiating synthesis on both leading and lagging strand single-stranded DNA templates. Pol-prim consists of a primase heterodimer that synthesizes RNA primers, a DNA polymerase that extends them, and a fourth subunit, p68 (also termed B-subunit), that is thought to regulate the complex. Although significant knowledge about single-subunit primases of prokaryotes has accumulated, the functions and regulation of pol-prim remain poorly understood. In the SV40 replication model, the p68 subunit is required for primosome activity and binds directly to the hexameric viral helicase T antigen, suggesting a functional link between T antigen-p68 interaction and primosome activity. To explore this link, we first mapped the interacting regions of the two proteins and discovered a previously unrecognized N-terminal globular domain of p68 (p68N) that physically interacts with the T antigen helicase domain. NMR spectroscopy was used to determine the solution structure of p68N and map its interface with the T antigen helicase domain. Structure-guided mutagenesis of p68 residues in the interface diminished T antigen-p68 interaction, confirming the interaction site. SV40 primosome activity of corresponding pol-prim mutants decreased in proportion to the reduction in p68N-T antigen affinity, confirming that p68-T antigen interaction is vital for primosome function. A model is presented for how this interaction regulates SV40 primosome activity, and the implications of our findings are discussed in regard to the molecular mechanisms of eukaryotic DNA replication initiation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Johansson E, Macneill SA. The eukaryotic replicative DNA polymerases take shape. Trends Biochem Sci 2010; 35:339-47. [PMID: 20163964 DOI: 10.1016/j.tibs.2010.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 11/17/2022]
Abstract
Three multi-subunit DNA polymerase enzymes lie at the heart of the chromosome replication machinery in the eukaryotic cell nucleus. Through a combination of genetic, molecular biological and biochemical analysis, significant advances have been made in understanding the essential roles played by each of these enzymes at the replication fork. Until very recently, however, little information was available on their three-dimensional structures. Lately, a series of crystallographic and electron microscopic studies has been published, allowing the structures of the complexes and their constituent subunits to be visualised in detail for the first time. Taken together, these studies provide significant insights into the molecular makeup of the replication machinery in eukaryotic cells and highlight a number of key areas for future investigation.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
19
|
Sanchez Garcia J, Baranovskiy AG, Knatko EV, Gray FC, Tahirov TH, MacNeill SA. Functional mapping of the fission yeast DNA polymerase delta B-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis. BMC Mol Biol 2009; 10:82. [PMID: 19686603 PMCID: PMC2734569 DOI: 10.1186/1471-2199-10-82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022] Open
Abstract
Background DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively. Results To gain insights into the structure and function of Cdc1, random and directed mutagenesis techniques were used to create a collection of thirty alleles encoding mutant Cdc1 proteins. Each allele was tested for function in fission yeast and for binding of the altered protein to Pol3 and Cdc27 using the two-hybrid system. Additionally, the locations of the amino acid changes in each protein were mapped onto the three-dimensional structure of human p50. The results obtained from these studies identify amino acid residues and regions within the Cdc1 protein that are essential for interaction with Pol3 and Cdc27 and for in vivo function. Mutations specifically defective in Pol3-Cdc1 interactions allow the identification of a possible Pol3 binding surface on Cdc1. Conclusion In the absence of a three-dimensional structure of the entire Pol δ complex, the results of this study highlight regions in Cdc1 that are vital for protein function in vivo and provide valuable clues to possible protein-protein interaction surfaces on the Cdc1 protein that will be important targets for further study.
Collapse
Affiliation(s)
- Javier Sanchez Garcia
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Pavlov YI, Shcherbakova PV. DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 2009; 685:45-53. [PMID: 19682465 DOI: 10.1016/j.mrfmmm.2009.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Function of the eukaryotic genome depends on efficient and accurate replication of anti-parallel DNA strands. Eukaryotic DNA polymerases have different properties adapted to perform a wide spectrum of DNA transactions. Here we focus on major players in the bulk replication, DNA polymerases of the B-family. We review the organization of the replication fork in eukaryotes in a historical perspective, analyze contemporary models and propose a new integrative model of the fork.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | | |
Collapse
|
21
|
3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 2009; 28:1978-87. [PMID: 19494830 PMCID: PMC2693882 DOI: 10.1038/emboj.2009.150] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/11/2009] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol alpha, Pol delta and Pol epsilon. The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol alpha. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol alpha reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B-CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.
Collapse
|
22
|
Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 2009; 4:11. [PMID: 19296856 PMCID: PMC2669801 DOI: 10.1186/1745-6150-4-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022] Open
Abstract
Background Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. Results We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Conclusion Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal ancestor of eukaryotes encoded three DNA polymerases, namely, two distinct B-family polymerases and a D-family polymerase all of which contributed to the evolution of the eukaryotic replication machinery. The Zn-finger might have been acquired from PolD by the B-family form that gave rise to Pol ε prior to or in the course of eukaryogenesis, and subsequently, was captured by the ancestor of the other B-family eukaryotic polymerases. The inactivated polymerase-exonuclease module of Pol ε might have evolved by fusion with a distinct polymerase, rather than by duplication of the active module of Pol ε, and is likely to play an important role in the assembly of eukaryotic replication and repair complexes. Reviewers This article was reviewed by Patrick Forterre, Arcady Mushegian, and Chris Ponting. For the full reviews, please go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA.
| | | | | | | | | |
Collapse
|
23
|
Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV, Pavlov YI, Vassylyev DG, Tahirov TH. X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle 2008; 7:3026-36. [PMID: 18818516 DOI: 10.4161/cc.7.19.6720] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The eukaryotic DNA polymerase delta (Pol delta) participates in genome replication, homologous recombination, DNA repair and damage tolerance. Regulation of the plethora of Pol delta functions depends on the interaction between the second (p50) and third (p66) non-catalytic subunits. We report the crystal structure of p50*p66(N) complex featuring oligonucleotide binding and phosphodiesterase domains in p50 and winged helix-turn-helix N-terminal domain in p66. Disruption of the interaction between the yeast orthologs of p50 and p66 by strategic amino acid changes leads to cold-sensitivity, sensitivity to hydroxyurea and to reduced UV mutagenesis, mimicking the phenotypes of strains where the third subunit of Pol delta is absent. The second subunits of all B family replicative DNA polymerases in archaea and eukaryotes, except Pol delta, share a three-domain structure similar to p50*p66(N), raising the possibility that a portion of the gene encoding p66 was derived from the second subunit gene relatively late in evolution.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nuutinen T, Tossavainen H, Fredriksson K, Pirilä P, Permi P, Pospiech H, Syvaoja JE. The solution structure of the amino-terminal domain of human DNA polymerase epsilon subunit B is homologous to C-domains of AAA+ proteins. Nucleic Acids Res 2008; 36:5102-10. [PMID: 18676977 PMCID: PMC2528186 DOI: 10.1093/nar/gkn497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases α, δ and ε are large multisubunit complexes that replicate the bulk of the DNA in the eukaryotic cell. In addition to the homologous catalytic subunits, these enzymes possess structurally related B subunits, characterized by a carboxyterminal calcineurin-like and an aminoproximal oligonucleotide/oligosaccharide binding-fold domain. The B subunits also share homology with the exonuclease subunit of archaeal DNA polymerases D. Here, we describe a novel domain specific to the N-terminus of the B subunit of eukaryotic DNA polymerases ε. The N-terminal domain of human DNA polymerases ε (Dpoe2NT) expressed in Escherichia coli was characterized. Circular dichroism studies demonstrated that Dpoe2NT forms a stable, predominantly α-helical structure. The solution structure of Dpoe2NT revealed a domain that consists of a left-handed superhelical bundle. Four helices are arranged in two hairpins and the connecting loops contain short β-strand segments that form a short parallel sheet. DALI searches demonstrated a striking structural similarity of the Dpoe2NT with the α-helical subdomains of ATPase associated with various cellular activity (AAA+) proteins (the C-domain). Like C-domains, Dpoe2NT is rich in charged amino acids. The biased distribution of the charged residues is reflected by a polarization and a considerable dipole moment across the Dpoe2NT. Dpoe2NT represents the first C-domain fold not associated with an AAA+ protein.
Collapse
|
25
|
Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 2008; 178:633-47. [PMID: 18245343 DOI: 10.1534/genetics.107.082818] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.
Collapse
|
26
|
Sweasy JB, Lauper JM, Eckert KA. DNA polymerases and human diseases. Radiat Res 2006; 166:693-714. [PMID: 17067213 DOI: 10.1667/rr0706.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/12/2006] [Indexed: 11/03/2022]
Abstract
DNA polymerases function in DNA replication, repair, recombination and translesion synthesis. Currently, 15 DNA polymerase genes have been identified in human cells, belonging to four distinct families. In this review, we briefly describe the biochemical activities and known cellular roles of each DNA polymerase. Our major focus is on the phenotypic consequences of mutation or ablation of individual DNA polymerase genes. We discuss phenotypes of current mouse models and altered polymerase functions and the relationship of DNA polymerase gene mutations to human cell phenotypes. Interestingly, over 120 single nucleotide polymorphisms (SNPs) have been identified in human populations that are predicted to result in nonsynonymous amino acid substitutions of DNA polymerases. We discuss the putative functional consequences of these SNPs in relation to human disease.
Collapse
Affiliation(s)
- Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, HRT 313D, P.O. Box 208040, New Haven, CT 06520-8040, USA.
| | | | | |
Collapse
|
27
|
Nasheuer HP, Pospiech H, Syväoja J. Progress Towards the Anatomy of the Eukaryotic DNA Replication Fork. Genome Integr 2006. [DOI: 10.1007/7050_016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
28
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
29
|
Jokela M, Raki M, Heikkinen K, Sepponen K, Eskelinen A, Syväoja JE. The screening of expression and purification conditions for replicative DNA polymerase associated B-subunits, assignment of the exonuclease activity to the C-terminus of archaeal pol D DP1 subunit. Protein Expr Purif 2005; 43:73-84. [PMID: 15979340 DOI: 10.1016/j.pep.2005.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/22/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
The B-subunits of replicative DNA polymerases belong to the superfamily of calcineurin-like phosphoesterases and are conserved from Archaea to humans. Recently we and others have shown that the B-subunit (DP1) of the archaeal family D DNA polymerase is responsible for proofreading 3'-5' exonuclease activity. The similarity of B-subunit sequences implies a common fold, but since the key catalytic and metal binding residues of the phosphoesterase domain are disrupted in the eukaryotic B-subunits, their common function has not been identified. To study the structure and activities of B-subunits in more detail, we expressed 13 different recombinant B-subunits in Escherichia coli. We found that the solubility of a protein could be predicted from the calculated GRAVY score. These scores were useful for the selection of proteins for successful expression. We optimized the expression and purification of Methanocaldococcus (Methanococcus) jannaschii DP1 of DNA polymerase D (MjaDP1) and show that the protein co-purifies with a thermostable nuclease activity. Truncation of the protein indicates that the N-terminus (aa 1-134) is not needed for catalysis. The C-terminal part of the protein containing both the calcineurin-like phosphoesterase domain and the OB-fold is sufficient for the nuclease activity.
Collapse
Affiliation(s)
- Maarit Jokela
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Gray FC, Pohler JRG, Warbrick E, MacNeill SA. Mapping and mutation of the conserved DNA polymerase interaction motif (DPIM) located in the C-terminal domain of fission yeast DNA polymerase delta subunit Cdc27. BMC Mol Biol 2004; 5:21. [PMID: 15579205 PMCID: PMC545490 DOI: 10.1186/1471-2199-5-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 12/03/2004] [Indexed: 11/28/2022] Open
Abstract
Background DNA polymerases α and δ play essential roles in the replication of chromosomal DNA in eukaryotic cells. DNA polymerase α (Pol α)-primase is required to prime synthesis of the leading strand and each Okazaki fragment on the lagging strand, whereas DNA polymerase δ (Pol δ) is required for the elongation stages of replication, a function it appears capable of performing on both leading and lagging strands, at least in the absence of DNA polymerase ε (Pol ε). Results Here it is shown that the catalytic subunit of Pol α, Pol1, interacts with Cdc27, one of three non-catalytic subunits of fission yeast Pol δ, both in vivo and in vitro. Pol1 interacts with the C-terminal domain of Cdc27, at a site distinct from the previously identified binding sites for Cdc1 and PCNA. Comparative protein sequence analysis identifies a protein sequence motif, called the DNA polymerase interaction motif (DPIM), in Cdc27 orthologues from a wide variety of eukaryotic species, including mammals. Mutational analysis shows that the DPIM in fission yeast Cdc27 is not required for effective DNA replication, repair or checkpoint function. Conclusions The absence of any detectable phenotypic consequences arising from mutation of the DPIM suggests that despite its evolutionary conservation, the interaction between the two polymerases mediated by this motif is a non-essential one.
Collapse
Affiliation(s)
- Fiona C Gray
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - J Richard G Pohler
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Emma Warbrick
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Stuart A MacNeill
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
31
|
Grossi S, Puglisi A, Dmitriev PV, Lopes M, Shore D. Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev 2004; 18:992-1006. [PMID: 15132993 PMCID: PMC406290 DOI: 10.1101/gad.300004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regulation of telomerase action, and its coordination with conventional DNA replication and chromosome end "capping," are still poorly understood. Here we describe a genetic screen in yeast for mutants with relaxed telomere length regulation, and the identification of Pol12, the B subunit of the DNA polymerase alpha (Pol1)-primase complex, as a new factor involved in this process. Unlike many POL1 and POL12 mutations, which also cause telomere elongation, the pol12-216 mutation described here does not lead to either reduced Pol1 function, increased telomeric single-stranded DNA, or a reduction in telomeric gene silencing. Instead, and again unlike mutations affecting POL1, pol12-216 is lethal in combination with a mutation in the telomere end-binding and capping protein Stn1. Significantly, Pol12 and Stn1 interact in both two-hybrid and biochemical assays, and their synthetic-lethal interaction appears to be caused, at least in part, by a loss of telomere capping. These data reveal a novel function for Pol12 and a new connection between DNA polymerase alpha and Stn1. We propose that Pol12, together with Stn1, plays a key role in linking telomerase action with the completion of lagging strand synthesis, and in a regulatory step required for telomere capping.
Collapse
Affiliation(s)
- Simona Grossi
- Department of Molecular Biology and NCCR program "Frontiers in Genetics," University of Geneva, Geneva 4, CH-1211 Switzerland
| | | | | | | | | |
Collapse
|
32
|
Sanchez Garcia J, Ciufo LF, Yang X, Kearsey SE, MacNeill SA. The C-terminal zinc finger of the catalytic subunit of DNA polymerase delta is responsible for direct interaction with the B-subunit. Nucleic Acids Res 2004; 32:3005-16. [PMID: 15173383 PMCID: PMC434430 DOI: 10.1093/nar/gkh623] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/06/2004] [Accepted: 05/06/2004] [Indexed: 11/14/2022] Open
Abstract
DNA polymerase delta (Pol delta) plays a central role in eukaryotic chromosomal DNA replication, repair and recombination. In fission yeast, Pol delta is a tetrameric enzyme, comprising the catalytic subunit Pol3 and three smaller subunits, Cdc1, Cdc27 and Cdm1. Previous studies have demonstrated a direct interaction between Pol3 and Cdc1, the B-subunit of the complex. Here it is shown that removal of the tandem zinc finger modules located at the C-terminus of Pol3 by targeted proteolysis renders the Pol3 protein non-functional in vivo, and that the C-terminal zinc finger module ZnF2 is both necessary and sufficient for binding to the B-subunit in vivo and in vitro. Extensive mutagenesis of the ZnF2 module identifies important residues for B-subunit binding. In particular, disruption of the ZnF2 module by substitution of the putative metal-coordinating cysteines with alanine abolishes B-subunit binding and in vivo function. Finally, evidence is presented suggesting that the ZnF region is post-translationally modified in fission yeast cells.
Collapse
Affiliation(s)
- Javier Sanchez Garcia
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
33
|
Jokela M, Eskelinen A, Pospiech H, Rouvinen J, Syväoja JE. Characterization of the 3' exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D. Nucleic Acids Res 2004; 32:2430-40. [PMID: 15121900 PMCID: PMC419447 DOI: 10.1093/nar/gkh558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The B-subunits associated with the replicative DNA polymerases are conserved from Archaea to humans, whereas the corresponding catalytic subunits are not related. The latter belong to the B and D DNA polymerase families in eukaryotes and archaea, respectively. Sequence analysis places the B-subunits within the calcineurin-like phosphoesterase superfamily. Since residues implicated in metal binding and catalysis are well conserved in archaeal family D DNA polymerases, it has been hypothesized that the B-subunit could be responsible for the 3'-5' proofreading exonuclease activity of these enzymes. To test this hypothesis we expressed Methanococcus jannaschii DP1 (MjaDP1), the B-subunit of DNA polymerase D, in Escherichia coli, and demonstrate that MjaDP1 functions alone as a moderately active, thermostable, Mn2+-dependent 3'-5' exonuclease. The putative polymerase subunit DP2 is not required. The nuclease activity is strongly reduced by single amino acid mutations in the phosphoesterase domain indicating the requirement of this domain for the activity. MjaDP1 acts as a unidirectional, non-processive exonuclease preferring mispaired nucleotides and single-stranded DNA, suggesting that MjaDP1 functions as the proofreading exonuclease of archaeal family D DNA polymerase.
Collapse
Affiliation(s)
- Maarit Jokela
- Biocenter Oulu and Department of Biochemistry, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | | | |
Collapse
|
34
|
Kesti T, McDonald WH, Yates JR, Wittenberg C. Cell Cycle-dependent Phosphorylation of the DNA Polymerase Epsilon Subunit, Dpb2, by the Cdc28 Cyclin-dependent Protein Kinase. J Biol Chem 2004; 279:14245-55. [PMID: 14747467 DOI: 10.1074/jbc.m313289200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon
Collapse
Affiliation(s)
- Tapio Kesti
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Genome sequences of a number of archaea have revealed an apparent paradox in the phylogenies of the bacteria, archaea, and eukarya, as well as an intriguing set of problems to be resolved in the study of DNA replication. The archaea, long thought to be bacteria, are not only different enough to merit their own domain but also appear to be an interesting mosaic of bacterial, eukaryal, and unique features. Most archaeal proteins participating in DNA replication are more similar in sequence to those found in eukarya than to analogous replication proteins in bacteria. However, archaea have only a subset of the eukaryal replication machinery, apparently needing fewer polypeptides and structurally simpler complexes. The archaeal replication apparatus also contains features not found in other organisms owing, in part, to the broad range of environmental conditions, some extreme, in which members of this domain thrive. In this review the current knowledge of the mechanisms governing DNA replication in archaea is summarized and the similarities and differences of those of bacteria and eukarya are highlighted.
Collapse
Affiliation(s)
- Beatrice Grabowski
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
36
|
Feng W, Rodriguez-Menocal L, Tolun G, D'Urso G. Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol Biol Cell 2003; 14:3427-36. [PMID: 12925774 PMCID: PMC181578 DOI: 10.1091/mbc.e03-02-0088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genetic evidence suggests that DNA polymerase epsilon (Pol epsilon) has a noncatalytic essential role during the early stages of DNA replication initiation. Herein, we report the cloning and characterization of the second largest subunit of Pol epsilon in fission yeast, called Dpb2. We demonstrate that Dpb2 is essential for cell viability and that a temperature-sensitive mutant of dpb2 arrests with a 1C DNA content, suggesting that Dpb2 is required for initiation of DNA replication. Using a chromatin immunoprecipitation assay, we show that Dpb2, binds preferentially to origin DNA at the beginning of S phase. We also show that the C terminus of Pol epsilon associates with origin DNA at the same time as Dpb2. We conclude that Dpb2 is an essential protein required for an early step in DNA replication. We propose that the primary function of Dpb2 is to facilitate assembly of the replicative complex at the start of S phase. These conclusions are based on the novel cell cycle arrest phenotype of the dpb2 mutant, on the previously uncharacterized binding of Dpb2 to replication origins, and on the observation that the essential function of Pol epsilon is not dependent on its DNA synthesis activity.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | | | |
Collapse
|
37
|
Biswas SB, Khopde SM, Zhu Fx FX, Biswas EE. Subunit interactions in the assembly of Saccharomyces cerevisiae DNA polymerase alpha. Nucleic Acids Res 2003; 31:2056-65. [PMID: 12682356 PMCID: PMC153739 DOI: 10.1093/nar/gkg311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic DNA polymerase (pol) alpha is a complex of four subunits. The subunits in the yeast Saccharomyces cerevisiae are: 167, 79, 62 and 48 kDa polypeptides. The p79 subunit has no known enzymatic functions, but it is essential for growth and chromosomal DNA replication. We have analyzed the interaction between the subunits of yeast pol alpha, particularly p167 and p79, using a yeast two-hybrid screen and deletion analysis. We have identified the interaction sites in each of these two subunits leading to p167.p79 complex formation, and correlated our results with the available genetic data. A detailed two-hybrid analysis, using the p79 gene as the bait and a yeast genomic DNA library, identified two independent groups of positive clones. One group that displayed strong positive interaction (delta1) with p79 represented a fusion of the p167 open reading frame at 3502 bp (Ile1168), and the second group, displaying weak positive interaction (delta2) with p79, had a fusion at 3697 bp (Asn1233) with the DNA-binding domain of the yeast Gal4 transcription factor. A detailed deletion analysis of the downstream region indicated the existence of two subdomains that interact with p79. Subdomain I encompasses a 65 amino acid segment between Ile1168 and Phe1232, and subdomain II is a 25 amino acid segment between Glu1259 and Leu1283. Deletion and two-hybrid interaction analysis of the p79 subunit of pol alpha revealed a complementary region with two subdomains: a 67 amino acid segment between Asn189 and Gln255 (I) and a 68 amino acid segment between Glu256 and Met323 (II). The p79 subdomains I and II appeared to interact with the p167 subdomains I and II, respectively. Analysis of interaction between p62 and various deletion clones of p167 did not result in an unambiguous and stable positive interaction in the two-hybrid screen between these two subunits. A strong interaction between p167 and p62 would probably require the presence of either p79 or p48 in the complex.
Collapse
Affiliation(s)
- Subhasis B Biswas
- Department of Molecular Biology, School of Medicine and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | | | | | |
Collapse
|
38
|
Daimon K, Kawarabayasi Y, Kikuchi H, Sako Y, Ishino Y. Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: interactions with the two DNA polymerases. J Bacteriol 2002; 184:687-94. [PMID: 11790738 PMCID: PMC139509 DOI: 10.1128/jb.184.3.687-694.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential component in the eukaryotic DNA replication machinery, in which it works for tethering DNA polymerases on the DNA template to accomplish processive DNA synthesis. The PCNA also interacts with many other proteins in important cellular processes, including cell cycle control, DNA repair, and an apoptotic pathway in the domain EUCARYA: We identified three genes encoding PCNA-like sequences in the genome of Aeropyrum pernix, a crenarchaeal archaeon. We cloned and expressed these genes in Escherichia coli and analyzed the gene products. All three PCNA homologs stimulated the primer extension activities of the two DNA polymerases, polymerase I (Pol I) and Pol II, identified in A. pernix to various extents, among which A. pernix PCNA 3 (ApePCNA3) provided a most remarkable effect on both Pol I and Pol II. The three proteins were confirmed to exist in the A. pernix cells. These results suggest that the three PCNAs work as the processivity factor of DNA polymerases in A. pernix cells under different conditions. In Eucarya, three checkpoint proteins, Hus1, Rad1, and Rad9, have been proposed to form a PCNA-like ring structure and may work as a sliding clamp for the translesion DNA polymerases. Therefore, it is very interesting that three active PCNAs were found in one archaeal cell. Further analyses are necessary to determine whether each PCNA has specific roles, and moreover, how they reveal different functions in the cells.
Collapse
Affiliation(s)
- Katsuya Daimon
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
39
|
Abstract
The analysis of completed archaeal genome sequences led to the identification of a set of approximately 10-20 genes whose protein products were inferred to be involved in chromosomal DNA replication. Until recently, however, little was known of the biochemical properties of these proteins. Here, I review recent progress in this area brought about by biochemical and structural analysis. Aside from shedding considerable new light on the molecular machinery of DNA replication in the archaea, the results of these studies also present new opportunities for understanding the molecular events of chromosomal DNA replication in eukaryotic cells.
Collapse
Affiliation(s)
- S A MacNeill
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| |
Collapse
|
40
|
Gueguen Y, Rolland JL, Lecompte O, Azam P, Le Romancer G, Flament D, Raffin JP, Dietrich J. Characterization of two DNA polymerases from the hyperthermophilic euryarchaeon Pyrococcus abyssi. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5961-9. [PMID: 11722585 DOI: 10.1046/j.0014-2956.2001.02550.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequence of the hyperthermophilic archaeon Pyrococcus abyssi revealed the presence of a family B DNA polymerase (Pol I) and a family D DNA polymerase (Pol II). To extend our knowledge about euryarchaeal DNA polymerases, we cloned the genes encoding these two enzymes and expressed them in Escherichia coli. The DNA polymerases (Pol I and Pol II) were purified to homogeneity and characterized. Pol I had a molecular mass of approximately 90 kDa, as estimated by SDS/PAGE. The optimum pH and Mg(2+) concentration of Pol I were 8.5-9.0 and 3 mm, respectively. Pol II is composed of two subunits that are encoded by two genes arranged in tandem on the P. abyssi genome. We cloned these genes and purified the Pol II DNA polymerase from an E. coli strain coexpressing the cloned genes. The optimum pH and Mg(2+) concentration of Pol II were 6.5 and 15-20 mm, respectively. Both P. abyssi Pol I and Pol II have associated 3'-->5' exonuclease activity although the exonuclease motifs usually found in DNA polymerases are absent in the archaeal family D DNA polymerase sequences. Sequence analysis has revealed that the small subunit of family D DNA polymerase and the Mre11 nucleases belong to the calcineurin-like phosphoesterase superfamily and that residues involved in catalysis and metal coordination in the Mre11 nuclease three-dimensional structure are strictly conserved in both families. One hypothesis is that the phosphoesterase domain of the small subunit is responsible for the 3'-->5' exonuclease activity of family D DNA polymerase. These results increase our understanding of euryarchaeal DNA polymerases and are of importance to push forward the complete understanding of the DNA replication in P. abyssi.
Collapse
Affiliation(s)
- Y Gueguen
- IFREMER, Centre de Brest, DRV-VP-LBMH, Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Popanda O, Flohr C, Dai JC, Hunzicker A, Thielmann HW. A mutation in subunit B of the DNA polymerase alpha-primase complex from Novikoff hepatoma cells concomitant with a conformational change and abnormal catalytic properties of the DNA polymerase alpha-primase complex. Mol Carcinog 2001; 31:171-83. [PMID: 11536367 DOI: 10.1002/mc.1052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutated constituents of the DNA replication complex might contribute to the mutational load of the genome during tumor development by impairing DNA synthesis as well as cell cycle-related control of DNA replication. To prove or disprove this hypothesis, we looked for mutations in the cDNA sequences of the four subunits of DNA polymerase alpha-primase from both highly malignant Novikoff hepatoma cells and regenerating normal rat liver and compared physicochemical and catalytic properties of the DNA polymerase alpha-primase complexes purified from both sources. Sequence analysis showed two mutations in subunit B from Novikoff cells: one in nucleotide position 855 (CCG-->CCA) that did not result in an amino acid exchange and one in position 862 (GTG-->ATG) that caused a change of valine to methionine in codon 288. No mutation was found in the three other subunits. The wild-type and mutated sequences of subunit B were cloned and expressed in vitro. Sedimentation analysis of the expressed polypeptides revealed different sedimentation constants, indicating that the amino acid exchange affected the conformation of subunit B. The analysis of the purified DNA polymerase alpha-primase complexes showed a sedimentation value that was significantly higher for the enzyme complex from normal liver than for that from Novikoff cells. In addition, DNA polymerase alpha-primase complexes from Novikoff cells showed higher sensitivity to camptothecin, topotecan, and structurally related compounds (such as (R,S)-7-ethyl-10-hydroxy camptothecin, 9-aminocamptothecin, and 10-hydroxycamptothecin) than the enzyme from normal rat liver. Thus, the amino acid change found in subunit B appears to result in a conformational change of the DNA polymerase alpha-primase complex from Novikoff hepatoma cells. Whether this mutation influences genetic instability or tumor development needs to be explored.
Collapse
Affiliation(s)
- O Popanda
- Division of Interaction of Carcinogens with Biological Macromolecules, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Y Ishino
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Osaka 565-0874, Japan
| | | |
Collapse
|
43
|
Huang D, Jokela M, Tuusa J, Skog S, Poikonen K, Syväoja JE. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase epsilon B-subunit gene POLE2. Nucleic Acids Res 2001; 29:2810-21. [PMID: 11433027 PMCID: PMC55767 DOI: 10.1093/nar/29.13.2810] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase epsilon (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F-pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase alpha, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes.
Collapse
Affiliation(s)
- D Huang
- Biocenter Oulu and Department of Biochemistry, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | |
Collapse
|
44
|
MacNeill SA, Baldacci G, Burgers PM, Hübscher U. A unified nomenclature for the subunits of eukaryotic DNA polymerase delta. Trends Biochem Sci 2001; 26:16-7. [PMID: 11165510 DOI: 10.1016/s0968-0004(00)01709-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Abstract
The identification of proteins that interact with proliferating cell nuclear antigen (PCNA) has recently been a rapidly expanding field of discovery. PCNA is involved in many aspects of DNA replication and processing, forming a sliding platform that can mediate the interaction of proteins with DNA. It is striking that many proteins bind to PCNA through a small region containing a conserved motif; these include proteins involved in cell cycle regulation as well as those involved in DNA processing. Sequential and regulated binding of motif-containing proteins to PCNA may contribute to the ordering of events during DNA replication and repair. Results from bacteriophages and archaea show that the structural basis for the interaction of this motif with PCNA is extremely ancient. The analysis of how such functional motifs have been recruited to proteins in present day organisms helps us to understand how these complex systems arose from ancestral organisms.
Collapse
Affiliation(s)
- E Warbrick
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
46
|
Dua R, Edwards S, Levy DL, Campbell JL. Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon ) complex. Demonstration of a dimeric pol epsilon. J Biol Chem 2000; 275:28816-25. [PMID: 10878005 DOI: 10.1074/jbc.m002376200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) is essential for chromosomal replication. A major form of pol epsilon purified from yeast consists of at least four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. We have investigated the protein/protein interactions between these polypeptides by using expression of individual subunits in baculovirus-infected Sf9 insect cells and by using the yeast two-hybrid assay. The essential subunits, Pol2p and Dpb2p, interact directly in the absence of the other two subunits, and the C-terminal half of POL2, the only essential portion of Pol2p, is sufficient for interaction with Dpb2p. Dpb3p and Dpb4p, non-essential subunits, also interact directly with each other in the absence of the other two subunits. We propose that Pol2p.Dpb2p and Dpb3p.Dpb4p complexes interact with each other and document several interactions between individual members of the two respective complexes. We present biochemical evidence to support the proposal that pol epsilon may be dimeric in vivo. Gel filtration of the Pol2p.Dpb2p complexes reveals a novel heterotetrameric form, consisting of two heterodimers of Pol2p.Dpb2p. Dpb2p, but not Pol2p, exists as a homodimer, and thus the Pol2p dimerization may be mediated by Dpb2p. The pol2-E and pol2-F mutations that cause replication defects in vivo weaken the interaction between Pol2p and Dpb2p and also reduce dimerization of Pol2p. This suggests, but does not prove, that dimerization may also occur in vivo and be essential for DNA replication.
Collapse
Affiliation(s)
- R Dua
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
47
|
Grossman TR, Luque JM, Nelson N. Identification of a ubiquitous family of membrane proteins and their expression in mouse brain. J Exp Biol 2000; 203:447-57. [PMID: 10637174 DOI: 10.1242/jeb.203.3.447] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A family of genes encoding membrane proteins with a unique structure has been identified in DNA and cDNA clones of various eukaryotes ranging from yeast to human. The nucleotide sequences of three novel cDNAs from Drosophila melanogaster and mouse were determined. The amino acid sequences of the two mouse proteins have human homologs. The gene (TMS1) encoding the yeast member of this family was disrupted, and the resulting mutant showed no significant phenotype under several stress conditions. The expression of the mouse genes TMS-1 and TMS-2 was examined by in situ hybridization of sections from brain, liver, kidney, heart and testis of an adult mouse as well as in a 1-day-old whole mouse. While the expression of TMS-2 was found to be restricted to the central nervous system, TMS-1 was also expressed in kidney and testis. The expression of TMS-1 and TMS-2 in the brain overlapped and was localized to areas associated with glutamatergic excitatory neurons, such as the hippocampus and cerebral cortex. High-magnification analysis indicated that both mRNAs are expressed in neurons. Semiquantitative analysis of mRNA expression was performed in various parts of the brain. The conservation, unique structure and localization in the mammalian brain of this novel protein family suggest an important biological role.
Collapse
Affiliation(s)
- T R Grossman
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
48
|
Mizuno T, Yamagishi K, Miyazawa H, Hanaoka F. Molecular architecture of the mouse DNA polymerase alpha-primase complex. Mol Cell Biol 1999; 19:7886-96. [PMID: 10523676 PMCID: PMC84873 DOI: 10.1128/mcb.19.11.7886] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA polymerase alpha-primase complex is the only enzyme that provides RNA-DNA primers for chromosomal DNA replication in eukaryotes. Mouse DNA polymerase alpha has been shown to consist of four subunits, p180, p68, p54, and p46. To characterize the domain structures and subunit requirements for the assembly of the complex, we constructed eukaryotic polycistronic cDNA expression plasmids expressing pairwise the four subunits of DNA polymerase alpha. In addition, the constructs contained an internal ribosome entry site derived from poliovirus. The constructs were transfected in different combinations with vectors expressing single subunits to allow the simultaneous expression of three or four of the subunits in cultured mammalian cells. We demonstrate that the carboxyl-terminal region of p180 (residues 1235 to 1465) is essential for its interaction with both p68 and p54-p46 by immunohistochemical analysis and coprecipitation studies with antibodies. Mutations in the putative zinc fingers present in the carboxyl terminus of p180 abolished the interaction with p68 completely, although the mutants were still capable of interacting with p54-p46. Furthermore, the amino-terminal region (residues 1 to 329) and the carboxyl-terminal region (residues 1280 to 1465) were revealed to be dispensable for DNA polymerase activity. Thus, we can divide the p180 subunit into three domains. The first is the amino-terminal domain (residues 1 to 329), which is dispensable for both polymerase activity and subunit assembly. The second is the minimal core domain (residues 330 to 1279), required for polymerase activity. The third is the carboxyl-terminal domain (residues 1280 to 1465), which is dispensable for polymerase activity but required for the interaction with the other three subunits. Taken together, these results allow us to propose the first structural model for the DNA polymerase alpha-primase complex in terms of subunit assembly, domain structure, and stepwise formation at the cellular level.
Collapse
Affiliation(s)
- T Mizuno
- The Institute of Physical Research (RIKEN), Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
49
|
Kelman Z, Pietrokovski S, Hurwitz J. Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum deltaH. J Biol Chem 1999; 274:28751-61. [PMID: 10497247 DOI: 10.1074/jbc.274.40.28751] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here the isolation and characterization of a B-type DNA polymerase (PolB) from the archaeon Methanobacterium thermoautotrophicum DeltaH. Uniquely, the catalytic domains of M. thermoautotrophicum PolB are encoded from two different genes, a feature that has not been observed as yet in other polymerases. The two genes were cloned, and the proteins were overexpressed in Escherichia coli and purified individually and as a complex. We demonstrate that both polypeptides are needed to form the active polymerase. Similar to other polymerases constituting the B-type family, PolB possesses both polymerase and 3'-5' exonuclease activities. We found that a homolog of replication protein A from M. thermoautotrophicum inhibits the PolB activity. The inhibition of DNA synthesis by replication protein A from M. thermoautotrophicum can be relieved by the addition of M. thermoautotrophicum homologs of replication factor C and proliferating cell nuclear antigen. The possible roles of PolB in M. thermoautotrophicum replication are discussed.
Collapse
Affiliation(s)
- Z Kelman
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
50
|
Abstract
Archaeal organisms are currently recognized as very exciting and useful experimental materials. A major challenge to molecular biologists studying the biology of Archaea is their DNA replication mechanism. Undoubtedly, a full understanding of DNA replication in Archaea requires the identification of all the proteins involved. In each of four completely sequenced genomes, only one DNA polymerase (Pol BI proposed in this review from family B enzyme) was reported. This observation suggested that either a single DNA polymerase performs the task of replicating the genome and repairing the mutations or these genomes contain other DNA polymerases that cannot be identified by amino acid sequence. Recently, a heterodimeric DNA polymerase (Pol II, or Pol D as proposed in this review) was discovered in the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for DP1 and DP2, the subunits of this DNA polymerase, are highly conserved in the Euryarchaeota. Euryarchaeotic DP1, the small subunit of Pol II (Pol D), has sequence similarity with the small subunit of eukaryotic DNA polymerase delta. DP2 protein, the large subunit of Pol II (Pol D), seems to be a catalytic subunit. Despite possessing an excellent primer extension ability in vitro, Pol II (Pol D) may yet require accessory proteins to perform all of its functions in euryarchaeotic cells. This review summarizes our present knowledge about archaeal DNA polymerases and their relationship with those accessory proteins, which were predicted from the genome sequences.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|