1
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
2
|
Sweeney KJ, Le T, Jorge MZ, Schellinger JG, Leman LJ, Müller UF. Peptide conjugates with polyaromatic hydrocarbons can benefit the activity of catalytic RNAs. Chem Sci 2023; 14:10318-10328. [PMID: 37772096 PMCID: PMC10529712 DOI: 10.1039/d3sc03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Early stages of life likely employed catalytic RNAs (ribozymes) in many functions that are today filled by proteins. However, the earliest life forms must have emerged from heterogenous chemical mixtures, which included amino acids, short peptides, and many other compounds. Here we explored whether the presence of short peptides can help the emergence of catalytic RNAs. To do this, we conducted an in vitro selection for catalytic RNAs from randomized sequence in the presence of ten different peptides with a prebiotically plausible length of eight amino acids. This in vitro selection generated dozens of ribozymes, one of them with ∼900-fold higher activity in the presence of one specific peptide. Unexpectedly, the beneficial peptide had retained its N-terminal Fmoc protection group, and this group was required to benefit ribozyme activity. The same, or higher benefit resulted from peptide conjugates with prebiotically plausible polyaromatic hydrocarbons (PAHs) such as fluorene and naphthalene. This shows that PAH-peptide conjugates can act as potent cofactors to enhance ribozyme activity. The results are discussed in the context of the origin of life.
Collapse
Affiliation(s)
- Kevin J Sweeney
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Tommy Le
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Micaella Z Jorge
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
3
|
Nakano K, Watanabe T. Tuning Rex rules HTLV-1 pathogenesis. Front Immunol 2022; 13:959962. [PMID: 36189216 PMCID: PMC9523361 DOI: 10.3389/fimmu.2022.959962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
HTLV-1 is an oncovirus causing ATL and other inflammatory diseases such as HAM/TSP and HU in about 5% of infected individuals. It is also known that HTLV-1-infected cells maintain a disease-free, immortalized, latent state throughout the lifetimes of about 95% of infected individuals. We believe that the stable maintenance of disease-free infected cells in the carrier is an intrinsic characteristic of HTLV-1 that has been acquired during its evolution in the human life cycle. We speculate that the pathogenesis of the virus is ruled by the orchestrated functions of viral proteins. In particular, the regulation of Rex, the conductor of viral replication rate, is expected to be closely related to the viral program in the early active viral replication followed by the stable latency in HTLV-1 infected T cells. HTLV-1 and HIV-1 belong to the family Retroviridae and share the same tropism, e.g., human CD4+ T cells. These viruses show significant similarities in the viral genomic structure and the molecular mechanism of the replication cycle. However, HTLV-1 and HIV-1 infected T cells show different phenotypes, especially in the level of virion production. We speculate that how the activity of HTLV-1 Rex and its counterpart HIV-1 Rev are regulated may be closely related to the properties of respective infected T cells. In this review, we compare various pathological aspects of HTLV-1 and HIV-1. In particular, we investigated the presence or absence of a virally encoded "regulatory valve" for HTLV-1 Rex or HIV-1 Rev to explore its importance in the regulation of viral particle production in infected T cells. Finally, wereaffirm Rex as the key conductor for viral replication and viral pathogenesis based on our recent study on the novel functional aspects of Rex. Since the activity of Rex is closely related to the viral replication rate, we hypothesize that the "regulatory valve" on the Rex activity may have been selectively evolved to achieve the "scenario" with early viral particle production and the subsequent long, stable deep latency in HTLV-1 infected cells.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, Graduate School of Medicine, St. Marianna University, Kawasaki, Japan
| |
Collapse
|
4
|
Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Deep structural insights into RNA-binding disordered protein regions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1714. [PMID: 35098694 PMCID: PMC9539567 DOI: 10.1002/wrna.1714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
Recent efforts to identify RNA binding proteins in various organisms and cellular contexts have yielded a large collection of proteins that are capable of RNA binding in the absence of conventional RNA recognition domains. Many of the recently identified RNA interaction motifs fall into intrinsically disordered protein regions (IDRs). While the recognition mode and specificity of globular RNA binding elements have been thoroughly investigated and described, much less is known about the way IDRs can recognize their RNA partners. Our aim was to summarize the current state of structural knowledge on the RNA binding modes of disordered protein regions and to propose a classification system based on their sequential and structural properties. Through a detailed structural analysis of the complexes that contain disordered protein regions binding to RNA, we found two major binding modes that represent different recognition strategies and, most likely, functions. We compared these examples with DNA binding disordered proteins and found key differences stemming from the nucleic acids as well as similar binding strategies, implying a broader substrate acceptance by these proteins. Due to the very limited number of known structures, we integrated molecular dynamics simulations in our study, whose results support the proposed structural preferences of specific RNA‐binding IDRs. To broaden the scope of our review, we included a brief analysis of RNA‐binding small molecules and compared their structural characteristics and RNA recognition strategies to the RNA‐binding IDRs. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions
Collapse
Affiliation(s)
- András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
6
|
Fallon ZJ, Bernard SM, Hodges WT, Hoffman MT, Nagan MC. 156 Molecular dynamics studies of HTLV-1 Rex responsive element aptamer recognition. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Pereira P, Sousa Â, Queiroz JA, Figueiras A, Sousa F. Pharmaceutical-grade pre-miR-29 purification using an agmatine monolithic support. J Chromatogr A 2014; 1368:173-82. [DOI: 10.1016/j.chroma.2014.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/14/2014] [Accepted: 09/27/2014] [Indexed: 02/08/2023]
|
8
|
Pereira P, Sousa Â, Queiroz J, Correia I, Figueiras A, Sousa F. Purification of pre-miR-29 by arginine-affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:16-23. [DOI: 10.1016/j.jchromb.2014.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 11/26/2022]
|
9
|
Martins R, Maia CJ, Queiroz JA, Sousa F. A new strategy for RNA isolation from eukaryotic cells using arginine affinity chromatography. J Sep Sci 2012; 35:3217-26. [DOI: 10.1002/jssc.201200338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Rita Martins
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - João A. Queiroz
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Fani Sousa
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
10
|
Abstract
Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric "duplicator RNAs," resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
11
|
Teplova M, Wohlbold L, Khin NW, Izaurralde E, Patel DJ. Structure-function studies of nucleocytoplasmic transport of retroviral genomic RNA by mRNA export factor TAP. Nat Struct Mol Biol 2011; 18:990-8. [PMID: 21822283 PMCID: PMC3167930 DOI: 10.1038/nsmb.2094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/01/2011] [Indexed: 11/09/2022]
Abstract
Messenger RNA export is mediated by the TAP-p15 heterodimer, which belongs to the family of NTF2-like export receptors. TAP-p15 heterodimers also bind to the constitutive transport element (CTE) present in simian type D retroviral RNAs, and mediate export of viral unspliced RNAs to the host cytoplasm. We have solved the crystal structure of the RNA recognition and leucine-rich repeat motifs of TAP bound to one symmetrical-half of CTE RNA. L-shaped conformations of protein and RNA are involved in a mutual molecular embrace on complex formation. We have monitored the impact of structure-guided mutations on binding affinities in vitro and transport assays in vivo. Our studies define the principles by which CTE RNA subverts the mRNA export receptor TAP, thereby facilitating nuclear export of viral genomic RNAs, and more generally, provide insights on cargo RNA recognition by mRNA export receptors.
Collapse
Affiliation(s)
- Marianna Teplova
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | |
Collapse
|
12
|
Harris RC, Bredenberg JH, Silalahi ARJ, Boschitsch AH, Fenley MO. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes. Biophys Chem 2011; 156:79-87. [PMID: 21458909 DOI: 10.1016/j.bpc.2011.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 12/01/2022]
Abstract
The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics, Institute of Molecular Biophysics, Florida State University, Tallahasse, 32306, USA.
| | | | | | | | | |
Collapse
|
13
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Suryawanshi H, Sabharwal H, Maiti S. Thermodynamics of peptide-RNA recognition: the binding of a Tat peptide to TAR RNA. J Phys Chem B 2010; 114:11155-63. [PMID: 20687526 DOI: 10.1021/jp1000545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA-peptide interactions have been intensively studied at the structural level; however, in the absence of thermodynamic studies, the molecular forces that dictate the binding specificities and affinities remain elusive. Here we evaluate the thermodynamics (DeltaG, DeltaH, DeltaS) of HIV-1 TAR RNA hairpin and Tat peptide interaction as well as the hydration changes that accompany these interactions, through a series of calorimetric, spectroscopic, and osmotic stress studies. Tat peptide binding enhances the thermal stability of the TAR RNA hairpin; however, the thermal enhancement decreases with increasing Na(+) concentration. The equilibrium association constant (K(a)) is determined by fluorescence titrations and examined as a function of Na(+) concentration and temperature. The binding constant (K(a)) decreases with increasing Na(+) concentration. The binding free energy (DeltaG) is found to have a large nonpolyelectrolyte component with release of a single counterion upon binding. The ITC profiles showed two independent sites binding, indicating specific as well as nonspecific interactions. The enthalpy changes associated with both the binding sites are found to be more negative for the binding process at lower salt concentration of 20 mM Na(+). Our binding studies under osmotic stress conditions show that there is a release of 28 (+/-4) and 21 (+/-3) water molecules upon complex formation at 20 and 80 mM Na(+) concentration supporting the observed positive entropy contributions and accounting for discrepancies between DeltaH(cal) and DeltaH(vH). In aggregate, our results suggest that the hydrogen bonding of arginine to TAR RNA dictates the binding interaction.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
15
|
Rev-derived peptides inhibit HIV-1 replication by antagonism of Rev and a co-receptor, CXCR4. Int J Biochem Cell Biol 2010; 42:1482-8. [DOI: 10.1016/j.biocel.2010.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/23/2010] [Accepted: 05/11/2010] [Indexed: 11/17/2022]
|
16
|
Janas T, Widmann JJ, Knight R, Yarus M. Simple, recurring RNA binding sites for L-arginine. RNA (NEW YORK, N.Y.) 2010; 16:805-816. [PMID: 20194519 PMCID: PMC2844627 DOI: 10.1261/rna.1979410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
Seven new arginine binding motifs have been selected from a heterogeneous RNA pool containing 17, 25, and 50mer randomized tracts, yielding 131 independently derived binding sites that are multiply isolated. The shortest 17mer random region is sufficient to build varied arginine binding sites using five different conserved motifs (motifs 1a, 1b, 1c, 2, and 4). Dissociation constants are in the fractional millimolar to millimolar range. Binding sites are amino acid side-chain specific and discriminate moderately between L- and D-stereoisomers of arginine, suggesting a molecular focus on side-chain guanidinium. An arginine coding triplet (codon/anticodon) is highly conserved within the largest family of Arg sites (72% of all sequences), as has also been found in minimal, most prevalent RNA binding sites for Ile, His, and Trp.
Collapse
Affiliation(s)
- Teresa Janas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
17
|
Michael LA, Chenault JA, Miller BR, Knolhoff AM, Nagan MC. Water, Shape Recognition, Salt Bridges, and Cation–Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element. J Mol Biol 2009; 392:774-86. [DOI: 10.1016/j.jmb.2009.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
18
|
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 2007; 107:3715-43. [PMID: 17715981 DOI: 10.1021/cr0306743] [Citation(s) in RCA: 673] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Famulok
- LIMES Institute, Program Unit Chemical Biology and Medicinal Chemistry, c/o Kekulé-Institut für Organische Chemie und Biochemie, Gerhard Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | |
Collapse
|
19
|
Abstract
Aptamers are artificial nucleic acid ligands that can be generated in vitro against a wide range of molecules, including the gene products of viruses. Aptamers are isolated from complex libraries of synthetic nucleic acids by an iterative, cell-free process that involves repetitively reducing the complexity of the library by partitioning on the basis of selective binding to the target molecule, followed by reamplification. For virologists, aptamers have potential uses as tools to help to analyse the molecular biology of virus replication, as a complement to the more familiar monoclonal antibodies. They also have potential applications as diagnostic biosensors and in the development of antiviral agents. In recent years, these two promising avenues have been explored increasingly by virologists; here, the progress that has been made is reviewed.
Collapse
Affiliation(s)
- William James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX2 3RE, UK
| |
Collapse
|
20
|
Bayer TS, Booth LN, Knudsen SM, Ellington AD. Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA (NEW YORK, N.Y.) 2005; 11:1848-57. [PMID: 16314457 PMCID: PMC1370873 DOI: 10.1261/rna.2167605] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A number of proteins containing arginine-rich motifs (ARMs) are known to bind RNA and are involved in regulating RNA processing in viruses and cells. Using automated selection methods we have generated a number of aptamers against ARM peptides from various natural proteins. Aptamers bind tightly to their cognate ARMs, with K(d) values in the nanomolar range, and frequently show no propensity to bind to other ARMs or even to single amino acid variants of the cognate ARM. However, at least some anti-ARM aptamers can cross-recognize a limited set of other ARMs, just as natural RNA-binding sites have been shown to exhibit so-called "chameleonism." We expand upon the number of examples of cross-recognition and, using mutational and circular dichroism (CD) analyses, demonstrate that there are multiple mechanisms by which RNA ligands can cross-recognize ARMs. These studies support a model in which individual arginine residues govern binding to an RNA ligand, and the inherent flexibility of the peptide backbone may make it possible for "semi-specific" recognition of a discrete set of RNAs by a discrete set of ARM peptides and proteins.
Collapse
Affiliation(s)
- Travis S Bayer
- Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
21
|
Abstract
It is widely argued that protein synthesis evolved out of an RNA world, in which catalytic and other biological functions now carried out by proteins were performed by RNAs. However, it is not clear what selective advantage would have provided the driving force for evolution of a primitive translation apparatus, because of the unlikelihood that rudimentary polypeptides would have contributed sufficiently useful biological functions. Here, I suggest that the availability of even simple peptides could have significantly enlarged the otherwise limited structure space of RNA. In other words, translation initially evolved not to create a protein world, but to extend the structural, and therefore the functional, capabilities of the RNA world. Observed examples of substantial structural rearrangements in RNA that are induced by binding of peptides and other small molecules support this possibility.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
22
|
Robertson MP, Knudsen SM, Ellington AD. In vitro selection of ribozymes dependent on peptides for activity. RNA (NEW YORK, N.Y.) 2004; 10:114-27. [PMID: 14681590 PMCID: PMC1370523 DOI: 10.1261/rna.5900204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 09/22/2003] [Indexed: 05/20/2023]
Abstract
A peptide-dependent ribozyme ligase (aptazyme ligase) has been selected from a random sequence population based on the small L1 ligase. The aptazyme ligase is activated > 18,000-fold by its cognate peptide effector, the HIV-1 Rev arginine-rich motif (ARM), and specifically recognizes the Rev ARM relative to other peptides containing arginine-rich motifs. Moreover, the aptazyme ligase can preferentially recognize the Rev ARM in the context of the full-length HIV-1 Rev protein. The only cross-reactivity exhibited by the aptazyme is toward the Tat ARM. Reselection of peptide- and protein-dependent aptazymes from a partially randomized population yielded aptazymes that could readily discriminate against the Tat ARM. These results have important implications for the development of aptazymes that can be used in arrays for the detection and quantitation of multiple cellular proteins (proteome arrays).
Collapse
MESH Headings
- Amino Acid Motifs
- Arginine/metabolism
- Base Sequence
- Binding Sites
- Gene Products, rev/metabolism
- Gene Products, tat/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- In Vitro Techniques
- Ligases/chemical synthesis
- Ligases/genetics
- Ligases/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- RNA, Catalytic/chemical synthesis
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Viral
- Selection, Genetic
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|
23
|
Abstract
Studies of RNA-binding peptides, and recent combinatorial library experiments in particular, have demonstrated that diverse peptide sequences and structures can be used to recognize specific RNA sites. The identification of large numbers of sequences capable of binding to a particular site has provided extensive phylogenetic information used to deduce basic principles of recognition. The high frequency at which RNA-binding peptides are found in large sequence libraries suggests plausible routes to evolve sequence-specific binders, facilitating the design of new binding molecules and perhaps reflecting characteristics of natural evolution.
Collapse
Affiliation(s)
- Chandreyee Das
- Department of Biochemistry and Biophysics, 600 16th Street University of California, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
24
|
Gouda H, Kuntz ID, Case DA, Kollman PA. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Biopolymers 2003; 68:16-34. [PMID: 12579577 DOI: 10.1002/bip.10270] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method (J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case, Journal of the American Chemical Society, 1998, Vol. 120, pp. 9401-9409) to study the interaction of an RNA aptamer with theophylline and its analogs. The MM-PBSA free energy analysis provides a reasonable absolute binding free energy for the RNA aptamer-theophylline complex formation. Energetic analysis reveals that the van der Waals interaction and the nonpolar contribution to solvation provide the basis for the favorable absolute free energy of complex. This trend is similar to other protein-ligand interactions studied previously. The MM-PBSA method also ranks the relative binding energies of five theophylline analogs approximately correctly, but not as well as the more conventional thermodynamic integration calculations, which were carried out to convert theophylline into its analogs. The comparison of MM-PBSA with TI suggests that the MM-PBSA method has some difficulties with the first-solvation-shell energetics.
Collapse
Affiliation(s)
- Hiroaki Gouda
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
25
|
Thompson KM, Syrett HA, Knudsen SM, Ellington AD. Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2002; 2:21. [PMID: 12466025 PMCID: PMC139998 DOI: 10.1186/1472-6750-2-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 12/04/2002] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Allosteric ribozymes (aptazymes) that have extraordinary activation parameters have been generated in vitro by design and selection. For example, hammerhead and ligase ribozymes that are activated by small organic effectors and protein effectors have been selected from random sequence pools appended to extant ribozymes. Many ribozymes, especially self-splicing introns, are known control gene regulation or viral replication in vivo. We attempted to generate Group I self-splicing introns that were activated by a small organic effector, theophylline, and to show that such Group I aptazymes could mediate theophylline-dependent splicing in vivo. RESULTS By appending aptamers to the Group I self-splicing intron, we have generated a Group I aptazyme whose in vivo splicing is controlled by exogenously added small molecules. Substantial differences in gene regulation could be observed with compounds that differed by as little as a single methyl group. The effector-specificity of the Group I aptazyme could be rationally engineered for new effector molecules. CONCLUSION Group I aptazymes may find applications as genetic regulatory switches for generating conditional knockouts at the level of mRNA or for developing economically viable gene therapies.
Collapse
Affiliation(s)
- Kristin M Thompson
- Present address: Archemix Corp., 1 Hampshire St., Cambridge, MA 02139, USA
| | - Heather A Syrett
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Scott M Knudsen
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
26
|
Abstract
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.
Collapse
Affiliation(s)
- J Sühnel
- Biocomputing Group, Institut für Molekulare Biotechnologie, Postfach 100813, D-07708 Jena, Germany
| |
Collapse
|
27
|
Nagaswamy U, Gao X, Martinis SA, Fox GE. NMR structure of a ribosomal RNA hairpin containing a conserved CUCAA pentaloop. Nucleic Acids Res 2001; 29:5129-39. [PMID: 11812846 PMCID: PMC97551 DOI: 10.1093/nar/29.24.5129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure of a 23 nt RNA sequence, rGGACCCGGGCUCAACCUGGGUCC, was elucidated using homonuclear NMR, distance geometry and restrained molecular dynamics. This RNA is analogous to residues 612-628 of the Escherichia coli 16S rRNA. The structure of the RNA reveals the presence of a pentaloop closed by a duplex stem in typical A-form conformation. The loop does not form a U-turn motif, as previously predicted. A non-planar A.C.A triple base interaction (hydrogen bonds A13 NH6-C10 O2 and C10 N3-A14 NH6) stabilizing the loop structure is inferred from structure calculations. The CUCAA loop structure is asymmetrical, characterized by a reversal of the phosphodiester backbone at the UC step (hydrogen bond C12 NH4-C10 O2') and 3'-stacking within the CAA segment. Loop base U11 is oriented towards the major groove and the consecutive adenosines on the 3'-end of the loop are well stacked, exposing their reactive functional groups in the minor groove defined by the duplex stem. The solution structure of the loop resembles that seen in the 3.3 A X-ray structure of the entire 30S subunit, where the analogous loop interacts with a ribosomal protein and a receptor RNA helix.
Collapse
Affiliation(s)
- U Nagaswamy
- Department of Biology and Biochemistry, 3201 Cullen Boulevard, University of Houston, Houston, TX 77204-5501, USA
| | | | | | | |
Collapse
|
28
|
Allers J, Shamoo Y. Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J Mol Biol 2001; 311:75-86. [PMID: 11469858 DOI: 10.1006/jmbi.2001.4857] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, drawing general conclusions about RNA recognition by proteins has been hindered by the paucity of high-resolution structures. We have analyzed 45 PDB entries of protein-RNA complexes to explore the underlying chemical principles governing both specific and non-sequence specific binding. To facilitate the analysis, we have constructed a database of interactions using ENTANGLE, a JAVA-based program that uses available structural models in their PDB format and searches for appropriate hydrogen bonding, stacking, electrostatic, hydrophobic and van der Waals interactions. The resulting database of interactions reveals correlations that suggest the basis for the discrimination of RNA from DNA and for base-specific recognition. The data illustrate both major and minor interaction strategies employed by families of proteins such as tRNA synthetases, ribosomal proteins, or RNA recognition motifs with their RNA targets. Perhaps most surprisingly, specific RNA recognition appears to be mediated largely by interactions of amide and carbonyl groups in the protein backbone with the edge of the RNA base. In cases where a base accepts a proton, the dominant amino acid donor is arginine, whereas in cases where the base donates a proton, the predominant acceptor is the backbone carbonyl group, not a side-chain group. This is in marked contrast to DNA-protein interactions, which are governed predominantly by amino acid side-chain interactions with functional groups that are presented in the accessible major groove. RNA recognition often proceeds through loops, bulges, kinks and other irregular structures that permit use of all the RNA functional groups and this is seen throughout the protein-RNA interaction database.
Collapse
Affiliation(s)
- J Allers
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
29
|
Serganov A, Bénard L, Portier C, Ennifar E, Garber M, Ehresmann B, Ehresmann C. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15. J Mol Biol 2001; 305:785-803. [PMID: 11162092 DOI: 10.1006/jmbi.2000.4354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal protein S15 recognizes a highly conserved target on 16 S rRNA, which consists of two distinct binding regions. Here, we used extensive site-directed mutagenesis on a Escherichia coli 16 S rRNA fragment containing the S15 binding site, to investigate the role of conserved nucleotides in protein recognition and to evaluate the relative contribution of the two sites. The effect of mutations on S15 recognition was studied by measuring the relative binding affinity, RNA probing and footprinting. The crystallographic structure of the Thermus thermophilus complex allowed molecular modelling of the E. coli complex and facilitated interpretation of biochemical data. Binding is essentially driven by site 1, which includes a three-way junction constrained by a conserved base triple and cross-strand stacking. Recognition is based mainly on shape complementarity, and the role of conserved nucleotides is to maintain a unique backbone geometry. The wild-type base triple is absolutely required for protein interaction, while changes in the conserved surrounding nucleotides are partially tolerated. Site 2, which provides functional groups in a conserved G-U/G-C motif, contributes only modestly to the stability of the interaction. Binding to this motif is dependent on binding at site 1 and is allowed only if the two sites are in the correct relative orientation. Non-conserved bulged nucleotides as well as a conserved purine interior loop, although not directly involved in recognition, are used to provide an appropriate flexibility between the two sites. In addition, correct binding at the two sites triggers conformational adjustments in the purine interior loop and in a distal region, which are known to be involved for subsequent binding of proteins S6 and S18. Thus, the role of site 1 is to anchor S15 to the rRNA, while binding at site 2 is aimed to induce a cascade of events required for subunit assembly.
Collapse
Affiliation(s)
- A Serganov
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The arginine-rich RNA-binding domain of bovine immunodeficiency virus (BIV) Tat adopts a beta-hairpin conformation upon binding to the major groove of BIV TAR. Based on its NMR structure, we modeled dimeric arrangements in which two adjacent TAR sites might be recognized with high affinity by a dimeric peptide. Some dimeric RNAs efficiently bound two unlinked BIV Tat peptides in vitro, but could not bind even one monomeric peptide in vivo, as monitored by transcriptional activation of human immunodeficiency virus long terminal repeat reporters. Results with additional reporters suggest that extending the RNA helix in the dimeric arrangements inhibits peptide binding by decreasing major groove accessibility. In contrast, a dimeric peptide efficiently bound an optimally arranged dimeric TAR in vivo, and bound with an affinity at least 10-fold higher than the monomeric peptide in vitro. Mutating specific nucleotides in each RNA 'half-site' or specific amino acids in each beta-hairpin of the dimeric peptide substantially decreased binding affinity, providing evidence for the modeled dimer-dimer interaction. These studies provide a starting point for identifying dimeric RNA-protein interactions with even higher binding affinities and specificities.
Collapse
Affiliation(s)
| | | | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-0448, USA
Corresponding author e-mail:
| |
Collapse
|
31
|
Allain FH, Bouvet P, Dieckmann T, Feigon J. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J 2000; 19:6870-81. [PMID: 11118222 PMCID: PMC305906 DOI: 10.1093/emboj/19.24.6870] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2000] [Revised: 10/30/2000] [Accepted: 10/31/2000] [Indexed: 11/12/2022] Open
Abstract
The structure of the 28 kDa complex of the first two RNA binding domains (RBDs) of nucleolin (RBD12) with an RNA stem-loop that includes the nucleolin recognition element UCCCGA in the loop was determined by NMR spectroscopy. The structure of nucleolin RBD12 with the nucleolin recognition element (NRE) reveals that the two RBDs bind on opposite sides of the RNA loop, forming a molecular clamp that brings the 5' and 3' ends of the recognition sequence close together and stabilizing the stem-loop. The specific interactions observed in the structure explain the sequence specificity for the NRE sequence. Binding studies of mutant proteins and analysis of conserved residues support the proposed interactions. The mode of interaction of the protein with the RNA and the location of the putative NRE sites suggest that nucleolin may function as an RNA chaperone to prevent improper folding of the nascent pre-rRNA.
Collapse
Affiliation(s)
- F H Allain
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The structures of several peptide-RNA complexes have been reported in the past year, underscoring the diverse nature of RNA structure and protein interactions. In general, specific peptide conformations are stabilized by the surrounding RNA framework; this is strikingly similar to how peptides are stabilized upon interaction with proteins.
Collapse
Affiliation(s)
- A D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-0448, USA. . edu
| |
Collapse
|
33
|
Abstract
RNA bulges constitute versatile structural motifs in the assembly of RNA architectures. Three-dimensional structures of RNA molecules and their complexes reveal the role of bulges in RNA architectures and illustrate the molecular mechanisms by which they confer intramolecular interactions and intermolecular recognition.
Collapse
Affiliation(s)
- T Hermann
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
34
|
Patel DJ, Suri AK. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 2000; 74:39-60. [PMID: 10943571 DOI: 10.1016/s1389-0352(99)00003-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Through the use of in vitro selection techniques, a number of RNA aptamers have been selected for their ability to bind ligands with high affinity and specificity. The three-dimensional solution structures of a number of these complexes have been solved within the last 4 years. This review focuses on the structural characterization of the RNA aptamers bound to the cofactors FMN and AMP, the amino acids arginine and citrulline, the drug theophylline and the aminoglycoside antibiotic tobramycin in solution. Analysis of the structural features of these complexes allows the identification of molecular themes in RNA aptamer structure, recognition and discrimination.
Collapse
Affiliation(s)
- D J Patel
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
35
|
Abstract
Nucleic acid molecules play crucial roles in diverse biological processes including the storage, transport, processing, and expression of the genetic information. Nucleic acid aptamers are selected in vitro from libraries containing random sequences of up to a few hundred nucleotides. Selection is based on the ability to bind ligand molecules with high affinity and specificity. Three-dimensional structures have been determined at high resolution for a number of aptamers in complex with their cognate ligands. Structures of aptamer complexes reveal the key molecular interactions conferring specificity to the aptamer-ligand association, including the precise stacking of flat moieties, specific hydrogen bonding, and molecular shape complementarity. These basic principles of discriminatory molecular interactions in aptamer complexes parallel recognition events central to many cellular processes involving nucleic acids.
Collapse
Affiliation(s)
- T Hermann
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|