1
|
Sayeesh PM, Ikeya T, Sugasawa H, Watanabe R, Mishima M, Inomata K, Ito Y. Insight into the C-terminal SH3 domain mediated binding of Drosophila Drk to Sos and Dos. Biochem Biophys Res Commun 2022; 625:87-93. [DOI: 10.1016/j.bbrc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
|
2
|
The intramolecular allostery of GRB2 governing its interaction with SOS1 is modulated by phosphotyrosine ligands. Biochem J 2021; 478:2793-2809. [PMID: 34232285 DOI: 10.1042/bcj20210105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.
Collapse
|
3
|
Pinet L, Wang YH, Vogel A, Guerlesquin F, Assrir N, Heijenoort CV.
1
H,
13
C and
15
N assignments of human Grb2 free of ligands. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:323-327. [PMID: 32844357 PMCID: PMC7462913 DOI: 10.1007/s12104-020-09970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Growth factor receptor-bound 2 (Grb2) is an important link in the receptor tyrosine kinase signaling cascades. It is involved in crucial processes, both physiological (mainly embryogenesis) and pathological (different types of cancer). Several binding partners of all three domains (SH3-SH2-SH3) of this adaptor protein are well described, such as ErbB family members for the SH2 domain and Sos for the SH3 domains. How the different domains interact with each other, both structurally and functionally, is still unclear. These interactions could be essential for regulation processes, and therefore are of great interest. Although a lot of structural data on Grb2 exist, they describe either individual domains, ligand-bound conformations, or frozen pictures of the protein captured by crystallography. Here we report the assignment of backbone and of13 C β chemical shifts of full-length, apo-Grb2 in solution. In addition to the assigned conformation corresponding to three well-folded domains, a set of peaks compatible with the presence of an unfolded conformation of the N-terminal SH3 domain is observed. This assignment paves the way for future studies of inter-domain interactions and dynamics that have to be taken into account when studying the regulation of Grb2 interactions and signaling pathways.
Collapse
Affiliation(s)
- Louise Pinet
- Department of Analytical and Structural Chemistry and Biology, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, 1, av. de la terrasse, 91190 Gif-sur-Yvette, France
- Present Address: Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ying-Hui Wang
- Department of Analytical and Structural Chemistry and Biology, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, 1, av. de la terrasse, 91190 Gif-sur-Yvette, France
- Present Address: SGS Taiwan LTD, No.38, Wu Chyuan 7th Rd., New Taipei Industrial Park, Wu Ku District, New Taipei City, 24890 Taiwan
| | - Anaïs Vogel
- Department of Analytical and Structural Chemistry and Biology, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, 1, av. de la terrasse, 91190 Gif-sur-Yvette, France
- Present Address: NG Biotech, ZI Courbouton, 35480 Guipry, France
| | - Françoise Guerlesquin
- LISM, Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, Marseille, France
| | - Nadine Assrir
- Department of Analytical and Structural Chemistry and Biology, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, 1, av. de la terrasse, 91190 Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Department of Analytical and Structural Chemistry and Biology, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, 1, av. de la terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Bolgov A, Korban S, Luzik D, Zhemkov V, Kim M, Rogacheva O, Bezprozvanny I. Crystal structure of the SH3 domain of growth factor receptor-bound protein 2. Acta Crystallogr F Struct Biol Commun 2020; 76:263-270. [PMID: 32510467 PMCID: PMC7278502 DOI: 10.1107/s2053230x20007232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022] Open
Abstract
This study presents the crystal structure of the N-terminal SH3 (SH3N) domain of growth factor receptor-bound protein 2 (Grb2) at 2.5 Å resolution. Grb2 is a small (215-amino-acid) adaptor protein that is widely expressed and involved in signal transduction/cell communication. The crystal structure of full-length Grb2 has previously been reported (PDB entry 1gri). The structure of the isolated SH3N domain is consistent with the full-length structure. The structure of the isolated SH3N domain was solved at a higher resolution (2.5 Å compared with 3.1 Å for the previously deposited structure) and made it possible to resolve some of the loops that were missing in the full-length structure. In addition, interactions between the carboxy-terminal region of the SH3N domain and the Sos1-binding sites were observed in the structure of the isolated domain. Analysis of these interactions provided new information about the ligand-binding properties of the SH3N domain of Grb2.
Collapse
Affiliation(s)
- Alexandr Bolgov
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical systems and Biotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg 194021, Russian Federation
| | - Svetlana Korban
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical systems and Biotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg 194021, Russian Federation
| | - Dmitrii Luzik
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
| | - Vladimir Zhemkov
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical systems and Biotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg 194021, Russian Federation
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Rogacheva
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, St Petersburg 197376, Russian Federation
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical systems and Biotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg 194021, Russian Federation
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Liao TJ, Jang H, Nussinov R, Fushman D. High-Affinity Interactions of the nSH3/cSH3 Domains of Grb2 with the C-Terminal Proline-Rich Domain of SOS1. J Am Chem Soc 2020; 142:3401-3411. [PMID: 31970984 PMCID: PMC8459210 DOI: 10.1021/jacs.9b10710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Grb2 is an adaptor protein that recruits Ras-specific guanine nucleotide exchange factor, Son of Sevenless 1 (SOS1), to the plasma membrane. SOS1 exchanges GDP by GTP, activating Ras. Grb2 consists of an SH2 domain flanked by N- and C-terminal SH3 domains (nSH3/cSH3). Grb2 nSH3/cSH3 domains have strong binding affinity for the SOS1 proline-rich (PR) domain that mediates the Grb2-SOS1 interaction. The nSH3/cSH3 domains have distinct preferred binding motifs: PxxPxR for nSH3 and PxxxRxxKP for cSH3 (x represents any natural amino acid). Several nSH3-binding motifs have been identified in the SOS1 PR domain but none specific for cSH3 binding. Even though both nSH3 and cSH3 exhibit the strongest binding to the SOS1 peptide PVPPPVPPRRRP, this mutually exclusive binding combined with other potential nSH3/cSH3 binding regions in SOS1 makes understanding the Grb2-SOS1 interaction challenging. To identify the SOS1-cSH3 binding sites, we selected seven potential binding segments in SOS1. The synthesized peptides were tested for their binding to nSH3/cSH3. Our NMR data reveal that the PKLPPKTYKREH peptide has strong binding affinity for cSH3, but very weak for nSH3. The binding specificity suggests that the most likely Grb2-SOS1 binding mode is through nSH3-PVPPPVPPRRRP and cSH3-PKLPPKTYKREH interactions, which is supported by replica-exchange simulations for the Grb2-SOS1 complex models. We propose that nSH3/cSH3 binding peptides, which effectively interrupt Grb2-SOS1 association, can serve as tumor suppressors. The Grb2-SOS1 mechanism outlined here offers new venues for future therapeutic strategies for upstream mutations in cancer, such as in EGFR.
Collapse
Affiliation(s)
- Tsung-Jen Liao
- Biophysics Program, Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
- Computational Structural Biology Section, Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine , Tel Aviv University , Tel Aviv 69978 , Israel
| | - David Fushman
- Biophysics Program, Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
6
|
Molecular Dynamics model of peptide-protein conjugation: case study of covalent complex between Sos1 peptide and N-terminal SH3 domain from Grb2. Sci Rep 2019; 9:20219. [PMID: 31882608 PMCID: PMC6934455 DOI: 10.1038/s41598-019-56078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
We have investigated covalent conjugation of VPPPVPPRRRX′ peptide (where X′ denotes Nε-chloroacetyl lysine) to N-terminal SH3 domain from adapter protein Grb2. Our experimental results confirmed that the peptide first binds to the SH3 domain noncovalently before establishing a covalent linkage through reaction of X′ with the target cysteine residue C32. We have also confirmed that this reaction involves a thiolate-anion form of C32 and follows the SN2 mechanism. For this system, we have developed a new MD-based protocol to model the formation of covalent conjugate. The simulation starts with the known coordinates of the noncovalent complex. When two reactive groups come into contact during the course of the simulation, the reaction is initiated. The reaction is modeled via gradual interpolation between the two sets of force field parameters that are representative of the noncovalent and covalent complexes. The simulation proceeds smoothly, with no appreciable perturbations to temperature, pressure or volume, and results in a high-quality MD model of the covalent complex. The validity of this model is confirmed using the experimental chemical shift data. The new MD-based approach offers a valuable tool to explore the mechanics of protein-peptide conjugation and build accurate models of covalent complexes.
Collapse
|
7
|
Liao TJ, Jang H, Fushman D, Nussinov R. Allosteric KRas4B Can Modulate SOS1 Fast and Slow Ras Activation Cycles. Biophys J 2018; 115:629-641. [PMID: 30097175 PMCID: PMC6103739 DOI: 10.1016/j.bpj.2018.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023] Open
Abstract
Membrane-anchored Ras family proteins are activated by guanine nucleotide exchange factors such as SOS1. The CDC25 domain of SOS1 catalyzes GDP-to-GTP exchange, thereby activating Ras. Here, we aim to decipher the activation mechanism of KRas4B, a significantly mutated oncogene. We perform large-scale molecular dynamics simulations on 12 SOS1 systems, scrutinizing each step in two possible KRas4B activation cycles, fast and slow. To activate KRas4B at the CDC25 catalytic site, the allosteric site in the Ras exchanger motif (REM) domain of SOS1 needs to recruit a (nucleotide-bound) KRas4B molecule. Our simulations indicate that KRas4B-GTP interacts with the REM allosteric site more strongly than with the CDC25 catalytic site, consistent with its allosteric role in the GDP-to-GTP exchange. In the fast cycle, the allosteric KRas4B-GTP induces conformational change at the catalytic site. The conformational change facilitates loading KRas4B-GDP at the catalytic site and opening the KRas4B nucleotide-binding site for GDP release and GTP binding. GTP binding reduces the affinity of KRas4B-GTP to the CDC25 catalytic site, resulting in its release. By contrast, in the slow cycle, KRas4B-GDP binds at the allosteric REM site. The limited, altered conformational change that it induces prevents the exact alignments of switch I and II of KRas4B. The increasing binding strength at both binding sites due to interactions of regions other than switch I and II retards GDP release from the catalytic KRas4B, thus KRas4B activation. The accelerated activation cycle supports a positive feedback loop with allosteric signals communicating between the two Ras molecules and is the predominant, native function of SOS. SOS1 activation details may help drug discovery to inhibit Ras activation.
Collapse
Affiliation(s)
- Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Biophysics Program
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - David Fushman
- Biophysics Program; Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Gushchina LV, Gabdulkhakov AG, Nikonov SV, Filimonov VV. High-resolution crystal structure of spectrin SH3 domain fused with a proline-rich peptide. J Biomol Struct Dyn 2012; 29:485-95. [PMID: 22066535 DOI: 10.1080/07391102.2011.10507400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new chimeric protein, named WT-CIIA, was designed by connecting the proline-rich decapeptide PPPVPPYSAG to the C-terminus of the alpha-spectrin SH3 domain through a natural twelve-residue linker to obtain a single-chain model that would imitate intramolecular SH3-ligand interaction. The crystal structure of this fusion protein was determined at 1.7 Å resolution. The asymmetric unit of the crystal contained two SH3 globules contacting with one PPPVPPY fragment located between them. The domains are related by the two-fold non-crystallographic axis and the ligand lies in two opposite orientations with respect to the conservative binding sites of SH3 domains.
Collapse
Affiliation(s)
- Liubov V Gushchina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
9
|
Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 2012; 149:1514-24. [PMID: 22726438 DOI: 10.1016/j.cell.2012.04.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/14/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Receptor tyrosine kinase activity is known to occur in the absence of extracellular stimuli. Importantly, this "background" level of receptor phosphorylation is insufficient to effect a downstream response, suggesting that strict controls are present and prohibit full activation. Here a mechanism is described in which control of FGFR2 activation is provided by the adaptor protein Grb2. Dimeric Grb2 binds to the C termini of two FGFR2 molecules. This heterotetramer is capable of a low-level receptor transphosphorylation, but C-terminal phosphorylation and recruitment of signaling proteins are sterically hindered. Upon stimulation, FGFR2 phosphorylates tyrosine residues on Grb2, promoting dissociation from the receptor and allowing full activation of downstream signaling. These observations establish a role for Grb2 as an active regulator of RTK signaling.
Collapse
|
10
|
Sethi A, Goldstein B, Gnanakaran S. Quantifying intramolecular binding in multivalent interactions: a structure-based synergistic study on Grb2-Sos1 complex. PLoS Comput Biol 2011; 7:e1002192. [PMID: 22022247 PMCID: PMC3192808 DOI: 10.1371/journal.pcbi.1002192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/27/2011] [Indexed: 01/27/2023] Open
Abstract
Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment.
Collapse
Affiliation(s)
- Anurag Sethi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Byron Goldstein
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
11
|
McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. Arch Biochem Biophys 2009; 494:216-25. [PMID: 20005866 DOI: 10.1016/j.abb.2009.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/28/2022]
Abstract
Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor--a key signaling molecule involved in the activation of Ras GTPase--to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
12
|
McDonald CB, Seldeen KL, Deegan BJ, Farooq A. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. Biochemistry 2009; 48:4074-85. [PMID: 19323566 PMCID: PMC2710136 DOI: 10.1021/bi802291y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.
Collapse
Affiliation(s)
- Caleb B. McDonald
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kenneth L. Seldeen
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Brian J. Deegan
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Amjad Farooq
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
13
|
McDonald CB, Seldeen KL, Deegan BJ, Farooq A. Structural basis of the differential binding of the SH3 domains of Grb2 adaptor to the guanine nucleotide exchange factor Sos1. Arch Biochem Biophys 2008; 479:52-62. [PMID: 18778683 DOI: 10.1016/j.abb.2008.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/04/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the beta-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.
Collapse
Affiliation(s)
- Caleb B McDonald
- Department of Biochemistry & Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | | | | | | |
Collapse
|
14
|
Jacquot Y, Gallo D, Leclercq G. Estrogen receptor alpha--identification by a modeling approach of a potential polyproline II recognizing domain within the AF-2 region of the receptor that would play a role of prime importance in its mechanism of action. J Steroid Biochem Mol Biol 2007; 104:1-10. [PMID: 17258904 DOI: 10.1016/j.jsbmb.2006.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/02/2006] [Indexed: 11/16/2022]
Abstract
Estrogen receptors (ERs) behave not only as ligand-dependent transcriptional factors; they can also trigger non-genomic responses involving mitogen activated protein kinases (MAPKs), reported to be crucial in transduction cascades. MAPKs are partially activated by proteins with domains able to interact with polyproline II (PPII) regions. Recent studies have brought up the direct interaction of PPII-containing proteins with the alpha subtype human ER (ERalpha). Such observations suggest that ERalpha may contain a "PPII recognizing domain" (PRD). By sequence alignment, we identified such a potential PRD within the AF-2 region of ERalpha (residues 351-414). According to our modeling studies based on X-ray structural data, this PRD appears to be divided in two sub-regions known to interact with alpha-helix containing coactivators. Our data also reveal the potential existence of intramolecular interactions of this domain with a large PPII-rich region of the receptor (residues 301-330). Implication of these regulatory structural elements in both genomic and non-genomic responses seems likely.
Collapse
Affiliation(s)
- Yves Jacquot
- Université Pierre et Marie Curie-Paris 6, CNRS, UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, FR 2769, Case courrier 45, 4, place Jussieu, 75005 Paris, France.
| | | | | |
Collapse
|
15
|
Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. J Mol Biol 2006; 365:1517-32. [PMID: 17141806 DOI: 10.1016/j.jmb.2006.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 10/24/2006] [Accepted: 11/03/2006] [Indexed: 12/01/2022]
Abstract
We studied the interaction of hematopoietic cell kinase SH3 domain (HckSH3) with an artificial 12-residue proline-rich peptide PD1 (HSKYPLPPLPSL) identified as high affinity ligand (K(D)=0.2 muM). PD1 shows an unusual ligand sequence for SH3 binding in type I orientation because it lacks the typical basic anchor residue at position P(-3), but instead has a tyrosine residue at this position. A basic lysine residue, however, is present at position P(-4). The solution structure of the HckSH3:PD1 complex, which is the first HckSH3 complex structure available, clearly reveals that the P(-3) tyrosine residue of PD1 does not take the position of the typical anchor residue but rather forms additional van der Waals interactions with the HckSH3 RT loop. Instead, lysine at position P(-4) of PD1 substitutes the function of the P(-3) anchor residue. This finding expands the well known ligand consensus sequence +xxPpxP by +xxxPpxP. Thus, software tools like iSPOT fail to identify PD1 as a high-affinity HckSH3 ligand so far. In addition, a short antiparallel beta-sheet in the RT loop of HckSH3 is observed upon PD1 binding. The structure of the HckSH3:PD1 complex reveals novel features of SH3 ligand binding and yields new insights into the structural basics of SH3-ligand interactions. Consequences for computational prediction tools adressing SH3-ligand interactions as well as the biological relevance of our findings are discussed.
Collapse
Affiliation(s)
- Holger Schmidt
- Forschungszentrum Jülich GmbH, INB, Biomolecular NMR, 52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Teal HE, Ni S, Xu J, Finkelstein LD, Cheng AM, Paulson RF, Feng GS, Correll PH. GRB2-mediated recruitment of GAB2, but not GAB1, to SF-STK supports the expansion of Friend virus-infected erythroid progenitor cells. Oncogene 2005; 25:2433-43. [PMID: 16314834 DOI: 10.1038/sj.onc.1209288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Friend virus induces the development of erythroleukemia in mice through the interaction of a viral glycoprotein, gp55, with a truncated form of the Stk receptor tyrosine kinase, short form-Stk (Sf-Stk), and the EpoR. We have shown previously that the ability of Sf-Stk to participate in the transformation of Friend virus-infected cells requires the kinase activity and Grb2-binding site of Sf-Stk. Here we show that Grb2 heterozygous mice exhibit decreased susceptibility to Friend erythroleukemia and that expansion of erythroid progenitors in response to infection requires the C-terminal SH3 domain of Grb2. A fusion protein in which the Grb2-binding site in Sf-Stk is replaced by Gab2, supports the growth of progenitors from mice lacking Sf-Stk, whereas a Sf-Stk/Gab1 fusion protein does not. Gab2 is expressed in spleens from Friend virus-infected mice, co-immunoprecipitates with Sf-Stk and is tyrosine phosphorylated in the presence of Sf-Stk. Mice with a targeted deletion in Gab2 are less susceptible to Friend erythroleukemia and the expansion of erythroid progenitor cells in response to infection can be rescued by expression of Gab2, but not Gab1. Taken together, these data indicate that a Sf-Stk/Grb2/Gab2 complex mediates the growth of primary erythroid progenitor cells in response to Friend virus.
Collapse
Affiliation(s)
- H E Teal
- Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802-3500, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Riemann RN, Zacharias M. Refinement of protein cores and protein–peptide interfaces using a potential scaling approach. Protein Eng Des Sel 2005; 18:465-76. [PMID: 16155119 DOI: 10.1093/protein/gzi052] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Refinement of side chain conformations in protein model structures and at the interface of predicted protein-protein or protein-peptide complexes is an important step during protein structural modelling and docking. A common approach for side chain prediction is to assume a rigid protein main chain for both docking partners and search for an optimal set of side chain rotamers to optimize the steric fit. However, depending on the target-template similarity in the case of comparative protein modelling and on the accuracy of an initially docked complex, the main chain template structure is only an approximation of a realistic target main chain. An inaccurate rigid main chain conformation can in turn interfere with the prediction of side chain conformations. In the present study, a potential scaling approach (PS-MD) during a molecular dynamics (MD) simulation that also allows the inclusion of explicit solvent has been used to predict side chain conformations on semi-flexible protein main chains. The PS-MD method converges much faster to realistic protein-peptide interface structures or protein core structures than standard MD simulations. Depending on the accuracy of the protein main chain, it also gives significantly better results compared with the standard rotamer search method.
Collapse
Affiliation(s)
- Ralph Nico Riemann
- International University Bremen, School of Engineering and Science, D-28759 Bremen, Germany
| | | |
Collapse
|
18
|
Funke L, Dakoji S, Bredt DS. MEMBRANE-ASSOCIATED GUANYLATE KINASES REGULATE ADHESION AND PLASTICITY AT CELL JUNCTIONS. Annu Rev Biochem 2005; 74:219-45. [PMID: 15952887 DOI: 10.1146/annurev.biochem.74.082803.133339] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue development, differentiation, and physiology require specialized cellular adhesion and signal transduction at sites of cell-cell contact. Scaffolding proteins that tether adhesion molecules, receptors, and intracellular signaling enzymes organize macromolecular protein complexes at cellular junctions to integrate these functions. One family of such scaffolding proteins is the large group of membrane-associated guanylate kinases (MAGUKs). Genetic studies have highlighted critical roles for MAGUK proteins in the development and physiology of numerous tissues from a variety of metazoan organisms. Mutation of Drosophila discs large (dlg) disrupts epithelial septate junctions and causes overgrowth of imaginal discs. Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain. These diverse roles are explained by recent biochemical and structural analyses of MAGUKs, which demonstrate their capacity to assemble well--efined--yet adaptable--protein complexes at cellular junctions.
Collapse
Affiliation(s)
- Lars Funke
- Department of Physiology, University of California at San Francisco, California 94143, USA.
| | | | | |
Collapse
|
19
|
Kaneko T, Kumasaka T, Ganbe T, Sato T, Miyazawa K, Kitamura N, Tanaka N. Structural insight into modest binding of a non-PXXP ligand to the signal transducing adaptor molecule-2 Src homology 3 domain. J Biol Chem 2003; 278:48162-8. [PMID: 13129930 DOI: 10.1074/jbc.m306677200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although some exceptional motifs have been identified, it is well known that the PXXP motif is the motif of ligand proteins generally recognized by the Src homology 3 (SH3) domain. SH3-ligand interactions are usually weak, with ordinary KD approximately 10 microM. The structural basis for a tight and specific association (KD = 0.24 microm) between Gads SH3 and a novel motif, PX(V/I)(D/N)RXXKP, was revealed in a previous structural analysis of the complex formed between them. In this paper, we report the crystal structure of the signal transducing adaptor molecule-2 (STAM2) SH3 domain in complex with a peptide with a novel motif derived from a ligand protein, UBPY. The derived KD value for this complex is 27 microM. The notable difference in affinity for these parallel complexes may be explained because the STAM2 SH3 structure does not provide a specificity pocket for binding, whereas the Gads SH3 structure does. Instead, the structure of STAM2 SH3 is analogous to that of Grb2 SH3 which, in addition to normal PXXP ligands, has also been shown to moderately recognize the novel motif discussed herein. Thus, the extremely tight interaction observed between Gads SH3 and the novel motif is caused not by an innate ability of the novel motif but rather by an evolutionary change in the Gads SH3 domain. Instead, SH3 domains of STAM2 and Grb2 retain the moderate characteristics of recognizing their ligand proteins like other SH3 domains for appropriate transient interactions between signaling molecules.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
21
|
Feller SM, Tuchscherer G, Voss J. High affinity molecules disrupting GRB2 protein complexes as a therapeutic strategy for chronic myelogenous leukaemia. Leuk Lymphoma 2003; 44:411-27. [PMID: 12688310 DOI: 10.1080/1042819021000037930] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chronic myelogenous leukaemia (CML) is one of the most intensively studied human malignancies. It has been the focus of major efforts to develop potent drugs for several decades, but until recently cure rates remained low. A breakthrough in CML therapy was very likely accomplished with the clinical introduction of STI-571 [imatinib mesylate; Gleevec (USA); Glivec (other countries)] in 2000/2001. Despite the hope that STI-571 has generated for many CML patients, development of resistance to this drug is already apparent in some cases, especially if the CML is diagnosed in its later stages. Therefore, novel drugs which can be used alone or in combination with STI-571 are highly desirable. This review briefly summarises the current understanding and therapy of CML and then discusses in more detail basic laboratory research that attempts to target Grb2, an adaptor protein known to directly interact with the Bcr portion of the Bcr-Abl fusion protein. Blocking the binding of Grb2 to the GDP-releasing protein SoS is well known to abrogate the activation of the GTPase Ras, a major driving force of the central mitogenic (MAP kinase) pathway. Additional Grb2 effector proteins may also contribute to the proliferation-inhibiting effects observed upon uncoupling Grb2 from its downstream signalling system. Since Grb2 is a known signal transducer for several major human oncogenes, this approach may have applications for a wider range of human cancers.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Drug Design
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/therapeutic use
- Fatty Acids, Unsaturated/pharmacology
- Forecasting
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Macromolecular Substances
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Protein Binding/drug effects
- Proteins/antagonists & inhibitors
- Proteins/chemistry
- Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Signal Transduction/drug effects
- Son of Sevenless Proteins/physiology
- Structure-Activity Relationship
- Transcription Factors/physiology
- ras Proteins/antagonists & inhibitors
- src Homology Domains
Collapse
Affiliation(s)
- Stephan M Feller
- Cell Signalling Group, Molecular Oncology Laboratory, Cancer Research UK, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. stephan.feller@.cancer.org.uk
| | | | | |
Collapse
|
22
|
Olsen O, Bredt DS. Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J Biol Chem 2003; 278:6873-8. [PMID: 12482754 DOI: 10.1074/jbc.m210165200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane-associated guanylate kinases (MAGUKs) regulate cellular adhesion and signal transduction at sites of cell-cell contact. MAGUKs are composed of modular protein-protein interaction motifs including L27, PDZ, Src homology (SH) 3, and guanylate kinase domains that aggregate adhesion molecules and receptors. Genetic analyses reveal that lethal mutations of MAGUKs often occur in the guanylate kinase domain, indicating a critical role for this domain. Here, we explored whether GMP binding to the guanylate kinase domain regulates MAGUK function. Surprisingly, and in contrast to previously published studies, we failed to detect GMP binding to the MAGUKs postsynaptic density-95 (PSD-95) and CASK. Two amino acid residues in the GMP binding pocket that differ between MAGUKs and authentic guanylate kinase explain this lack of binding, as swapping these residues largely prevent GMP binding to yeast guanylate kinase. Conversely, these mutations restore GMP binding but not catalytic activity to PSD-95. Protein ligands for the PSD-95 guanylate kinase domain, guanylate kinase-associated protein (GKAP) and MAP1A, appear not to interact with the canonical GMP binding pocket, and GMP binding does not influence the intramolecular SH3/guanylate kinase (GK) interaction within PSD-95. These studies indicate that MAGUK proteins have lost affinity for GMP but may have retained the guanylate kinase structure to accommodate a related regulatory ligand.
Collapse
Affiliation(s)
- Olav Olsen
- Department of Physiology and Program in Neuroscience, University of California at San Francisco, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
23
|
Kami K, Takeya R, Sumimoto H, Kohda D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. EMBO J 2002; 21:4268-76. [PMID: 12169629 PMCID: PMC126167 DOI: 10.1093/emboj/cdf428] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The basic function of the Src homology 3 (SH3) domain is considered to be binding to proline-rich sequences containing a PxxP motif. Recently, many SH3 domains, including those from Grb2 and Pex13p, were reported to bind sequences lacking a PxxP motif. We report here that the 22 residue peptide lacking a PxxP motif, derived from p47(phox), binds to the C-terminal SH3 domain from p67(phox). We applied the NMR cross-saturation method to locate the interaction sites for the non-PxxP peptides on their cognate SH3 domains from p67(phox), Grb2 and Pex13p. The binding site of the Grb2 SH3 partially overlapped the conventional PxxP-binding site, whereas those of p67(phox) and Pex13p SH3s are located in different surface regions. The non-PxxP peptide from p47(phox) binds to the p67(phox) SH3 more tightly when it extends to the N-terminus to include a typical PxxP motif, which enabled the structure determination of the complex, to reveal that the non-PxxP peptide segment interacted with the p67(phox) SH3 in a compact helix-turn-helix structure (PDB entry 1K4U).
Collapse
Affiliation(s)
- Keiichiro Kami
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874 and Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding author e-mail:
| | - Ryu Takeya
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874 and Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding author e-mail:
| | - Hideki Sumimoto
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874 and Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding author e-mail:
| | - Daisuke Kohda
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874 and Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Biochemistry and Molecular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Present address: Department of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Corresponding author e-mail:
| |
Collapse
|
24
|
McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell 2001; 8:1291-301. [PMID: 11779504 DOI: 10.1016/s1097-2765(01)00411-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane-associated guanylate kinases (MAGUKs), such as PSD-95, are modular scaffolds that organize signaling complexes at synapses and other cell junctions. MAGUKs contain PDZ domains, which recruit signaling proteins, as well as a Src homology 3 (SH3) and a guanylate kinase-like (GK) domain, implicated in scaffold oligomerization. The crystal structure of the SH3-GK module from PSD-95 reveals that these domains form an integrated unit: the SH3 fold comprises noncontiguous sequence elements divided by a hinge region and the GK domain. These elements compose two subdomains that can assemble in either an intra- or intermolecular fashion to complete the SH3 fold. We propose a model for MAGUK oligomerization in which complementary SH3 subdomains associate by 3D domain swapping. This model provides a possible mechanism for ligand regulation of oligomerization.
Collapse
Affiliation(s)
- A W McGee
- Department of Physiology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
25
|
Vidal M, Gigoux V, Garbay C. SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 2001; 40:175-86. [PMID: 11682324 DOI: 10.1016/s1040-8428(01)00142-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Src homology domains SH2 and SH3 are small modular protein motifs about 100 and 60 amino acids long, respectively. SH2 domains interact with phosphotyrosine residues, whereas SH3 domains recognize proline-rich motifs of their interacting partners. SH2 and SH3 domains are frequently found in signaling proteins such as small adaptors and in enzymes such as kinases, lipases and phosphatases, in which they differ from the catalytic motif and constitute recognition modules. SH2 and SH3 domains are also found in oncoproteins and in proteins overexpressed in deregulated signaling pathways in tumor cells. The highly folded structures of these domains have been characterized alone and complexed with the essential fragments of their targets. Therefore, based on molecular data, inhibitors of interactions with SH2 and SH3 domains are considered to be potential antitumor agents. Current results are very promising, as inhibitors with very efficient anti-proliferative activity in tumor cells have been reported. This paper describes SH2 and/or SH3 domain-containing proteins that may constitute targets for anticancer therapeutics. It also deals with the essential structural data concerning SH2 and SH3 domains, and the rational design of inhibitors. Some of the more recent pharmacological results obtained with these compounds are also discussed.
Collapse
Affiliation(s)
- M Vidal
- Dèpartement de Pharmacochimie Molèculaire et cellulaire, UMR 8638 CNRS UFR des Sciences Pharmaceutiques et Biologiques, Avenue de l'Observatoire, 75270 Cedex 06, Paris, France
| | | | | |
Collapse
|
26
|
Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Src inhibitors: genomics to therapeutics. Expert Opin Investig Drugs 2001; 10:1327-44. [PMID: 11772255 DOI: 10.1517/13543784.10.7.1327] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Following the milestone discoveries that identified Src as the first known protein tyrosine kinase and as a prototype oncogene, as well as Src transgenic studies to validate it as a promising therapeutic target for osteoporosis, intense efforts are being made to create Src inhibitor drugs. Drug discovery strategies focused on both the non-catalytic and catalytic domains of Src have successfully resulted in promising Src inhibitor lead compounds with potential therapeutic applications for osteoporosis, cancer, and other diseases. Some noteworthy examples of Src inhibitors are described, and their chemical diversity, structure-based design, and biological activities in vitro and in vivo are illustrated. The potency, selectivity, and in vivo efficacy of key Src inhibitors are being investigated in molecular, cellular and animal models. Consequently, Src inhibitor drug development is imminent, and current studies are well-poised to achieve the ultimate milestone of a Src inhibitor therapeutic.
Collapse
Affiliation(s)
- T Sawyer
- ARIAD Pharmaceuticals, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
27
|
Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. Novel recognition mode between Vav and Grb2 SH3 domains. EMBO J 2001; 20:2995-3007. [PMID: 11406576 PMCID: PMC150196 DOI: 10.1093/emboj/20.12.2995] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vav is a guanine nucleotide exchange factor for the Rho/Rac family that is expressed exclusively in hematopoietic cells. Growth factor receptor-bound protein 2 (Grb2) has been proposed to play important roles in the membrane localization and activation of Vav through dimerization of its C-terminal Src-homology 3 (SH3) domain (GrbS) and the N-terminal SH3 domain of Vav (VavS). The crystal structure of VavS complexed with GrbS has been solved. VavS is distinct from other SH3 domain proteins in that its binding site for proline-rich peptides is blocked by its own RT loop. One of the ends of the VavS beta-barrel forms a concave hydrophobic surface. The GrbS components make a contiguous complementary interface with the VavS surface. The binding site of GrbS for VavS partially overlaps with the canonical binding site for proline-rich peptides, but is definitely different. Mutations at the interface caused a decrease in the binding affinity of VavS for GrbS by 4- to 40-fold. The structure reveals how GrbS discriminates VavS specifically from other signaling molecules without binding to the proline-rich motif.
Collapse
Affiliation(s)
- Motohiko Nishida
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Koji Nagata
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Yukiko Hachimori
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Masataka Horiuchi
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Kenji Ogura
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Valsan Mandiyan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Joseph Schlessinger
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo 060-0812, CREST, Japan Science and Technology Corporation, Motomachi 4-1-8, Kawaguchi 332-0012, Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-861, Japan and Department of Pharmacology, New York University Medical School, New York, NY 10016, USA Corresponding author e-mail:
| |
Collapse
|
28
|
Lewitzky M, Kardinal C, Gehring NH, Schmidt EK, Konkol B, Eulitz M, Birchmeier W, Schaeper U, Feller SM. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif. Oncogene 2001; 20:1052-62. [PMID: 11314042 DOI: 10.1038/sj.onc.1204202] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Revised: 12/14/2000] [Accepted: 12/19/2000] [Indexed: 11/08/2022]
Abstract
The adapter Grb2 is an important mediator of normal cell proliferation and oncogenic signal transduction events. It consists of a central SH2 domain flanked by two SH3 domains. While the binding specificities of the Grb2 SH2 and N-terminal SH3 domain [Grb2 SH3(N)] have been studied in detail, binding properties of the Grb2 SH3(C) domain remained poorly defined. Gab1, a receptor tyrosine kinase substrate which associates with Grb2 and the c-Met receptor, was previously shown to bind Grb2 via a region which lacks a Grb2 SH3(N)-typical motif (P-x-x-P-x-R). Precipitation experiments with the domains of Grb2 show now that Gab1 can bind stably to the Grb2 SH3(C) domain. For further analyses, Gab1 mutants were generated by PCR to test in vivo residues thought to be crucial for Grb2 SH3(C) binding. The Grb2 SH3(C) binding region of Gab1 has significant homology to a region of the adapter protein SLP-76. Peptides corresponding to epitopes SLP-76, Gab1, SoS and other proteins with related sequences, as well as mutant peptides were synthesized and analysed by tryptophan-fluorescence spectrometry and by in vitro competition experiments. These experiments define a 13 amino acid sequence with the unusual consensus motif P-x-x-x-R-x-x-K-P as required for a stable binding to the SH3(C) domain of Grb2. Additional analyses point to a distinct binding specificity of the Grb2-homologous adapter protein Mona (Gads), indicating that the proteins of the Grb2 adapter family may have partially overlapping, yet distinct protein binding properties.
Collapse
Affiliation(s)
- M Lewitzky
- Laboratory of Molecular Oncology, MSZ, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yuzawa S, Yokochi M, Hatanaka H, Ogura K, Kataoka M, Miura K, Mandiyan V, Schlessinger J, Inagaki F. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J Mol Biol 2001; 306:527-37. [PMID: 11178911 DOI: 10.1006/jmbi.2000.4396] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grb2 is an adaptor protein composed of a single SH2 domain flanked by two SH3 domains. Grb2 functions as an important evolutionary conserved link between a variety of cell membrane receptors and the Ras/MAP kinase-signaling cascade. Here, we describe the solution structure of Grb2 as revealed by NMR and small angle X-ray scattering measurements. We demonstrate that Grb2 is a flexible protein in which the C-terminal SH3 domain is connected to the SH2 domain via a flexible linker. This is in contrast to the previously described Grb2 crystal structure, which showed a compact structure with intramolecular contact between two SH3 domains. Binding experiments on Grb2 and peptides containing two different proline-rich sequences indicate that Grb2 adapts the relative position and orientation of the two SH3 domains to bind bivalently to the target peptide sequences.
Collapse
Affiliation(s)
- S Yuzawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Anarchic cell proliferation, observed in some leukemia and in breast and ovarian cancers, has been related to dysfunctioning of cytoplasmic or receptor tyrosine kinase activities coupled to p21 Ras. The growth factor receptor-bound protein 2 (Grb2) adaptor when complexed with Sos (Son of sevenless), the exchange factor of Ras, conveys the signal induced by tyrosine kinase-activated receptor to Ras by recruiting Sos to the membrane, allowing activation of Ras. This review shows how it is possible to stop the Ras-deregulated signaling pathway to obtain potential antitumor agents. Grb2 protein is comprised of one SH2 surrounded by two SH3 domains and interacts by means of its Src homology (SH2) domain with phosphotyrosine residues of target proteins such as the epidermal growth factor (EGF) receptor or the Shc adaptor. By means of its SH3 domains, Grb2 recognizes proline-rich sequences of Sos, leading to Ras activation. Inhibitors of SH2 and SH3 domains were designed with the aim of interrupting Grb2 recognition. On the one hand, using structural data and molecular modeling, peptide dimers or "peptidimers", made up of two proline-rich sequences from Sos linked by an optimized spacer, were developed. On the other, using the structure of the Grb2 SH2 domain complexed with a phosphotyrosine (pTyr)-containing peptide and molecular modeling studies, a series of N-protected tripeptides containing two phosphotyrosine or mimetic residues, with one pTyr sterically constrained, were devised. These compounds show very high affinities for Grb2 in vitro. They have been targeted into cells showing selective antiproliferative activity on tumor cells. These results suggest that inhibiting SH2 or SH3 domains of signaling proteins might provide antitumor agents.
Collapse
Affiliation(s)
- C Garbay
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, UMR 8600 CNRS, UFR des Sciences Pharmaceutiques et Biologiques, 75270 Paris Cedex 06, France.
| | | | | | | |
Collapse
|
31
|
Carlier MF, Nioche P, Broutin-L'Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem 2000; 275:21946-52. [PMID: 10781580 DOI: 10.1074/jbc.m000687200] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Wiskott-Aldrich Syndrome protein (WASp) family connect signaling pathways to the actin polymerization-driven cell motility. The ubiquitous homolog of WASp, N-WASp, is a multidomain protein that interacts with the Arp2/3 complex and G-actin via its C-terminal WA domain to stimulate actin polymerization. The activity of N-WASp is enhanced by the binding of effectors like Cdc42-guanosine 5'-3-O-(thio)triphosphate, phosphatidylinositol bisphosphate, or the Shigella IcsA protein. Here we show that the SH3-SH2-SH3 adaptor Grb2 is another activator of N-WASp that stimulates actin polymerization by increasing the amount of N-WASp. Arp2/3 complex. The concentration dependence of N-WASp activity, sedimentation velocity and cross-linking experiments together suggest that N-WASp is subject to self-association, and Grb2 enhances N-WASp activity by binding preferentially to its active monomeric form. Use of peptide inhibitors, mutated Grb2, and isolated SH3 domains demonstrate that the effect of Grb2 is mediated by the interaction of its C-terminal SH3 domain with the proline-rich region of N-WASp. Cdc42 and Grb2 bind simultaneously to N-WASp and enhance actin polymerization synergistically. Grb2 shortens the delay preceding the onset of Escherichia coli (IcsA) actin-based reconstituted movement. These results suggest that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway.
Collapse
Affiliation(s)
- M F Carlier
- Dynamique du Cytosquelette, Cristallographie et RMN Biologiques, Laboratoire d'Enzymologie et Biochimie Structurale, CNRS 91198 Gif-sur-Yvette, Paris, France. Pasteur,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The ligand binding preferences, structural features, and biological function of SH3 (Src homology 3) domains are discussed. SH3 domains bind "core" Pro-rich peptide ligands (7-9 amino acids in length) in a polyproline II helical conformation in a highly conserved aromatic rich patch on the protein surface (approximately 390 A2). The ligands can interact with the protein in one of two orientations, depending on the position (N- vs C-terminal) of ligand residues binding to the SH3 selectivity pocket. Core SH3 ligands are characterized by relatively weak interactions (KD = 5-100 microM) that show little binding selectivity within SH3 families. Higher affinity, more selective contiguous ligands require additional flanking residues that bind to less conserved portions of the SH3 surface, with corresponding increase in ligand size and complexity. In contrast to peptide ligands, protein ligands of SH3 domains can exploit multiple discontiguous interactions to enhance affinity and selectivity. A protein-SH3 interaction that utilizes unique interactions may permit the design of small high affinity SH3 ligands. At present, the extended nature of the binding site and homologous nature of the core binding region among SH3 domains present key challenges for structure-based drug design.
Collapse
Affiliation(s)
- D C Dalgarno
- ARIAD Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
33
|
Lee WL, Ostap EM, Zot HG, Pollard TD. Organization and ligand binding properties of the tail of Acanthamoeba myosin-IA. Identification of an actin-binding site in the basic (tail homology-1) domain. J Biol Chem 1999; 274:35159-71. [PMID: 10574999 DOI: 10.1074/jbc.274.49.35159] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Acanthamoeba myosin-IA heavy chain gene encodes a 134-kDa protein with a catalytic domain, three potential light chain binding sites, and a tail with separately folded tail homology (TH) -1, -2, and -3 domains. TH-1 is highly resistant to trypsin digestion despite consisting of 15% lysine and arginine. TH-2/3 is resistant to alpha-chymotrypsin digestion. The peptide link between TH-1 and TH-2/3 is cleaved by trypsin, alpha-chymotrypsin, and endo-AspN but not V8 protease. The CD spectra of TH-2/3 indicate predominantly random structure, turns, and beta-strands but no alpha-helix. The hydrodynamic properties of TH-2/3 (Stokes' radius of 3.0 nm, sedimentation coefficient of 1.8 S, and molecular mass of 21.6 kDa) indicate that these domains are as long as the whole myosin-I tail in reconstructions of electron micrographs. Furthermore, separately expressed and purified TH-1 binds with high affinity to TH-2/3. Thus we propose that TH-1 and TH-2/3 are arranged side by side in the myosin-IA tail. Separate TH-1, TH-2, and TH-2/3 each binds muscle actin filaments with high affinity. Salt inhibits TH-2/3 binding to muscle actin but not amoeba actin filaments. TH-1 enhances binding of TH-2/3 to muscle actin filaments at physiological salt concentration, indicating that TH-1 and TH-2/3 cooperate in actin binding. An intrinsic fluorescence assay shows that TH-2/3 also binds with high affinity to the protein Acan125 similar to the SH3 domain of myosin-IC. Phylogenetic analysis of SH3 sequences suggests that myosin-I acquired SH3 domain after the divergence of the genes for myosin-I isoforms.
Collapse
Affiliation(s)
- W L Lee
- BCMB Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
34
|
Boerth NJ, Koretzky GA. Adapter molecules in T cell receptor signaling. Inflamm Bowel Dis 1999; 5:107-18. [PMID: 10338380 DOI: 10.1097/00054725-199905000-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- N J Boerth
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
35
|
Filimonov VV, Azuaga AI, Viguera AR, Serrano L, Mateo PL. A thermodynamic analysis of a family of small globular proteins: SH3 domains. Biophys Chem 1999; 77:195-208. [PMID: 10326252 DOI: 10.1016/s0301-4622(99)00025-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The stability and folding thermodynamics of two SH3-domains, belonging to Fyn and Abl proteins, have been studied by scanning calorimetry and urea-induced unfolding. They undergo an essentially two-state unfolding with parameters similar to those of the previously studied alpha-spectrin SH3 domain. The correlations between the thermodynamic parameters (heat capacity increment, delta Cp,U, the proportionality factor, m, and the Gibbs energy, delta Gw298) of unfolding and some integral structural parameters, such as polar and non-polar areas exposed upon domain denaturation, have been analyzed. The experimental data on delta Cp,U and the m-factor of the linear extrapolation model (LEM) obey the simple empirical correlations deduced elsewhere. The Gibbs energies calculated from the DSC data were compared with those found by fitting urea-unfolding curves to the LEM and the denaturant-binding model (DBM). The delta Gw298 values found with DBM correlate better with the DSC data, while those obtained with LEM are systematically smaller. The systematic difference between the parameters calculated with LEM and DBM are explained by an inherent imperfection of the LEM.
Collapse
Affiliation(s)
- V V Filimonov
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Spain
| | | | | | | | | |
Collapse
|
36
|
Cussac D, Vidal M, Leprince C, Liu WQ, Cornille F, Tiraboschi G, Roques BP, Garbay C. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. FASEB J 1999; 13:31-8. [PMID: 9872927 DOI: 10.1096/fasebj.13.1.31] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the aim of interrupting the growth factor-stimulated Ras signaling pathway at the level of the Grb2-Sos interaction, a peptidimer, made of two identical proline-rich sequences from Sos linked by a lysine spacer, was designed using structural data from Grb2 and a proline-rich peptide complexed with its SH3 domains. The peptidimer affinity for Grb2 is 40 nM whereas that of the monomer is 16 microM, supporting the dual recognition of both Grb2 SH3 domains by the dimer. At 50 nM, the peptidimer blocks selectively Grb2-Sos complexation in ER 22 (CCL 39 fibroblasts overexpressing epidermal growth factor receptor) cellular extracts. The peptidimer specifically recognizes Grb2 and does not interact with PI3K or Nck, two SH3 domain-containing adaptors. The peptidimer was modified to enter cells by coupling to a fragment of Antennapedia homeodomain. At 10 microM, the conjugate inhibits the Grb2-Sos interaction (100%) and MAP kinase (ERK1 and ERK2) phosphorylation (60%) without modifying cellular growth of ER 22 cells. At the same concentration, the conjugate also inhibits both MAP kinase activation induced by nerve growth factor or epidermal growth factor in PC12 cells, and differentiation triggered by nerve growth factor. Finally, when tested for its antiproliferative activity, the conjugate was an efficient inhibitor of the colony formation of transformed NIH3T3/HER2 cells grown in soft agar, with an IC50 of around 1 microM. Thus, the designed peptidimers appear to be interesting leads to investigate signaling and intracellular processes and for designing selective inhibitors of tumorigenic Ras-dependent processes.
Collapse
Affiliation(s)
- D Cussac
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS UMR 8600, UFR des Sciences Pharmaceutiques et Biologiques, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. J Mol Biol 1998; 278:253-65. [PMID: 9571048 DOI: 10.1006/jmbi.1998.1690] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SH3 domains are protein binding domains that occur widely among signal transduction proteins. Here, we present the NMR-determined solution structure of the SH3 domain from the cytoplasmic protein tyrosine kinase, Hck. Hck is involved in a number of cell signal transduction pathways, frequently in pathways associated with immune response. SH3 domains bind proteins via a left-handed polyproline type II helix on the target protein. We have assessed the structural impact of binding to a ligand through addition of a peptide corresponding to a proline-rich region of a Hck target, the GTPase activating protein of the Ras pathway. Ligand binding effects small structural changes and stabilizes the SH3 domain structure. Also, we have compared the solution structure of the Hck SH3 domain to the crystal structure of Hck, in which the SH3 domain exhibits an intramolecular binding to an interdomain linker region. These structures are interpreted as the apo- and holo- forms of the Hck SH3 domain.
Collapse
Affiliation(s)
- D A Horita
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD, 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Avbelj F, Fele L. Prediction of the three-dimensional structure of proteins using the electrostatic screening model and hierarchic condensation. Proteins 1998; 31:74-96. [PMID: 9552160 DOI: 10.1002/(sici)1097-0134(19980401)31:1<74::aid-prot7>3.0.co;2-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe a method for predicting the three-dimensional (3-D) structure of proteins from their sequence alone. The method is based on the electrostatic screening model for the stability of the protein main-chain conformation. The free energy of a protein as a function of its conformation is obtained from the potentials of mean force analysis of high-resolution x-ray protein structures. The free energy function is simple and contains only 44 fitted coefficients. The minimization of the free energy is performed by the torsion space Monte Carlo procedure using the concept of hierarchic condensation. The Monte Carlo minimization procedure is applied to predict the secondary, super-secondary, and native 3-D structures of 12 proteins with 28-110 amino acids. The 3-D structures of the majority of local secondary and super-secondary structures are predicted accurately. This result suggests that control in forming the native-like local structure is distributed along the entire protein sequence. The native 3-D structure is predicted correctly for 3 of 12 proteins composed mainly from the alpha-helices. The method fails to predict the native 3-D structure of proteins with a predominantly beta secondary structure. We suggest that the hierarchic condensation is not an appropriate procedure for simulating the folding of proteins made up primarily from beta-strands. The method has been proved accurate in predicting the local secondary and super-secondary structures in the blind ab initio 3-D prediction experiment.
Collapse
Affiliation(s)
- F Avbelj
- National Institute of Chemistry, Ljubljana, Slovenia.
| | | |
Collapse
|
39
|
Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. SH3 in muscles: solution structure of the SH3 domain from nebulin. J Mol Biol 1998; 276:189-202. [PMID: 9514727 DOI: 10.1006/jmbi.1997.1521] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The huge modular protein nebulin is located in the thin filament of striated muscle in vertebrates and is thought to bind and stabilize F-actin. The C-terminal part of human nebulin is anchored in the sarcomeric Z-disk and contains an SH3 domain, the first of such motifs to be identified in a myofibrillar protein. We have determined the nebulin SH3 sequence from several species and found it strikingly conserved. We have also shown that the SH3 transcripts are constitutively expressed in skeletal muscle tissues. As the first step towards a molecular understanding of nebulin's cellular role we have determined the three-dimensional structure of the human nebulin SH3 domain in solution by nuclear magnetic resonance (NMR) spectroscopy and compared it with other known SH3 structures. The nebulin SH3 domain has a well-defined structure in solution with a typical SH3 topology, consisting of a beta-sandwich of two triple-stranded, antiparallel beta-sheets arranged at right angles to each other and of a single turn of a 310-helix. An additional double-stranded antiparallel beta-sheet in the RT loop bends over the beta-sandwich. The derived structure reveals a remarkable similarity with a distinct subset of SH3 domains, especially in the structural features of the exposed hydrophobic patch that is thought to be the site of interaction with polyproline ligands. On the basis of this similarity, we have modelled the interaction with an appropriate polyproline ligand and attempted to delineate the characteristics of the physiological SH3-binding partner in the Z-disk. Our results represent the first step in reconstructing the structure of nebulin and are expected to contribute to our understanding of nebulin's functional role in myofibrillar assembly.
Collapse
Affiliation(s)
- A S Politou
- Chemistry Department University of Crete, Heraklion, Greece
| | | | | | | | | |
Collapse
|
40
|
Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Proteins 1997; 29:545-52. [PMID: 9408950 DOI: 10.1002/(sici)1097-0134(199712)29:4<545::aid-prot13>3.0.co;2-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B-cell differentiation; this incapacitates antibody production in XLA patients, who suffer from recurrent, sometimes lethal, bacterial infections. BTK plays an important role in B-cell development; it interacts with several proteins in the context of signal transduction. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in a patient family. To understand the role of BTK, we studied binding of BTK SH3 domain (aa 216-273, 58 residues) and truncated SH3 domain (216-259, 44 residues) with proline-rich peptides; the first peptide constitutes the SH3 domain of BTK, while the latter peptide lacks 14 amino acid residues of the C terminal. Proline-rich peptides selected from TH domain of BTK and p120cbl were studied. It is known that BTK TH domain binds to SH3 domains of various proteins. We found that BTK SH3 domain binds to peptides of BTK TH domain. This suggests that BTK SH3 and TH domains may associate in inter- or intramolecular fashion, which raises the possibility that the kinase may be regulating its own activity by restricting the availability of both its ligand-binding modules. We also found that truncated SH3 domain binds to BTK TH domain peptide less avidly than does normal SH3 domain. Also, we show that the SH3 and truncated SH3 domains bind to peptide of p120cbl, but the latter domain binds weakly. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context, hence the weaker binding. These results delineate the importance of C-terminal in binding of SH3 domains and indicate also that improper folding and the altered binding behavior of mutant BTK SH3 domain likely leads to XLA.
Collapse
Affiliation(s)
- H V Patel
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. The SH3 domain of Eps8 exists as a novel intertwined dimer. NATURE STRUCTURAL BIOLOGY 1997; 4:739-43. [PMID: 9303002 DOI: 10.1038/nsb0997-739] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SH3 domains are structurally well-characterized as monomeric modular units of protein structure that mediate protein-protein recognition in numerous signal transduction proteins. The X-ray crystallographic structure of the Eps8 SH3 domain reveals a novel variation of the canonical SH3 fold: the SH3 domain from Eps8 is a dimer formed by strand interchange. In addition, co-immunoprecipitation experiments show that intact Eps8 is multimeric in vivo. Hence, the SH3 domain of Eps8 may represent a dimerization motif.
Collapse
Affiliation(s)
- K V Kishan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
42
|
Hatanaka H, Tanimura R, Katoh S, Inagaki F. Solution structure of ferredoxin from the thermophilic cyanobacterium Synechococcus elongatus and its thermostability. J Mol Biol 1997; 268:922-33. [PMID: 9180381 DOI: 10.1006/jmbi.1997.1001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The three-dimensional structure of ferredoxin, purified from the thermophilic cyanobacterium Synechococcus elongatus, was determined in aqueous solution by two-dimensional proton nuclear magnetic resonance. In addition to the 946 distance constraints from nuclear Overhauser effect connectivities, we added 241 distance constraints derived from the crystal structure of Spirulina platensis ferredoxin to the 19 residues close to the [2Fe-2S] iron-sulfur center, where crosspeaks disappeared due to paramagnetic effects. The atomic root-mean-square difference of the ten converged structures from the mean structure was 0.61(+/-0.12) A for backbone atoms (N, C(alpha), C'). The main-chain structure was almost the same as the crystal structures of other mesophile ferredoxins, but comparison of the side-chain structures revealed an extension of the hydrophobic core, a unique hydrophobic patch on the surface of the large beta-sheet, and two unique charge networks in this thermostable ferredoxin structure, some of which might contribute to thermostability.
Collapse
Affiliation(s)
- H Hatanaka
- Department of Molecular Physiology, The Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
43
|
Gready JE, Ranganathan S, Schofield PR, Matsuo Y, Nishikawa K. Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site. Protein Sci 1997; 6:983-98. [PMID: 9144769 PMCID: PMC2143702 DOI: 10.1002/pro.5560060504] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fast synaptic neurotransmission is mediated by ligand-gated ion-channel (LGIC) receptors, which include receptors for acetylcholine, serotonin, GABA, glycine, and glutamate. LGICs are pentamers with extracellular ligand-binding domains and form integral membrane ion channels that are selective for cations (acetylcholine and serotonin 5HT3 receptors) or anions (GABAA and glycine receptors and the invertebrate glutamate-binding chloride channel). They form a protein superfamily with no sequence similarity to any protein of known structure. Using a 1D-3D structure mapping approach, we have modeled the extracellular ligand-binding domain based on a significant match with the SH2 and SH3 domains of the biotin repressor structure. Refinement of the model based on knowledge of the large family of SH2 and SH3 structures, sequence alignments, and use of structure templates for loop building, allows the prediction of both monomer and pentamer models. These are consistent with medium-resolution electron microscopy structures and with experimental structure/function data from ligand-binding, antibody-binding, mutagenesis, protein-labeling and subunit-linking studies, and glycosylation sites. Also, the predicted polarity of the channel pore calculated from electrostatic potential maps of pentamer models of superfamily members is consistent with known ion selectivities. Using the glycine receptor alpha 1 subunit, which forms homopentamers, the monomeric and pentameric models define the agonist and antagonist (strychnine) binding sites to a deep crevice formed by an extended loop, which includes the invariant disulfide bridge, between the SH2 and SH3 domains. A detailed binding site for strychnine is reported that is in strong agreement with known structure/function data. A site for interaction of the extracellular ligand-binding domain with the activation of the M2 transmembrane helix is also suggested.
Collapse
Affiliation(s)
- J E Gready
- Computational Molecular Biology and Drug Design Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | |
Collapse
|
44
|
Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. J Mol Biol 1997; 267:933-52. [PMID: 9135122 DOI: 10.1006/jmbi.1996.0886] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Refined ensembles of solution structures have been calculated for the N-terminal SH3 domain of Grb2 (N-SH3) complexed with the ac-VPPPVPPRRR-nh2 peptide derived from residues 1135 to 1144 of the mouse SOS-1 sequence. NMR spectra obtained from different combinations of both 13C-15N-labeled and unlabeled N-SH3 and SOS peptide fragment were used to obtain stereo-assignments for pro-chiral groups of the peptide, angle restraints via heteronuclear coupling constants, and complete 1H, 13C, and 15N resonance assignments for both molecules. One ensemble of structures was calculated using conventional methods while a second ensemble was generated by including additional direct refinements against both 1H and 13C(alpha)/13C(beta) chemical shifts. In both ensembles, the protein:peptide interface is highly resolved, reflecting the inclusion of 110 inter-molecular nuclear Overhauser enhancement (NOE) distance restraints. The first and second peptide-binding sub-sites of N-SH3 interact with structurally well-defined portions of the peptide. These interactions include hydrogen bonds and extensive hydrophobic contacts. In the third highly acidic sub-site, the conformation of the peptide Arg8 side-chain is partially ordered by a set of NOE restraints to the Trp36 ring protons. Overall, several lines of evidence point to dynamical averaging of peptide and N-SH3 side-chain conformations in the third subsite. These conformations are characterized by transient charge stabilized hydrogen bond interactions between the peptide arginine side-chain hydrogen bond donors and either single, or possibly multiple, acceptor(s) in the third peptide-binding sub-site.
Collapse
Affiliation(s)
- M Wittekind
- Macromolecular NMR Department, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Trüb T, Frantz JD, Miyazaki M, Band H, Shoelson SE. The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J Biol Chem 1997; 272:894-902. [PMID: 8995379 DOI: 10.1074/jbc.272.2.894] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.
Collapse
Affiliation(s)
- T Trüb
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Bruton's tyrosine kinase (BTK) plays an important role in B cell development. Deletion of C-terminal 14 amino acids of the SH3 domain of BTK results in X-linked agammaglobulinemia (XLA), an inherited disease. We report here on the stability and folding of SH3 domain of BTK. Peptides corresponding to residues 216-273 (58 residues) and 216-259 (44 residues) of BTK SH3 domain were synthesized by solid phase methods; the first peptide constitutes the entire SH3 domain of BTK while the latter peptide lacks 14 amino acid residues of the C-terminal. The 58 amino acid peptide forms mainly a beta-barrel type folding unit. Although small and lacking disulfide bonds, this peptide is extremely stable to thermal denaturation. Based on circular dichroism measurements, its melting temperature was found to be high, 82 degrees C at pH 6.0. However, the Gibbs free energy (delta GH2O) of the intrinsic stability and thermodynamic spontaneity of unfolding were found to be low, 2.6 kcal/mol by Gdn.HCl denaturation experiments, as compared to 12 kcal/mol obtained for larger single domain proteins, indicating poor stability of SH3 domain. Addition of 500 mM of Na2SO4 increased the free energy change delta GH2O to 4.0 kcal/mol, suggesting an ionic strength effect. The truncated peptide fails to fold correctly and adopts random coil conformation in contrast to 58 amino acid beta-barrel peptide, which exhibits high thermal stability but normal or low stability at ambient temperature. These results, to our knowledge the first to delineate the importance of C-terminal in structural integrity of SH3 domains, indicate also that improper folding and/or poor stability of mutant SH3 domain in BTK likely causes XLA.
Collapse
Affiliation(s)
- Y J Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Hatanaka H, Ogura K, Moriyama K, Ichikawa S, Yahara I, Inagaki F. Tertiary structure of destrin and structural similarity between two actin-regulating protein families. Cell 1996; 85:1047-55. [PMID: 8674111 DOI: 10.1016/s0092-8674(00)81305-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Destrin is an isoprotein of cofilin that regulates actin cytoskeleton in various eukaryotes. We determined the tertiary structure of destrin by triple-resonance multidimensional nuclear magnetic resonance. In spite of there being no significant amino acid sequence homology, we found that the folding of destrin was strikingly similar to that of repeated segments in the gelsolin family, which resulted in a new protein fold group. Sequential dissimilarity of the actin-binding helix of destrin to that of gelsolin explains the Ca2+-independent actin-binding of destrin. Possible mechanisms of phosphorylation-sensitive phosphoinositide-competitive actin binding, of pH-dependent filament severing, and of nuclear translocation with actin in response to stresses, are discussed on the basis of the tertiary structure.
Collapse
Affiliation(s)
- H Hatanaka
- Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Solution structure and peptide binding of the SH3 domain from human Fyn. Structure 1996; 4:705-14. [PMID: 8805554 DOI: 10.1016/s0969-2126(96)00076-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Src family of tyrosine kinases is involved in the propagation of intracellular signals from many transmembrane receptors. Each member of the family contains two domains that regulate interactions with other molecules, one of which is the Src homology 3 (SH3) domain. Although structures have previously been determined for SH3 domains, and ideas about peptide-binding modes have been proposed, their physiological role is still unclear. RESULTS We have determined the solution structure of the SH3 domain from the Src family tyrosine kinase Fyn in two forms: unbound and complexed with a peptide corresponding to a putative ligand sequence from phosphatidylinositol 3' kinase. Fyn SH3 shows the typical SH3 topology of two perpendicular three-stranded beta sheets and a single turn of 3(10) helix. The interaction of SH3 with three potential ligand peptides was investigated, demonstrating that they all bind to the same site on the molecule. A previous model for ligand binding to SH3 domains predicts binding in one of two orientations (class I or II), each characterized by a consensus sequence. The ligand with the closest match to the class I consensus sequence bound with highest affinity and in the predicted orientation. CONCLUSIONS The Fyn SH3 domain has a well-defined structure in solution. The relative binding affinities of the three ligand peptides and their orientation within the Fyn SH3 complex were consistent with recently proposed models for the binding of 'consensus' polyproline sequences. Although the affinities of consensus and non-consensus peptides are different, the degree of difference is not very large, suggesting that SH3 domains bind to polyproline peptides in a promiscuous manner.
Collapse
Affiliation(s)
- C J Morton
- Oxford Centre for Molecular Sciences, UK
| | | | | | | | | | | |
Collapse
|
49
|
Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T. Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins. J Biol Chem 1996; 271:14468-72. [PMID: 8662907 DOI: 10.1074/jbc.271.24.14468] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CRK is a human homolog of chichen v-Crk, which is an adaptor protein. The SH2 domain of CRK binds to several tyrosine-phosphorylated proteins, including the epidermal growth factor receptor, p130(Cas), Shc, and paxillin. The SH3 domain, in turn, binds to cytosolic proteins of 135-145, 160, 180, and 220 kDa. We screened expression libraries by Far Western blotting, using CRK SH3 as a probe, and identified partial cDNA sequences of four distinct proteins, including C3G, DOCK180, EPS15, and clone ST12. The consensus sequence of the CRK SH3 binding sites as deduced from their amino acid sequences was Pro+3-Pro+2-X+1-Leu0-Pro-1-X-2-Lys-3. The interaction of the CRK SH3 domain with the DOCK180 peptide was examined with an optical biosensor, based on the principles of surface plasmon resonance. A low dissociation constant of the order of 10(-7) resulted from a high association rate constant (kassoc = 3 x 10(4)) and low dissociation rate constant (kdiss = 3 x 10(-3)). All CRK-binding proteins except clone ST12 also bound to another adaptor protein, Grb2. Mutational analysis revealed that glycine at position +1 of ST12 inhibited the binding to Grb2 while retaining the high affinity binding to CRK SH3. The result suggests that the amino acid at position +1 also contributes to the high affinity binding of the peptides to the SH3 domain of Grb2, but not to that of CRK.
Collapse
Affiliation(s)
- M Matsuda
- Department of Pathology, National Institute of Health, Toyama, Shinjuku-ku, Tokyo 162, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Guilloteau JP, Fromage N, Ries-Kautt M, Reboul S, Bocquet D, Dubois H, Faucher D, Colonna C, Ducruix A, Becquart J. Purification, stabilization, and crystallization of a modular protein: Grb2. Proteins 1996; 25:112-9. [PMID: 8727323 DOI: 10.1002/(sici)1097-0134(199605)25:1<112::aid-prot9>3.0.co;2-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report here the purification and the crystallization of the modular protein Grb2. The protein was expressed as a fusion with glutathione-S-transferase and purified by affinity chromatography on glutathione agarose. It was apparent from reverse phase chromatography that the purified protein was conformationally unstable. Instability was overcome by the addition of 100 mM arginine to the buffers. Because Grb2 appeared to be extremely sensitive to oxidation, crystallization experiments were performed with a dialysis button technique involving daily addition of fresh DTT to the reservoirs. The presence of 8 to 14% glycerol was necessary to obtain monocrystals. These results are discussed in relation with the modular nature of Grb2.
Collapse
Affiliation(s)
- J P Guilloteau
- Service de Biochimie, Rhône-Poulenc Rorer SA, Vitry/Seine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|