1
|
Li Y, Jiang L, Liu Y, Lin Y, Li S, Xu C, Xian M. Design Strategy of PepNzymes-SH for an Emerging Catalyst with Serine Hydrolase-Like Functionality. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8821-8835. [PMID: 39874419 DOI: 10.1021/acsami.4c19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases. Unfortunately, a systematic review of the design strategies for PepNzymes-SH is currently lacking. The core significance of this report lies in providing researchers with a comprehensive understanding and theoretical guidance through the summarization and performance evaluation of different design strategies of PepNzymes-SH. This review summarizes strategies for simulating and enhancing the stability of serine hydrolase active sites, oxyanion holes, and hydrophobic environmental structures. By comparing their catalytic activities, we assess the performance changes brought about by different strategies. Furthermore, the applications of PepNzymes-SH in the chemical, biomedicine, and environmental fields are also discussed.
Collapse
Affiliation(s)
- Yunfei Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Long Jiang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yaojie Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yu Lin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuhua Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Kalmer H, Sbordone F, McMurtrie J, Nitsche C, Frisch H. Macromolecular Function Emerging from Intramolecular Peptide Stapling of Synthetic Polymers. Macromol Rapid Commun 2025; 46:e2400591. [PMID: 39437172 DOI: 10.1002/marc.202400591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Protein function results from the precise folding of polypeptides into bespoke architectures. Taking inspiration from nature, the field of single-chain nanoparticles (SCNPs), intramolecularly crosslinked synthetic polymers, emerged. In contrast to nature, the function of SCNPs is generally defined by the parent polymer or the applied crosslinker, rather than by the crosslinking process itself. This work explores the cyanopyridine-aminothiol click reaction to crosslink peptide-decorated polymers intra-macromolecularly to endow the resulting SCNPs with emerging functionality, resulting from the conversion of N-terminal cysteine units into pyridine-thiazolines. Dimethylacrylamide based polymers with different cysteine-terminated amino acid sequences tethered to their sidechains are investigated (P1 (C), P2 (GDHC), P3 (GDSC)) and intramolecularly crosslinked into SCNPs. Since the deprotection of the parent polymers yields disulfide-based SCNPs, a direct comparison between disulfide and pyridine-thiazolines crosslinked SCNPs is possible. This comparison revealed two emerging properties of the pyridine-thiazoline crosslinked SCNPs: 1) The formation of pyridine-thiazolines gave rise to metal binding sites within the SCNP, which complexed iron. 2) Depending on the peptide sequence in the precursor polymer, the hydrolytic activity of the peptide sequences is either increased (GDHC) or decreased (GDSC) upon pyridine-thiazoline formation compared to identical SCNPs based on disulfide crosslinks.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - John McMurtrie
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
3
|
Koch J, Hess Y, Bak CR, Petersen EI, Fojan P. Design of a Novel Peptide with Esterolytic Activity toward PET by Mimicking the Catalytic Motif of Serine Hydrolases. J Phys Chem B 2024; 128:10363-10372. [PMID: 39385493 DOI: 10.1021/acs.jpcb.4c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Serine hydrolases have become increasingly important for recycling PET plastics. However, their properties are inherently constrained by their 3D structure, which in turn limits the conditions for their application. Considering peptides as catalysts for industrial depolymerization processes can help us to escape some of these limitations. In this article, a 25 amino acid thermostable peptide, HSH-25, was designed to depolymerize PET. The peptide incorporates a His-Ser-His motif, inspired by the catalytic triad found in the serine hydrolase family, into a β-hairpin fold. Stability of the fold was investigated by molecular dynamics simulations. Esterolytic activity of the peptide toward model substrates was detected within a pH range from pH 7 to pH 9.5. Degradation of polymeric PET substrates was confirmed by atomic force microscopy imaging on spin-coated PET thin films.
Collapse
Affiliation(s)
- Jacob Koch
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Yan Hess
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Christine R Bak
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Evamaria I Petersen
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Peter Fojan
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
4
|
Arad E, Jelinek R. Catalytic physiological amyloids. Methods Enzymol 2024; 697:77-112. [PMID: 38816136 DOI: 10.1016/bs.mie.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Amyloid fibrils have been identified in many protein systems, mostly linked to progression and cytotoxicity in neurodegenerative diseases and other pathologies, but have also been observed in normal physiological systems. A growing body of work has shown that amyloid fibrils can catalyze chemical reactions. Most studies have focused on catalysis by de-novo synthetic amyloid-like peptides; however, recent studies reveal that physiological, native amyloids are catalytic as well. Here, we discuss methodologies and major experimental aspects pertaining to physiological catalytic amyloids. We highlight analyzes of kinetic parameters related to the catalytic activities of amyloid fibrils, structure-function considerations, characterization of the catalytic active sites, and deciphering of catalytic mechanisms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, United States.
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
5
|
Babić M, Janković P, Marchesan S, Mauša G, Kalafatovic D. Esterase Sequence Composition Patterns for the Identification of Catalytic Triad Microenvironment Motifs. J Chem Inf Model 2022; 62:6398-6410. [PMID: 36223497 DOI: 10.1021/acs.jcim.2c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ester hydrolysis is of wide biomedical interest, spanning from the green synthesis of pharmaceuticals to biomaterials' development. Existing peptide-based catalysts exhibit low catalytic efficiency compared to natural enzymes, due to the conformational heterogeneity of peptides. Moreover, there is lack of understanding of the correlation between the primary sequence and catalytic function. For this purpose, we statistically analyzed 22 EC 3.1 hydrolases with known catalytic triads, characterized by unique and well-defined mechanisms. The aim was to identify patterns at the sequence level that will better inform the creation of short peptides containing important information for catalysis, based on the catalytic triad, oxyanion holes and the triad residues microenvironments. Moreover, fragmentation schemes of the primary sequence of selected enzymes alongside the study of their amino acid frequencies, composition, and physicochemical properties are proposed. The results showed highly conserved catalytic sites with distinct positional patterns and chemical microenvironments that favor catalysis and revealed variations in catalytic site composition that could be useful for the design of minimalistic catalysts.
Collapse
Affiliation(s)
- Marko Babić
- Department of Biotechnology, University of Rijeka, 51000Rijeka, Croatia
| | - Patrizia Janković
- Department of Biotechnology, University of Rijeka, 51000Rijeka, Croatia
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127Trieste, Italy
| | - Goran Mauša
- Faculty of Engineering, University of Rijeka, 51000Rijeka, Croatia
| | - Daniela Kalafatovic
- Department of Biotechnology, University of Rijeka, 51000Rijeka, Croatia.,Center for Advanced Computing and Modeling, University of Rijeka, 51000Rijeka, Croatia
| |
Collapse
|
6
|
Guo X, Su M. The Origin of Translation: Bridging the Nucleotides and Peptides. Int J Mol Sci 2022; 24:ijms24010197. [PMID: 36613641 PMCID: PMC9820756 DOI: 10.3390/ijms24010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
Collapse
Affiliation(s)
- Xuyuan Guo
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40 Dublin, Ireland
| | - Meng Su
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Correspondence:
| |
Collapse
|
7
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Arad E, Jelinek R. Catalytic amyloids. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Kalmer H, Sbordone F, Frisch H. Peptide based folding and function of single polymer chains. Polym Chem 2022. [DOI: 10.1039/d2py00717g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular synthetic strategy to fold single polymer chains upon deprotection of pendent cysteine terminal peptides is reported. The one step deprotection initiates both folding and catalytic activity of the macromolecular architectures.
Collapse
Affiliation(s)
- Henrik Kalmer
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Federica Sbordone
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
10
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
11
|
Gülseren G, Saylam A, Marion A, Özçubukçu S. Fullerene-Based Mimics of Biocatalysts Show Remarkable Activity and Modularity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45854-45863. [PMID: 34520162 DOI: 10.1021/acsami.1c11516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of catalysts with greater control over catalytic activity and stability is a major challenge with substantial impact on fundamental chemistry and industrial applications. Due to their unparalleled diversity, selectivity, and efficiency, enzymes are promising models for next-generation catalysts, and considerable efforts have been devoted to incorporating the principles of their mechanisms of action into artificial systems. We report a heretofore undocumented catalyst design that introduces fullerenes to the field of biocatalysis, which we refer to as fullerene nanocatalysts, and that emulates enzymatic active sites through multifunctional self-assembled nanostructures. As a proof-of-concept, we mimicked the reactivity of hydrolases using fullerene nanocatalysts functionalized with the basic components of the parent enzyme with remarkable activity. Owing to the versatile amino acid-based functionalization repertoire of fullerene nanocatalysts, these next-generation carbon/biomolecule hybrids have potential to mimic the activity of other families of enzymes and, therefore, offer new perspectives for the design of biocompatible, high-efficiency artificial nanocatalysts.
Collapse
Affiliation(s)
- Gülcihan Gülseren
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya 42080, Turkey
| | - Aytül Saylam
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Salih Özçubukçu
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
13
|
Baruch-Leshem A, Chevallard C, Gobeaux F, Guenoun P, Daillant J, Fontaine P, Goldmann M, Kushmaro A, Rapaport H. Catalytically active peptides affected by self-assembly and residues order. Colloids Surf B Biointerfaces 2021; 203:111751. [DOI: 10.1016/j.colsurfb.2021.111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
|
14
|
Kurbasic M, Garcia AM, Viada S, Marchesan S. Heterochiral tetrapeptide self-assembly into hydrogel biomaterials for hydrolase mimicry. J Pept Sci 2021; 28:e3304. [PMID: 33521995 DOI: 10.1002/psc.3304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Self-assembling short peptides have attracted great interest as enzyme mimics, especially if the catalytic activity resides solely in the supramolecular structure so that it can be switched on/off as needed by controlling assembly/disassembly. Among the various enzyme classes, hydrolases find wide application in biomaterials, and their mimetics often contain His residues, in addition to either divalent cations or other amino acids to mimic the catalytic site. This work reports two self-assembling tetrapeptides based on the Ser-His motif for catalysis and the Phe-Phe motif to drive amyloid structure formation. Both peptides form thermoreversible hydrogels in phosphate buffer at neutral pH that display a mild esterase-like activity, as demonstrated on the hydrolysis of 4-nitrophenyl acetate as a model substrate, although presence of Ser did not enhance catalytic activity. The systems are characterised by circular dichroism, transmission electron microscopy, oscillatory rheology and Thioflavin T fluorescence as an amyloid stain, to provide further insights that may assist the future design of improved supramolecular catalysts.
Collapse
Affiliation(s)
- Marina Kurbasic
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Trieste, 34127, Italy
| | - Ana M Garcia
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Trieste, 34127, Italy
| | - Simone Viada
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Trieste, 34127, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, Trieste, 34127, Italy
| |
Collapse
|
15
|
Kurbasic M, Garcia AM, Viada S, Marchesan S. Tripeptide Self-Assembly into Bioactive Hydrogels: Effects of Terminus Modification on Biocatalysis. Molecules 2020; 26:E173. [PMID: 33396543 PMCID: PMC7794889 DOI: 10.3390/molecules26010173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His-d-Phe-d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.
Collapse
Affiliation(s)
| | | | | | - Silvia Marchesan
- Chemical & Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (M.K.); (A.M.G.); (S.V.)
| |
Collapse
|
16
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Rettberg N, Schubert C, Dennenlöhr J, Thörner S, Knoke L, Maxminer J. Instability of Hop-Derived 2-Methylbutyl Isobutyrate during Aging of Commercial Pasteurized and Unpasteurized Ales. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1738742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nils Rettberg
- Research Institute for Beer and Beverage Analysis, Versuchs– und Lehranstalt für Brauerei in Berlin (VLB) e.V, Berlin, Germany
| | - Christian Schubert
- Research Institute for Beer and Beverage Analysis, Versuchs– und Lehranstalt für Brauerei in Berlin (VLB) e.V, Berlin, Germany
| | - Johanna Dennenlöhr
- Research Institute for Beer and Beverage Analysis, Versuchs– und Lehranstalt für Brauerei in Berlin (VLB) e.V, Berlin, Germany
| | - Sarah Thörner
- Research Institute for Beer and Beverage Analysis, Versuchs– und Lehranstalt für Brauerei in Berlin (VLB) e.V, Berlin, Germany
| | - Laura Knoke
- Research Institute for Beer and Beverage Analysis, Versuchs– und Lehranstalt für Brauerei in Berlin (VLB) e.V, Berlin, Germany
| | - Jörg Maxminer
- Research Institute for Beer and Beverage Analysis, Versuchs– und Lehranstalt für Brauerei in Berlin (VLB) e.V, Berlin, Germany
| |
Collapse
|
18
|
|
19
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
20
|
Selective Formation of Ser-His Dipeptide via Phosphorus Activation. ORIGINS LIFE EVOL B 2018; 48:213-222. [PMID: 29705890 DOI: 10.1007/s11084-018-9556-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
The Ser-His dipeptide is the shortest active peptide. This dipeptide not only hydrolyzes proteins and DNA but also catalyzes the formation of peptides and phosphodiester bonds. As a potential candidate for the prototype of modern hydrolase, Ser-His has attracted increasing attention. To explore if Ser-His could be obtained efficiently in the prebiotic condition, we investigated the reactions of N-DIPP-Ser with His or other amino acids in an aqueous system. We observed that N-DIPP-Ser incubated with His can form Ser-His more efficiently than with other amino acids. A synergistic effect involving the two side chains of Ser and His is presumed to be the critical factor for the selectivity of this specific peptide formation.
Collapse
|
21
|
Fabbiani M, Rebba E, Pazzi M, Vincenti M, Fois E, Martra G. Solvent-free synthesis of Ser–His dipeptide from non-activated amino acids and its potential function as organocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3198-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Liu Y, Li YB, Gao X, Yu YF, Liu XX, Ji ZL, Ma Y, Li YM, Zhao YF. Evolutionary relationships between seryl-histidine dipeptide and modern serine proteases from the analysis based on mass spectrometry and bioinformatics. Amino Acids 2017; 50:69-77. [PMID: 29071530 DOI: 10.1007/s00726-017-2487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
Abstract
Seryl-histidine dipeptide (Ser-His) has been recognized as the shortest peptide with hydrolysis cleavage activity; however, its protein cleavage spectrum has not yet been fully explored. Here, four differently folded proteins were treated with Ser-His, and the digestion products were evaluated with high-resolution mass spectrometry. The cleavage efficiency and cleavage propensity of Ser-His against these protein substrates were calculated at both the primary and secondary sequence levels. The above experiments show that Ser-His cleaves a broad spectrum of substrate proteins of varying secondary structures. Moreover, Ser-His could cleave at all 20 amino acids with different efficiencies according to the protein, which means that Ser-His has the original digestion function of serine proteases. Furthermore, we collected and compared the catalytic sites and cleavage sites of 340 extant serine proteases derived from 17 representative organisms. A consensus motif Ser-[X]-His was identified as the major pattern at the catalytic sites of serine proteases from all of the organisms represented except Danio rerio, which uses Ser-Lys instead. This finding indicates that Ser-His is the core component of the serine protease catalytic site. Moreover, our analysis revealed that the cleavage sites of modern serine proteases have become more specific over the evolutionary history of this family. Based on the above analysis results, it could be found that Ser-His is likely the original serine protease and maybe the evolutionary core of modern serine proteases.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yin-Bo Li
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong-Fei Yu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Xiao-Xia Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhi-Liang Ji
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yuan Ma
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Fen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China. .,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Jindal G, Warshel A. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis. Proteins 2017; 85:2157-2161. [PMID: 28905418 DOI: 10.1002/prot.25381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 11/08/2022]
Abstract
Understanding the origin of the catalytic power of enzymes has both conceptual and practical importance. One of the most important finding from computational studies of enzyme catalysis is that a major part of the catalytic power is due to the preorganization of the enzyme active site. Unfortunately, misunderstanding of the nontrivial preorganization idea lead some to assume that it does not consider the effect of the protein residues. This major confusion reflects a misunderstanding of the statement that the interaction energy of the enzyme group and the transition state (TS) is similar to the corresponding interaction between the water molecules (in the reference system) and the TS, and that the catalysis is due to the reorganization free energy of the water molecules. Obviously, this finding does not mean that we do not consider the enzyme groups. Another problem is the idea that catalysis is due to substrate preorganization. This more traditional idea is based in some cases on inconsistent interpretation of the action of model compounds, which unfortunately, do not reflect the actual situation in the enzyme active site. The present article addresses the above problems, clarifying first the enzyme polar preorganization idea and the current misunderstandings. Next we take a specific model compound that was used to promote the substrate preorganization proposal and establish its irrelevance to enzyme catalysis. Overall, we show that the origin of the catalytic power of enzymes cannot be assessed uniquely without computer simulations, since at present this is the only way of relating structure and energetics.
Collapse
Affiliation(s)
- Garima Jindal
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California, 90089
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California, 90089
| |
Collapse
|
24
|
Hung PY, Chen YH, Huang KY, Yu CC, Horng JC. Design of Polyproline-Based Catalysts for Ester Hydrolysis. ACS OMEGA 2017; 2:5574-5581. [PMID: 31457823 PMCID: PMC6644415 DOI: 10.1021/acsomega.7b00928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 05/21/2023]
Abstract
A number of simple oligopeptides have been recently developed as minimalistic catalysts for mimicking the activity and selectivity of natural proteases. Although the arrangement of amino acid residues in natural enzymes provides a strategy for designing artificial enzymes, creating catalysts with efficient binding and catalytic activity is still challenging. In this study, we used the polyproline scaffold and designed a series of 13-residue peptides with a catalytic dyad or triad incorporated to serve as artificial enzymes. Their catalytic efficiency on ester hydrolysis was evaluated by ultraviolet-visible spectroscopy using the p-nitrophenyl acetate assay, and their secondary structures were also characterized by circular dichroism spectroscopy. The results indicate that a well-formed polyproline II structure may result in a much higher catalytic efficiency. This is the first report to show that a functional dyad or triad engineered into a polyproline helix framework can enhance the catalytic activity on ester hydrolysis. Our study has also revealed the necessity of maintaining an ordered structure and a well-organized catalytic site for effective biocatalysts.
Collapse
Affiliation(s)
- Pei-Yu Hung
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Science of Matters, National Tsing
Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Yu-Han Chen
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Science of Matters, National Tsing
Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Kuei-Yen Huang
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Science of Matters, National Tsing
Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Chi-Ching Yu
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Science of Matters, National Tsing
Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Jia-Cherng Horng
- Department
of Chemistry and Frontier Research Center on Fundamental and
Applied Science of Matters, National Tsing
Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
25
|
Vázquez-Salazar A, Tan G, Stockton A, Fani R, Becerra A, Lazcano A. Can an Imidazole Be Formed from an Alanyl-Seryl-Glycine Tripeptide under Possible Prebiotic Conditions? ORIGINS LIFE EVOL B 2017; 47:345-354. [PMID: 27771860 DOI: 10.1007/s11084-016-9525-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 11/26/2022]
Abstract
The five-membered heterocyclic imidazole group, which is an essential component of purines, histidine and many cofactors, has been abiotically synthesized in different model experiments that attempt to simulate the prebiotic environment. The evolutionary significance of imidazoles is highlighted not only by its presence in nucleic acid components and in histidine, but also by experimental reports of its ability to restore the catalytic activity of ribozymes. However, as of today there are no reports of histidine in carbonaceous chondrites, and although the abiotic synthesis of His reported by Shen et al. (1987, 1990a) proceeds via an Amadori rearrangement, like in the biosynthesis of histidine, neither the reactants nor the conditions are truly prebiotic. Based on the autocatalytic biosynthesis of 4-methylidene-imidazole-one (MIO), a cofactor of some members of the amino acid aromatic ammonia-lyases and aminomutases, which occur via the self-condensation of a simple Ala-Ser-Gly motif within the sequence of the enzymes, we propose a possible prebiotic synthesis of an imidazolide.
Collapse
Affiliation(s)
- Alberto Vázquez-Salazar
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico City, Mexico
| | - George Tan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30309, USA
| | - Amanda Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30309, USA
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto F. no, Florence, Italy
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Mexico City, Mexico.
- Miembro de El Colegio Nacional, Mexico City, Mexico.
| |
Collapse
|
26
|
Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P. Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 2017; 7:E19. [PMID: 28397774 PMCID: PMC5492141 DOI: 10.3390/life7020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.
Collapse
Affiliation(s)
- Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Katarzyna Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Fabio Polticelli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Campus Ecotekne (S.P. 6 Lecce-Monteroni), 73100 Lecce, Italy.
| |
Collapse
|
27
|
Xue Z, Wen H, Wang C, Zhai L, Cheng A, Kou X. CPe-III-S Metabolism in Vitro and in Vivo and Molecular Simulation of Its Metabolites Using a p53-R273H Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7095-7103. [PMID: 27584867 DOI: 10.1021/acs.jafc.6b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It was previously found that CPe-III-S, synthesized according to the chickpea peptide CPe-III (RQSHFANAQP), exhibited an antiproliferative effect. The aim of this study was to investigate the antiproliferative mechanism of CPe-III-S. CPe-III-S was treated by pepsin and trypsin in a simulated gastrointestinal digestion environment as well as in an animal experiment. With HPLC-ESI-MS analysis, three peptide fragments of Ser-His, His-Phe, and Ala-Asn-Ala-Gln were identified. Ser-His was the only common product from both in vitro and in vivo environments. The specific bindings between three peptides and p53-R273H were performed by molecular docking, and the molecular dynamic simulation between Ser-His and p53-R273H revealed the stability of the binding complex. The binding free energy of the complex was -12.56 ± 1.03 kcal/mol with a reliable hydrogen bond between the ligand and Thr284 of p53. Ser-His may restore mutant p53-R273H activity or inhibit its binding with a downstream signal. This metabolite is a potential anticancer factor for suppressing cell proliferation.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Haichao Wen
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Cen Wang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Lijuan Zhai
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Aiqing Cheng
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|
28
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
29
|
MacDonald MJ, Lavis LD, Hilvert D, Gellman SH. Evaluation of the Ser-His Dipeptide, a Putative Catalyst of Amide and Ester Hydrolysis. Org Lett 2016; 18:3518-21. [PMID: 27400366 DOI: 10.1021/acs.orglett.6b01279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient hydrolysis of amide bonds has long been a reaction of interest for organic chemists. The rate constants of proteases are unmatched by those of any synthetic catalyst. It has been proposed that a dipeptide containing serine and histidine is an effective catalyst of amide hydrolysis, based on an apparent ability to degrade a protein. The capacity of the Ser-His dipeptide to catalyze the hydrolysis of several discrete ester and amide substrates is investigated using previously described conditions. This dipeptide does not catalyze the hydrolysis of amide or unactivated ester groups in any of the substrates under the conditions evaluated.
Collapse
Affiliation(s)
- Melissa J MacDonald
- Department of Chemistry, University of Wisconsin-Madison , Wisconsin 53706, United States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich , 8093 Zürich, Switzerland
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison , Wisconsin 53706, United States
| |
Collapse
|
30
|
Leonaviciute G, Zupančič O, Prüfert F, Rohrer J, Bernkop-Schnürch A. Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. Int J Pharm 2016; 508:102-8. [DOI: 10.1016/j.ijpharm.2016.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
|
31
|
Bélières M, Déjugnat C, Chouini-Lalanne N. Histidine-Based Lipopeptides Enhance Cleavage of Nucleic Acids: Interactions with DNA and Hydrolytic Properties. Bioconjug Chem 2015; 26:2520-9. [DOI: 10.1021/acs.bioconjchem.5b00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Bélières
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France
| | - C. Déjugnat
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France
| | - N. Chouini-Lalanne
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France
| |
Collapse
|
32
|
Li Z, Qiao J, Jia Z, Meng S. Synthesis of the Pyridine Hydrazones as Metal-free Artificial Nucleases. CHEM LETT 2015. [DOI: 10.1246/cl.150428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhifen Li
- School of Chemical and Environmental Engineering, Datong University
| | - Jun Qiao
- School of Chemical and Environmental Engineering, Datong University
| | - Zhifang Jia
- School of Chemical and Environmental Engineering, Datong University
| | - Shuangming Meng
- School of Chemical and Environmental Engineering, Datong University
| |
Collapse
|
33
|
Abstract
AbstractWe review recent developments in the use of
short peptides in the design of minimalistic biocatalysts
focusing on ester hydrolysis. A number of designed peptide
nanostructures are shown to have (modest) catalytic
activity. Five features are discussed and illustrated by
literature examples, including primary peptide sequence,
nanosurfaces/scaffolds, binding pockets, multivalency
and the presence of metal ions. Some of these are derived
from natural enzymes, but others, such as multivalency
of active sites on designed nanofibers, may give rise to
new features not found in natural enzymes. Remarkably,
it is shown that each of these design features give rise to
similar rate enhancements in ester hydrolysis. Overall,
there has been significant progress in the development of
fundamental understanding of the factors that influence
binding and activity in recent years, holding promise for
increasingly rational design of peptide based biocatalysts.
Collapse
Affiliation(s)
- Krystyna L. Duncan
- 1WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Rein V. Ulijn
- 1WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
- 2Advanced Science Research Center (ASRC) and Hunter College, City University of New York, 85 St Nicholas Terrace, New York, NY10031, USA
| |
Collapse
|
34
|
|
35
|
Nontemplate-driven polymers: clues to a minimal form of organization closure at the early stages of living systems. Theory Biosci 2015; 134:47-64. [DOI: 10.1007/s12064-015-0209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/16/2015] [Indexed: 12/27/2022]
|
36
|
Strazewski P. Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self-evolve into Increased Complexity and Life-like Behaviour. Isr J Chem 2015. [DOI: 10.1002/ijch.201400175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Bélières M, Chouini-Lalanne N, Déjugnat C. Synthesis, self-assembly, and catalytic activity of histidine-based structured lipopeptides for hydrolysis reactions in water. RSC Adv 2015. [DOI: 10.1039/c5ra02853a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
When interfacial catalysis and organocatalysis meet: self-assembling histidine-based lipopeptides catalyse ester hydrolysis in water, depending on aggregation.
Collapse
Affiliation(s)
- M. Bélières
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP)
- UMR 5623
- Université Paul Sabatier
- 31062 Toulouse cedex
- France
| | - N. Chouini-Lalanne
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP)
- UMR 5623
- Université Paul Sabatier
- 31062 Toulouse cedex
- France
| | - C. Déjugnat
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP)
- UMR 5623
- Université Paul Sabatier
- 31062 Toulouse cedex
- France
| |
Collapse
|
38
|
Maeda Y, Javid N, Duncan K, Birchall L, Gibson KF, Cannon D, Kanetsuki Y, Knapp C, Tuttle T, Ulijn RV, Matsui H. Discovery of catalytic phages by biocatalytic self-assembly. J Am Chem Soc 2014; 136:15893-6. [PMID: 25343575 PMCID: PMC6390487 DOI: 10.1021/ja509393p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovery of new catalysts for demanding aqueous reactions is challenging. Here, we describe methodology for selection of catalytic phages by taking advantage of localized assembly of the product of the catalytic reaction that is screened for. A phage display library covering 10(9) unique dodecapeptide sequences is incubated with nonassembling precursors. Phages which are able to catalyze formation of the self-assembling reaction product (via amide condensation) acquire an aggregate of reaction product, enabling separation by centrifugation. The thus selected phages can be amplified by infection of Escherichia coli. These phages are shown to catalyze amide condensation and hydrolysis. Kinetic analysis shows a minor role for substrate binding. The approach enables discovery and mass-production of biocatalytic phages.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Department of Chemistry and Biochemistry, Hunter College, City University of New York , 695 Park Avenue, New York, New York 10065, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Structural protein reorganization and fold emergence investigated through amino acid sequence permutations. Amino Acids 2014; 47:147-52. [PMID: 25331423 DOI: 10.1007/s00726-014-1849-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
Correlation between random amino acid sequences and protein folds suggests that proteins autonomously evolved the most stable folds, with stability and function evolving subsequently, suggesting the existence of common protein ancestors from which all modern proteins evolved. To test this hypothesis, we shuffled the sequences of 10 natural proteins and obtained 40 different and apparently unrelated folds. Our results suggest that shuffled sequences are sufficiently stable and may act as a basis to evolve functional proteins. The common secondary structure of modern proteins is well represented by a small set of permuted sequences, which also show the emergence of intrinsic disorder and aggregation-prone stretches of the polypeptide chain.
Collapse
|
40
|
Adamala K, Anella F, Wieczorek R, Stano P, Chiarabelli C, Luisi PL. Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach. Comput Struct Biotechnol J 2014; 9:e201402004. [PMID: 24757502 PMCID: PMC3995231 DOI: 10.5936/csbj.201402004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 11/22/2022] Open
Abstract
In this mini-review we present some experimental approaches to the important issue in the origin of life, namely the origin of nucleic acids and proteins with specific and functional sequences. The formation of macromolecules on prebiotic Earth faces practical and conceptual difficulties. From the chemical viewpoint, macromolecules are formed by chemical pathways leading to the condensation of building blocks (amino acids, or nucleotides) in long-chain copolymers (proteins and nucleic acids, respectively). The second difficulty deals with a conceptual problem, namely with the emergence of specific sequences among a vast array of possible ones, the huge “sequence space”, leading to the question “why these macromolecules, and not the others?” We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides, like Ser-His, with respect to peptide- and nucleotides-condensation, as a realistic model of primitive organocatalysis. We have also set up a strategy for exploring the sequence space of random proteins and RNAs (the so-called “never born biopolymer” project) with respect to the production of folded structures. Being still far from solved, the main aspects of these “open questions” are discussed here, by commenting on recent results obtained in our groups and by providing a unifying view on the problem and possible solutions. In particular, we propose a general scenario for macromolecule formation via fragment-condensation, as a scheme for the emergence of specific sequences based on molecular growth and selection.
Collapse
Affiliation(s)
- Katarzyna Adamala
- Sciences Department, University of Roma Tre; Viale Guglielmo Marconi 446, 00146 Rome, Italy ; MIT Media Lab, Departments of Brain and Cognitive Sciences and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA ; These Authors are listed in alphabetic order and contributed equally to the work
| | - Fabrizio Anella
- Sciences Department, University of Roma Tre; Viale Guglielmo Marconi 446, 00146 Rome, Italy ; Department of Bionanoscience, Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1, 2628 CJ, Delft, The Netherlands ; These Authors are listed in alphabetic order and contributed equally to the work
| | - Rafal Wieczorek
- Sciences Department, University of Roma Tre; Viale Guglielmo Marconi 446, 00146 Rome, Italy ; FLinT Center, Institut for Fysik, Kemi og Farmaci (IFKF), University of Southern Denmark; Campusvej 55, 5230 Odense, Denmark ; These Authors are listed in alphabetic order and contributed equally to the work
| | - Pasquale Stano
- Sciences Department, University of Roma Tre; Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Cristiano Chiarabelli
- Sciences Department, University of Roma Tre; Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Pier Luigi Luisi
- Sciences Department, University of Roma Tre; Viale Guglielmo Marconi 446, 00146 Rome, Italy
| |
Collapse
|
41
|
Wieczorek R, Dörr M, Chotera A, Luisi PL, Monnard PA. Formation of RNA phosphodiester bond by histidine-containing dipeptides. Chembiochem 2012; 14:217-23. [PMID: 23255284 DOI: 10.1002/cbic.201200643] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Indexed: 11/08/2022]
Abstract
A new scenario for prebiotic formation of nucleic acid oligomers is presented. Peptide catalysis is applied to achieve condensation of activated RNA monomers into short RNA chains. As catalysts, L-dipeptides containing a histidine residue, primarily Ser-His, were used. Reactions were carried out in self-organised environment, a water-ice eutectic phase, with low concentrations of reactants. Incubation periods up to 30 days resulted in the formation of short oligomers of RNA. During the oligomerisation, an active intermediate (dipeptide-mononucleotide) is produced, which is the reactive species. Details of the mechanism and kinetics, which were elucidated with a set of control experiments, further establish that the imidazole side chain of a histidine at the carboxyl end of the dipeptide plays a crucial role in the catalysis. These results suggest that this oligomerisation catalysis occurs by a transamination mechanism. Because peptides are much more likely products of spontaneous condensation than nucleotide chains, their potential as catalysts for the formation of RNA is interesting from the origin-of-life perspective. Finally, the formation of the dipeptide-mononucleotide intermediate and its significance for catalysis might also be viewed as the tell-tale signs of a new example of organocatalysis.
Collapse
Affiliation(s)
- Rafał Wieczorek
- FLinT Center, Institut for Fysik, Kemi og Farmaci (IFKF), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | | | | | | | | |
Collapse
|
42
|
Li ZF, Chen HL, Zhang LJ, Lu ZL. Synthesis of [12]aneN3-dipeptide conjugates as metal-free DNA nucleases. Bioorg Med Chem Lett 2012; 22:2303-7. [PMID: 22364814 DOI: 10.1016/j.bmcl.2012.01.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/16/2012] [Accepted: 01/20/2012] [Indexed: 11/28/2022]
Abstract
In this Letter, a series of macrocyclic polyamine [12]aneN(3)-dipeptide conjugates as a new type of metal-free nucleases were synthesized and fully characterized with (1)H NMR, (13)C NMR, IR, and HR-MS. Results indicate that these conjugates can bind to calf thymus DNA mainly through electrostatic interaction and can cleave the plasmid DNA at 200 μM (pH 7.2, 37°C), with an acceleration of 10(6)-fold via hydrolytic pathway.
Collapse
Affiliation(s)
- Zhi-Fen Li
- College of Chemistry, Beijing Normal University, Beijing, China
| | | | | | | |
Collapse
|
43
|
Approaches to chemical synthetic biology. FEBS Lett 2012; 586:2138-45. [DOI: 10.1016/j.febslet.2012.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 11/24/2022]
|
44
|
Gulevich AV, Koroleva LS, Morozova OV, Bakhvalova VN, Silnikov VN, Nenajdenko VG. Multicomponent synthesis of artificial nucleases and their RNase and DNase activity. Beilstein J Org Chem 2011; 7:1135-40. [PMID: 21915218 PMCID: PMC3170195 DOI: 10.3762/bjoc.7.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/14/2011] [Indexed: 01/18/2023] Open
Abstract
The synthesis of new, artificial ribonucleases containing two amino acid residues connected by an aliphatic linker has been developed. Target molecules were synthesized via a catalytic three-component Ugi reaction from aliphatic diisocyanides. Preliminary investigations proved unspecific nuclease activity of the new compounds towards single-stranded RNA and double-stranded circular DNA.
Collapse
Affiliation(s)
- Anton V Gulevich
- Department of Chemistry, Moscow State University, 119992, Leninskie Gory, Moscow, Russia
| | - Lyudmila S Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Olga V Morozova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Valentina N Bakhvalova
- Institute of Systematic and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 11 Frunze Street, 630091 Novosibirsk, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, Moscow State University, 119992, Leninskie Gory, Moscow, Russia
| |
Collapse
|
45
|
Wang MQ, Zhang J, Zhang Y, Zhang DW, Liu Q, Liu JL, Lin HH, Yu XQ. Metal-free cleavage efficiency toward DNA by a novel PNA analog-bridged macrocyclic polyamine. Bioorg Med Chem Lett 2011; 21:5866-9. [PMID: 21855339 DOI: 10.1016/j.bmcl.2011.07.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/18/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
In this report we describe the synthesis of a new class of cyclen-contained compounds with novel peptide nucleic acid (PNA) analog motif. Target bis-cyclen derivative B was prepared and characterized by ESI-MS, NMR and HPLC. Interactions between compound B and calf thymus DNA were studied by thermal denaturation. Results indicate that the DNA binding affinity of B is stronger than that of mono-cyclen compound A, and the binding ability is little affected by the change of ionic strength. Agarose and denaturing polyacrylamide gel electrophoresis were used to assess the DNA cleavage activities. The macrocyclic polyamine-PNA analog conjugate B as a nuclease model can effectively cleave DNA via an oxidative pathway at micromolar concentration (10 μM) without the use of any additional metal ions. Meanwhile, the mono-cyclen compound A shows nearly no DNA cleavage effect under the same conditions.
Collapse
Affiliation(s)
- Ming-Qi Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen PY, Liu Y, Gao X, Xu NS, Niu J, Liu SY, Zhao Y. Evaluation Of Single-Stranded Oligonucleotide Cleavage Function Of Seryl-Histidine Dipeptide By Electrospray Ionization Mass Spectrometry. PHOSPHORUS SULFUR 2011. [DOI: 10.1080/10426507.2010.525771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pei-yan Chen
- a The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , P. R. China
| | - Yan Liu
- a The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , P. R. China
| | - Xiang Gao
- a The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , P. R. China
| | - Niu-sheng Xu
- b Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun Center of Mass Spectrometry , Changchun , P. R. China
| | - Jun Niu
- b Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun Center of Mass Spectrometry , Changchun , P. R. China
| | - Shu-ying Liu
- b Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun Center of Mass Spectrometry , Changchun , P. R. China
| | - Yufen Zhao
- a The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , P. R. China
| |
Collapse
|
47
|
Primitive Membrane Formation, Characteristics and Roles in the Emergent Properties of a Protocell. ENTROPY 2011. [DOI: 10.3390/e13020466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Wang L, Ye Y, Lykourinou V, Angerhofer A, Ming LJ, Zhao Y. Metal Complexes of a Multidentate Cyclophosphazene with Imidazole-Containing Side Chains for Hydrolyses of Phosphoesters - Bimolecular vs. Intramolecular Dinuclear Pathway. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201000668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Evaluation of non-covalent interaction between Seryl-Histidine dipeptide and cyclophilin A using NMR and molecular modeling. Sci China Chem 2010. [DOI: 10.1007/s11426-010-3192-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Cao SX, Niu MY, Su YQ, Liao XC, Lu K, Zhao YF. Ligand Exchange Between Penta-Coordinated Phosphoryl Serine and Histidine Compounds. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030211224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|