Abstract
Antibody molecules elicited with rationally designed transition-state analogs catalyze numerous reactions, including many that cannot be achieved by standard chemical methods. Although relatively primitive when compared with natural enzymes, these catalysts are valuable tools for probing the origins and evolution of biological catalysis. Mechanistic and structural analyses of representative antibody catalysts, generated with a variety of strategies for several different reaction types, suggest that their modest efficiency is a consequence of imperfect hapten design and indirect selection. Development of improved transition-state analogs, refinements in immunization and screening protocols, and elaboration of general strategies for augmenting the efficiency of first-generation catalytic antibodies are identified as evident, but difficult, challenges for this field. Rising to these challenges and more successfully integrating programmable design with the selective forces of biology will enhance our understanding of enzymatic catalysis. Further, it should yield useful protein catalysts for an enhanced range of practical applications in chemistry and biology.
Collapse