1
|
Curreli F, Haque K, Xie L, Qiu Q, Xu J, Yong W, Tong X, Debnath AK. Synthesis, antiviral activity and resistance of a novel small molecule HIV-1 entry inhibitor. Bioorg Med Chem 2015; 23:7618-28. [PMID: 26602829 DOI: 10.1016/j.bmc.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022]
Abstract
One of the most critical requirements of the infection of the human immunodeficiency virus type 1 (HIV-1) is the interaction of its surface envelope glycoprotein gp120 with the cellular receptor CD4, which initiates virus entry to cells. Therefore, envelope glycoprotein gp120 has been validated as a potential target to develop HIV-1 entry inhibitors. Here we report the evaluation of a novel non-natural amino acid, termed 882376, reported earlier as a precursor of a CD4-mimetic miniprotein, as HIV-1 entry inhibitor. 882376 showed HIV-1 inhibitory activity against a large panel of primary isolates of different subtype. Moreover, genotyping of 882376 resistant HIV-1 virus revealed three amino acid substitutions in the gp120 including one in the CD4 binding site suggesting that this molecule may bind to gp120 and prevent its binding to CD4. Additional neutralization experiments indicate that 882376 is not active against mutant pseudoviruses carrying the amino acid substitutions S375H and S375Y located in the 'Phe43 cavity' which is the major site of CD4 binding, suggesting that this compound may interfere with the interaction between gp120 and CD4. The unnatural amino acid, 882376, is expected to serve as a lead for further optimization to more potent HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Kashfia Haque
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lihua Xie
- CPC Scientific, Inc., 1245 Reamwood Ave., Sunnyvale, CA 94089, USA
| | - Qian Qiu
- CPC Scientific, Inc., 1245 Reamwood Ave., Sunnyvale, CA 94089, USA
| | - Jinfeng Xu
- CPC Scientific, Inc., 1245 Reamwood Ave., Sunnyvale, CA 94089, USA
| | - Weizhong Yong
- CPC Scientific, Inc., 1245 Reamwood Ave., Sunnyvale, CA 94089, USA
| | - Xiaohe Tong
- CPC Scientific, Inc., 1245 Reamwood Ave., Sunnyvale, CA 94089, USA
| | - Asim K Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Amino acid chlorides: a journey from instability and racemization toward broader utility in organic synthesis including peptides and their mimetics. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Chu CY, Chang CP, Chou YT, Handoko, Hu YL, Lo LC, Lin JJ. Development and evaluation of novel phosphotyrosine mimetic inhibitors targeting the Src homology 2 domain of signaling lymphocytic activation molecule (SLAM) associated protein. J Med Chem 2013; 56:2841-9. [PMID: 23470190 DOI: 10.1021/jm301610q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific interactions between Src homology 2 (SH2) domain-containing proteins and the phosphotyrosine-containing counterparts play significant role in cellular protein tyrosine kinase (PTK) signaling pathways. The SH2 domain inhibitors could potentially serve as drug candidates in treating human diseases. Here we have incorporated a novel phosphotyrosine mimetic, which is an unusual amino acid carrying a cyclosaligenyl (cycloSal) phosphodiester moiety, into dipeptides to investigate the inhibitory effect on SH2 domain-containing proteins. A plate-based assay was also established to screen for inhibitors that disrupt the interaction between a phosphopeptide of SLAM (signaling lymphocytic activation molecule) and its interacting protein SAP (SLAM-associated protein). We identified a number of inhibitors with IC50 values in the range of 17-35 μM, implying that the cycloSal phosphodiester-carrying amino acid could mimic the phosphotyrosyl residue. Our results also raise the possibility of integrating the newly developed phosphotyrosine mimetic moiety into inhibitors designed for other SH2 domain-containing proteins.
Collapse
Affiliation(s)
- Chi-Yuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
4
|
Juneja A, Riedesel H, Hodoscek M, Knapp EW. Bound Ligand Conformer Revealed by Flexible Structure Alignment in Absence of Crystal Structures: Indirect Drug Design Probed for HIV-1 Protease Inhibitors. J Chem Theory Comput 2009; 5:659-73. [DOI: 10.1021/ct8004886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alok Juneja
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Henning Riedesel
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Milan Hodoscek
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - E. W. Knapp
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, D-14195 Berlin, Germany, and National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
5
|
|
6
|
Bouzide A, Sauvé G, Yelle J. Lysine derivatives as potent HIV protease inhibitors. Discovery, synthesis and structure-activity relationship studies. Bioorg Med Chem Lett 2005; 15:1509-13. [PMID: 15713418 DOI: 10.1016/j.bmcl.2004.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/19/2022]
Abstract
A screening assay program on HIV-protease was carried out on more than fifty commercially available N-protected amino acids and has revealed that those with a long side chain such as lysine, ornithine and arginine exhibited significant inhibition of HIV protease enzyme. The presence of an Fmoc group was found to be essential to obtain micromolar inhibitors and the addition of an alkyl group at the Nalpha-position resulted in the discovery of the lead compound 11 displaying a 5 nM inhibition constant. Although this new inhibitor series is not categorized among those mimicking the substrate with a non-hydrolyzable transition-state isoster, it was found very specific to inhibit HIV protease enzyme in comparison to the mammalian aspartyl proteases pepsin, renin and cathepsin. Furthermore, these inhibitors did not show any cytotoxicity at a concentration below 75 microM.
Collapse
|
7
|
Stranix BR, Sauvé G, Bouzide A, Coté A, Sévigny G, Yelle J. Lysine sulfonamides as novel HIV-Protease inhibitors: optimization of the Nε -acyl-phenyl spacer. Bioorg Med Chem Lett 2003; 13:4289-92. [PMID: 14643311 DOI: 10.1016/j.bmcl.2003.09.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A series of Nalpha-isobutyl-Nalpha-arylsulfonamido-(Nepsilon acyl) lysine and lysinol derivatives were prepared and evaluated as inhibitors of HIV protease and wild type virus. A simple original synthesis was devised to form Nalpha-(arylsulfonamide)-Nalpha-isobutyl lysine, which could be easily acylated with carboxylic acids at the Nepsilon position. A two-atom spacer was found to be optimal between this acyl group and a phenyl yielding compounds of sub-nanomolar potency on purified enzyme.
Collapse
Affiliation(s)
- Brent R Stranix
- Pharmacor Inc, 535 Cartier West, blvd, Laval, Quebec, Canada H7V 3S8.
| | | | | | | | | | | |
Collapse
|
8
|
Judd DA, Nettles JH, Nevins N, Snyder JP, Liotta DC, Tang J, Ermolieff J, Schinazi RF, Hill CL. Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J Am Chem Soc 2001; 123:886-97. [PMID: 11456622 DOI: 10.1021/ja001809e] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nb-containing polyoxometalates (POMs) of the Wells-Dawson class inhibit HIV-1 protease (HIV-1P) by a new mode based on kinetics, binding, and molecular modeling studies. Reaction of alpha(1)-K(9)Li[P(2)W(17)O(61)] or alpha(2)-K(10)[P(2)W(17)O(61)] with aqueous H(2)O(2) solutions of K(7)H[Nb(6)O(19)] followed by treatment with HCl and KCl and then crystallization affords the complexes alpha(1)-K(7)[P(2)W(17)(NbO(2))O(61)] (alpha(1)()1) and alpha(2)-K(7)[P(2)W(17)(NbO(2))O(61)] (alpha(2)()1) in 63 and 86% isolated yields, respectively. Thermolysis of the crude peroxoniobium compounds (72-96 h in refluxing H(2)O) prior to treatment with KCl converts the peroxoniobium compounds to the corresponding polyoxometalates (POMs), alpha(1)-K(7)[P(2)W(17)NbO(62)] (alpha(1)()2) and alpha(2)-K(7)[P(2)W(17)NbO(62)] (alpha(2)()2), in moderate yields (66 and 52%, respectively). The identity and high purity of all four compounds were confirmed by (31)P NMR and (183)W NMR. The acid-induced dimerization of the oxo complexes differentiates sterically between the cap (alpha(2)) site and the belt (alpha(1)) site in the Wells-Dawson structure (alpha(2)()2 dimerizes in high yield; alpha(1)()2 does not). All four POMs exhibit high activity in cell culture against HIV-1 (EC(50) values of 0.17-0.83 microM), are minimally toxic (IC(50) values of 50 to >100 microM), and selectively inhibit purified HIV-1 protease (HIV-1P) (IC(50) values for alpha(1)()1, alpha(2)()1, alpha(1)()2, and alpha(2)()2 of 2.0, 1.2, 1.5, and 1.8 microM, respectively). Thus, theoretical, binding, and kinetics studies of the POM/HIV-1P interaction(s) were conducted. Parameters for [P(2)W(17)NbO(62)](7)(-) were determined for the Kollman all-atom (KAA) force field in Sybyl 6.2. Charges for the POM were obtained from natural population analysis (NPA) at the HF/LANL2DZ level of theory. AutoDock 2.2 was used to explore possible binding locations for the POM with HIV-1P. These computational studies strongly suggest that the POMs function not by binding to the active site of HIV-1P, the mode of inhibition of all other HIV-1P protease inhibitors, but by binding to a cationic pocket on the "hinge" region of the flaps covering the active site (2 POMs and cationic pockets per active homodimer of HIV-1P). The kinetics and binding studies, conducted after the molecular modeling, are both in remarkable agreement with the modeling results: 2 POMs bind per HIV-1P homodimer with high affinities (K(i) = 1.1 +/- 0.5 and 4.1 +/- 1.8 nM in 0.1 and 1.0 M NaCl, respectively) and inhibition is noncompetitive (k(cat) but not K(m) is affected by the POM concentration).
Collapse
Affiliation(s)
- D A Judd
- Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A protocol for the rapid energetic analysis of protein-ligand complexes has been developed. This protocol involves the generation of protein-ligand complex ensembles followed by an analysis of the binding free energy components. We apply this methodology toward understanding the origin of binding specificity within the human immunodeficiency virus/feline immunodeficiency virus (HIV/FIV) protease system, a model system for drug resistance studies. A distinct difference in the internal strain of an inhibitor within each protein environment clearly favors the HIV protease complex, as observed experimentally. Our analysis also predicts that residues within the S2-S3 pockets of the FIV protease active site are responsible for this strain. Close examination of the active site residue contributions to interaction energy and desolvation energy identifies specific amino acids that may also play a role in determining the binding preferences of these two enzymes. Proteins 1999;36:318-331.
Collapse
Affiliation(s)
- B N Dominy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|