1
|
An Improved αvβ6-Receptor-Expressing Suspension Cell Line for Foot-and-Mouth Disease Vaccine Production. Viruses 2022; 14:v14030621. [PMID: 35337028 PMCID: PMC8951101 DOI: 10.3390/v14030621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Foot-and-mouth disease (FMD) is endemic in large parts of sub-Saharan Africa, Asia and South America, where outbreaks in cloven-hooved livestock threaten food security and have severe economic impacts. Vaccination in endemic regions remains the most effective control strategy. Current FMD vaccines are produced from chemically inactivated foot-and-mouth disease virus (FMDV) grown in suspension cultures of baby hamster kidney 21 cells (BHK-21). Strain diversity means vaccines produced from one subtype may not fully protect against circulating disparate subtypes, necessitating the development of new vaccine strains that "antigenically match". However, some viruses have proven difficult to adapt to cell culture, slowing the manufacturing process, reducing vaccine yield and limiting the availability of effective vaccines, as well as potentiating the selection of undesired antigenic changes. To circumvent the need to cell culture adapt FMDV, we have used a systematic approach to develop recombinant suspension BHK-21 that stably express the key FMDV receptor integrin αvβ6. We show that αvβ6 expression is retained at consistently high levels as a mixed cell population and as a clonal cell line. Following exposure to field strains of FMDV, these recombinant BHK-21 facilitated higher virus yields compared to both parental and control BHK-21, whilst demonstrating comparable growth kinetics. The presented data supports the application of these recombinant αvβ6-expressing BHK-21 in future FMD vaccine production.
Collapse
|
2
|
Tahir S, Bourquard T, Musnier A, Jullian Y, Corde Y, Omahdi Z, Mathias L, Reiter E, Crépieux P, Bruneau G, Poupon A. Accurate determination of epitope for antibodies with unknown 3D structures. MAbs 2021; 13:1961349. [PMID: 34432559 PMCID: PMC8405158 DOI: 10.1080/19420862.2021.1961349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MAbTope is a docking-based method for the determination of epitopes. It has been used to successfully determine the epitopes of antibodies with known 3D structures. However, during the antibody discovery process, this structural information is rarely available. Although we already have evidence that homology models of antibodies could be used instead of their 3D structure, the choice of the template, the methodology for homology modeling and the resulting performance still have to be clarified. Here, we show that MAbTope has the same performance when working with homology models of the antibodies as compared to crystallographic structures. Moreover, we show that even low-quality models can be used. We applied MAbTope to determine the epitope of dupilumab, an anti- interleukin 4 receptor alpha subunit therapeutic antibody of unknown 3D structure, that we validated experimentally. Finally, we show how the MAbTope-determined epitopes for a series of antibodies targeting the same protein can be used to predict competitions, and demonstrate the accuracy with an experimentally validated example. 3D: three-dimensionalRMSD: root mean square deviationCDR: complementary-determining regionCPU: central processing unitsVH: heavy chain variable regionVL: light chain variable regionscFv: single-chain variable fragmentsVHH: single-chain antibody variable regionIL4Rα: Interleukin 4 receptor alpha chainSPR: surface plasmon resonancePDB: protein data bankHEK293: Human embryonic kidney 293 cellsEDTA: Ethylenediaminetetraacetic acidFBS: Fetal bovine serumANOVA: Analysis of varianceEGFR: Epidermal growth factor receptorPE: PhycoerythrinAPC: AllophycocyaninFSC: forward scatterSSC: side scatterWT: wild type Keywords: MAbTope, Epitope Mapping, Molecular docking, Antibody modeling, Antibody-antigen docking
Collapse
Affiliation(s)
- Shifa Tahir
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France
| | - Thomas Bourquard
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,MAbSilico SAS, 1 Impasse Du Palais
| | - Astrid Musnier
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,MAbSilico SAS, 1 Impasse Du Palais
| | - Yann Jullian
- MAbSilico SAS, 1 Impasse Du Palais.,CaSciModOT, UFR De Sciences Et Techniques, Université De Tours
| | | | | | | | - Eric Reiter
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,France Inria, Inria Saclay-Île-de-France, Palaiseau, France.,Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Pascale Crépieux
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,France Inria, Inria Saclay-Île-de-France, Palaiseau, France.,Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | - Anne Poupon
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,MAbSilico SAS, 1 Impasse Du Palais.,France Inria, Inria Saclay-Île-de-France, Palaiseau, France.,Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| |
Collapse
|
3
|
Novel Capsid-Specific Single-Domain Antibodies with Broad Foot-and-Mouth Disease Strain Recognition Reveal Differences in Antigenicity of Virions, Empty Capsids, and Virus-Like Particles. Vaccines (Basel) 2021; 9:vaccines9060620. [PMID: 34201329 PMCID: PMC8227720 DOI: 10.3390/vaccines9060620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 01/03/2023] Open
Abstract
Foot-and-mouth disease (FMD) vaccine efficacy is mainly determined by the content of intact virions (146S) and empty capsids (75S). Both particles may dissociate into 12S subunits upon vaccine manufacturing, formulation, and storage, reducing vaccine potency. We report the isolation of capsid-specific llama single-domain antibodies (VHHs) with broad strain recognition that can be used to quantify intact capsids in FMD vaccines by double antibody sandwich (DAS) ELISA. One capsid-specific VHH displayed remarkably broad strain reactivity, recognizing 14 strains representing the 13 most important lineages of serotype A, and two VHHs cross-reacted with other serotypes. We additionally show that the newly isolated VHHs, as well as previously characterized VHHs, can be used to identify antigenic differences between authentic 146S and 75S capsids, as well as corresponding genetically engineered virus-like particles (VLPs). Our work underscores that VHHs are excellent tools for monitoring the quantity and stability of intact capsids during vaccine manufacturing, formulation, and storage, and additionally shows that VHHs can be used to predict the native-like structure of VLPs.
Collapse
|
4
|
Antigenicity and Immunogenicity Analysis of the E. coli Expressed FMDV Structural Proteins; VP1, VP0, VP3 of the South African Territories Type 2 Virus. Viruses 2021; 13:v13061005. [PMID: 34072100 PMCID: PMC8227194 DOI: 10.3390/v13061005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
An alternative vaccine design approach and diagnostic kits are highly required against the anticipated pandemicity caused by the South African Territories type 2 (SAT2) Foot and Mouth Disease Virus (FMDV). However, the distinct antigenicity and immunogenicity of VP1, VP0, and VP3 of FMDV serotype SAT2 are poorly understood. Similarly, the particular roles of the three structural proteins in novel vaccine design and development remain unexplained. We therefore constructed VP1, VP0, and VP3 encoding gene (SAT2:JX014256 strain) separately fused with His-SUMO (histidine-small ubiquitin-related modifier) inserted into pET-32a cassette to express the three recombinant proteins and separately evaluated their antigenicity and immunogenicity in mice. The fusion protein was successfully expressed and purified by the Ni-NTA resin chromatography. The level of serum antibody, spleen lymphocyte proliferation, and cytokines against the three distinct recombinant proteins were analyzed. Results showed that the anti-FMDV humoral response was triggered by these proteins, and the fusion proteins did enhance the splenocyte immune response in the separately immunized mice. We observed low variations among the three fusion proteins in terms of the antibody and cytokine production in mice. Hence, in this study, results demonstrated that the structural proteins of SAT2 FMDV could be used for the development of immunodiagnostic kits and subunit vaccine designs.
Collapse
|
5
|
Forner M, Cañas-Arranz R, Defaus S, de León P, Rodríguez-Pulido M, Ganges L, Blanco E, Sobrino F, Andreu D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines (Basel) 2021; 9:vaccines9050477. [PMID: 34066901 PMCID: PMC8150788 DOI: 10.3390/vaccines9050477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.
Collapse
Affiliation(s)
- Mar Forner
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, 08193 Barcelona, Spain;
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|
6
|
A Vaccine Strain of the A/ASIA/Sea-97 Lineage of Foot-and-Mouth Disease Virus with a Single Amino Acid Substitution in the P1 Region That Is Adapted to Suspension Culture Provides High Immunogenicity. Vaccines (Basel) 2021; 9:vaccines9040308. [PMID: 33805012 PMCID: PMC8063925 DOI: 10.3390/vaccines9040308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/03/2022] Open
Abstract
There are seven viral serotypes of foot-and-mouth disease virus (FMDV): A, O, C, Asia 1, and Southern African Territories 1, 2, and 3 (SAT 1–3). Unlike serotype O FMDV vaccine strains, vaccine strains of serotype A FMDV do not provide broad-range cross-reactivity in serological matching tests with field isolates. Therefore, the topotype/lineage vaccine strain circulating in many countries and a highly immunogenic strain might be advantageous to control serotype A FMDV. We developed a new vaccine strain, A/SKR/Yeoncheon/2017 (A-1), which belongs to the A/ASIA/Sea-97 lineage that frequently occurs in Asian countries. Using virus plaque purification, we selected a vaccine virus with high antigen productivity and the lowest numbers of P1 mutations among cell-adapted virus populations. The A/SKR/Yeoncheon/2017 (A-1) vaccine strain has a single amino acid mutation, VP2 E82K, in the P1 region, and it is perfectly adapted to suspension culture. The A/SKR/Yeoncheon/2017 (A-1) experimental vaccine conferred high immunogenicity in pigs. The vaccine strain was serologically matched with various field isolates in two-dimensional virus neutralization tests using bovine serum. Vaccinated mice were protected against an A/MAY/97 virus that was serologically mismatched with the vaccine strain. Thus, A/SKR/Yeoncheon/2017 (A-1) might be a promising vaccine candidate for protection against the emerging FMDV serotype A in Asia.
Collapse
|
7
|
Yang B, Zhang X, Zhang D, Hou J, Xu G, Sheng C, Choudhury SM, Zhu Z, Li D, Zhang K, Zheng H, Liu X. Molecular Mechanisms of Immune Escape for Foot-and-Mouth Disease Virus. Pathogens 2020; 9:pathogens9090729. [PMID: 32899635 PMCID: PMC7558374 DOI: 10.3390/pathogens9090729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious vesicular disease in cloven-hoofed livestock that results in severe consequences for international trade, posing a great economic threat to agriculture. The FMDV infection antagonizes the host immune responses via different signaling pathways to achieve immune escape. Strategies to escape the cell immune system are key to effective infection and pathogenesis. This review is focused on summarizing the recent advances to understand how the proteins encoded by FMDV antagonize the host innate and adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Keshan Zhang
- Correspondence: (K.Z.); (H.Z.); Tel.: +86-15214078335 (K.Z.)
| | - Haixue Zheng
- Correspondence: (K.Z.); (H.Z.); Tel.: +86-15214078335 (K.Z.)
| | | |
Collapse
|
8
|
Avendaño C, Celis-Giraldo C, Ordoñez D, Díaz-Arévalo D, Rodríguez-Habibe I, Oviedo J, Curtidor H, García-Castiblanco S, Martínez-Panqueva F, Camargo-Castañeda A, Reyes C, Bohórquez MD, Vanegas M, Cantor D, Patarroyo ME, Patarroyo MA. Evaluating the immunogenicity of chemically-synthesised peptides derived from foot-and-mouth disease VP1, VP2 and VP3 proteins as vaccine candidates. Vaccine 2020; 38:3942-3951. [PMID: 32307277 DOI: 10.1016/j.vaccine.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease (FMD) is one of the most contagious veterinary viral diseases known, having economic, social and potentially devastating environmental impacts. The vaccines currently being marketed/sold around the world for disease control and prevention in bovines do not stimulate the production of antibodies having crossed reactions to different serotypes. This means that if an animal becomes infected by a serotype which has not been included in a vaccine then it will develop the disease. Synthetic peptide vaccines represent a safer option and (depending on the design) can stimulate antibodies protecting against different variants. Based on the forgoing, this work was aimed at evaluating FMDV VP1, VP2 and VP3 protein-derived, modified and chemically-synthesised peptides' ability to induce an immune response for developing a vaccine contributing towards controlling the disease. VP1, VP2 and VP3 proteins' conserved regions were selected for this. Peptides from these regions were chemically synthesised; binding assays were then carried out for ascertaining whether they were involved in BHK-21 cell binding. Selected peptides' structure and location were studied. Peptides which did bind were modified and formulated with Montanide ISA 70 adjuvant; 17 animals were immunised twice with the formulation. The animals were genotyped by amplifying the BoLA-DRB3.2 gene. Blood samples were taken from 17 cattle on day 43 post-first immunisation for studying the formulation's immunogenicity. The sera were used in ELISA, immunofluorescence, flow cytometry, immunoadsorption and seroneutralisation assays. The A24 Cruzeiro and O1 Campos virus serotypes were used for these assays. The results revealed that even though protein exposure and 3D structure might be different amongst serotypes, the antibodies so produced could inhibit virus entry to cells, thereby showing the selected peptides' in vitro protection-inducing ability.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Diana Díaz-Arévalo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Ibett Rodríguez-Habibe
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Jairo Oviedo
- Dirección Técnica de Análisis y Diagnóstico Veterinario. Instituto Colombiano Agropecuario (ICA), Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | | | - Fredy Martínez-Panqueva
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Andrea Camargo-Castañeda
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Michel D Bohórquez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Daniela Cantor
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.
| |
Collapse
|
9
|
Yuan H, Li P, Bao H, Sun P, Bai X, Bai Q, Li N, Ma X, Cao Y, Fu Y, Li K, Zhang J, Li D, Chen Y, Zhang J, Lu Z, Liu Z. Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines. Appl Microbiol Biotechnol 2020; 104:1683-1694. [PMID: 31900553 PMCID: PMC6985056 DOI: 10.1007/s00253-019-10280-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Foot-and-mouth disease virus (FMDV), the most acid-unstable virus among picornaviruses, tends to disassemble into pentamers at pH values slightly below neutrality. However, the structural integrity of intact virion is one of the most important factors that influence the induction of a protective antibody response. Thus, improving the acid stability of FMDV is required for the efficacy of vaccine preparations. According to the previous studies, a single substitution or double amino acid substitutions (VP1 N17D, VP2 H145Y, VP2 D86H, VP3 H142D, VP3 H142G, and VP1 N17D + VP2 H145Y) in the capsid were introduced into the full-length infectious clone of type O FMDV vaccine strain O/HN/CHN/93 to develop seed FMDV with improved acid stability. After the transfection into BSR/T7 cells of constructed plasmids, substitution VP1 N17D or VP2 D86H resulted in viable and genetically stable FMDVs, respectively. However, substitution VP2 H145Y or VP1 N17D + VP2 H145Y showed reverse mutation and additional mutations, and substitution VP3 H141G or VP3 H141D prevented viral viability. We found that substitution VP1 N17D or VP2 D86H could confer increased acid resistance, alkali stability, and thermostability on FMDV O/HN/CHN/93, whereas substitution VP1 N17D was observed to lead to a decreased replication ability in BHK-21 cells and mildly impaired virulence in suckling mice. In contrast, substitution VP2 D86H had no negative effect on viral infectivity. These results indicated that the mutant rD86H carrying substitution VP2 D86H firstly reported by us could be more adequate for the development of inactivated FMD vaccines with enhanced acid stability.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730046, Gansu, People's Republic of China
| | | | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | | | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
10
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
11
|
Identification of plasticity and interactions of a highly conserved motif within a picornavirus capsid precursor required for virus infectivity. Sci Rep 2019; 9:11747. [PMID: 31409836 PMCID: PMC6692319 DOI: 10.1038/s41598-019-48170-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The picornavirus family includes poliovirus (PV) (genus: enterovirus), human rhinoviruses (enterovirus) and foot-and-mouth disease virus (FMDV) (aphthovirus). These are responsible for important human and animal health concerns worldwide including poliomyelitis, the common cold and foot-and-mouth disease (FMD) respectively. In picornavirus particles, the positive-sense RNA genome (ca. 7–9 kb) is packaged within a protein shell (capsid) usually consisting of three surface exposed proteins, VP1, VP2 and VP3 plus the internal VP4, which are generated following cleavage of the capsid precursor by a virus-encoded protease. We have previously identified a motif near the C-terminus of FMDV VP1 that is required for capsid precursor processing. This motif is highly conserved among other picornaviruses, and is also likely to be important for their capsid precursor processing. We have now determined the plasticity of residues within this motif for virus infectivity and found an important interaction between FMDV residue VP1 R188 within this conserved motif and residue W129 in VP2 that is adjacent in the virus capsid. The FMDV (VP1 R188A) mutant virus has only been rescued with the secondary substitution VP2 W129R. This additional change compensates for the defect resulting from the VP1 R188A substitution and restored both capsid precursor processing and virus viability.
Collapse
|
12
|
Scott KA, Maake L, Botha E, Theron J, Maree FF. Inherent biophysical stability of foot-and-mouth disease SAT1, SAT2 and SAT3 viruses. Virus Res 2019; 264:45-55. [PMID: 30807778 DOI: 10.1016/j.virusres.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease (FMD) virus (FMDV) isolates show variation in their ability to withstand an increase in temperature. The FMDV is surprisingly thermolabile, even though this virus is probably subjected to a strong extracellular selective pressure by heat in hot climate regions where FMD is prevalent. The three SAT serotypes, with their particularly low biophysical stability also only yield vaccines of low protective capacity, even with multiple booster vaccinations. The aim of the study was to determine the inherent biophysical stability of field SAT isolates. To characterise the biophysical stability of 20 SAT viruses from Southern Africa, the thermofluor assay was used to monitor capsid dissociation by the release of the RNA genome under a range of temperature, pH and ionic conditions. The SAT2 and SAT3 viruses had a similar range of thermostability of 48-54 °C. However, the SAT1 viruses had a wider range of thermostability with an 8 °C difference but with many viruses being unstable at 43-46 °C. The thermostable A-serotype A24 control virus had the highest thermostability of 55 °C with some SAT2 and SAT3 viruses of similar thermostability. There was a 10 °C difference between the most unstable SAT virus (SAT1/TAN/2/99) and the highly stable A24 control virus. SAT1 viruses were generally more stable compared to SAT2 and SAT3 viruses at the pH range of 6.7-9.1. The effect of ionic buffers on capsid stability showed that SAT1 and SAT2 viruses had an increased stability of 2-9 °C and 2-6 °C, respectively, with the addition of 1 M NaCl. This is in contrast to the SAT3 viruses, which did not show improved stabilisation after addition of 1 M or 0.5 M NaCl buffers. Some buffers showed differing results dependent on the virus tested, highlighting the need to test SAT viruses with different solutions to establish the most stabilising option for storage of each virus. This study confirms for the first time that more stable SAT field viruses are present in the southern Africa region. This could facilitate the selection of the most stable circulating field strains, for adaptation to cultured BHK-21 cells or manipulation by reverse genetics and targeted mutation to produce improved vaccine master seed viruses.
Collapse
Affiliation(s)
- Katherine A Scott
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Lorens Maake
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Elizabeth Botha
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Francois F Maree
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Private Bag X05, Onderstepoort, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
13
|
Sahu TK, Pradhan D, Rao AR, Jena L. In silico site-directed mutagenesis of neutralizing mAb 4C4 and analysis of its interaction with G-H loop of VP1 to explore its therapeutic applications against FMD. J Biomol Struct Dyn 2018; 37:2641-2651. [PMID: 30051760 DOI: 10.1080/07391102.2018.1494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Investigating the behaviour of bio-molecules through computational mutagenesis is gaining interest to facilitate the development of new therapeutic solutions for infectious diseases. The antigenetically variant genotypes of foot and mouth disease virus (FMDV) and their subsequent infections are challenging to tackle with traditional vaccination. In such scenario, neutralizing antibodies might provide an alternate solution to manage the FMDV infection. Thus, we have analysed the interaction of the mAb 4C4 with a synthetic G-H loop of FMDV-VP1 through in silico mutagenesis and molecular modelling. Initially, a set of 25,434 mutants were designed and the mutants having better energetic stability than 4C4 were clustered based on sequence identity. The best mutant representing each cluster was selected and evaluated for its binding affinity with the antigen in terms of docking scores, interaction energy and binding energy. Six mutants have confirmed better binding affinities towards the antigen than 4C4. Further, interaction of these mutants with the natural G-H loop that is bound to mAb SD6 was also evaluated. One 4C4 variant having mutations at the positions 2034(N→L), 2096(N→C), 2098(D→Y), 2532(T→K) and 2599(A→G) has revealed better binding affinities towards both the synthetic and natural G-H loops than 4C4 and SD6, respectively. A molecular dynamic simulation for 50 ns was conducted for mutant and wild-type antibody structures which supported the pre-simulation results. Therefore, these mutations on mAb 4C4 are believed to provide a better antibody-based therapeutic option for FMD. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- a Centre for Agricultural Bioinformatics , ICAR-Indian Agricultural Statistics Research Institute , New Delhi , Delhi , India
| | - Dibyabhaba Pradhan
- b Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , Delhi , India.,c ICMR-Computational Genomics Centre , Indian Council of Medical Research , New Delhi , Delhi , India
| | - Atmakuri Ramakrishna Rao
- a Centre for Agricultural Bioinformatics , ICAR-Indian Agricultural Statistics Research Institute , New Delhi , Delhi , India
| | - Lingaraj Jena
- d Bioinformatics Centre , Mahatma Gandhi Institute of Medical Sciences , Sevagram , Maharashtra , India
| |
Collapse
|
14
|
Kristensen T, Newman J, Guan SH, Tuthill TJ, Belsham GJ. Cleavages at the three junctions within the foot-and-mouth disease virus capsid precursor (P1-2A) by the 3C protease are mutually independent. Virology 2018; 522:260-270. [PMID: 30055516 DOI: 10.1016/j.virol.2018.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
The foot-and-mouth disease virus capsid precursor, P1-2A, is cleaved by the 3C protease (3Cpro) to VP0, VP3, VP1 and 2A. The P1-2A precursor (wt or mutant) was expressed alone or with 3Cpro and processing of P1-2A was determined. The VP2 K217R and VP3 I2P substitutions (near the VP0/VP3 junction) strongly reduced the processing at this junction by 3Cpro while the substitution VP2 K217E blocked cleavage. At the VP3/VP1 junction, the substitutions VP3 Q2221P and VP1 T1P each severely inhibited processing at this site. Blocking cleavage at either junction did not prevent processing elsewhere in P1-2A. These modifications were also introduced into full-length FMDV RNA; only wt and the VP2 K217R mutant were viable. Uncleaved VP0-VP3 and the processed products were observed within cells infected with the mutant virus. The VP0-VP3 was not incorporated into empty capsids or virus particles. The three junctions within P1-2A are processed by 3Cpro independently.
Collapse
Affiliation(s)
- Thea Kristensen
- National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave 4771, Denmark
| | - Joseph Newman
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Su Hua Guan
- National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave 4771, Denmark
| | - Tobias J Tuthill
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave 4771, Denmark.
| |
Collapse
|
15
|
A 12-residue epitope displayed on phage T7 reacts strongly with antibodies against foot-and-mouth disease virus. Appl Microbiol Biotechnol 2018; 102:4131-4142. [DOI: 10.1007/s00253-018-8921-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
|
16
|
Mohapatra JK, Das B, Rout M, Sreenivasa B, Subramaniam S, Sanyal A, Pattnaik B. Alternate vaccine strain selection in the wake of emerging foot-and-mouth disease virus serotype A antigenic variants in India. Vaccine 2018; 36:3191-3194. [DOI: 10.1016/j.vaccine.2018.04.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
17
|
Malik N, Kotecha A, Gold S, Asfor A, Ren J, Huiskonen JT, Tuthill TJ, Fry EE, Stuart DI. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathog 2017; 13:e1006607. [PMID: 28937999 PMCID: PMC5656323 DOI: 10.1371/journal.ppat.1006607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 10/25/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5) release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses) have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4), N-termini (VP1) and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å). In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.
Collapse
Affiliation(s)
- Nayab Malik
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Amin Asfor
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Juha T. Huiskonen
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Helsinki Institute of Life Science and Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tobias J. Tuthill
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- * E-mail: (TJT); (DIS); (EEF)
| |
Collapse
|
18
|
Kotecha A, Wang Q, Dong X, Ilca SL, Ondiviela M, Zihe R, Seago J, Charleston B, Fry EE, Abrescia NGA, Springer TA, Huiskonen JT, Stuart DI. Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat Commun 2017; 8:15408. [PMID: 28534487 PMCID: PMC5457520 DOI: 10.1038/ncomms15408] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/26/2017] [Indexed: 11/21/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) mediates cell entry by attachment to an integrin receptor, generally αvβ6, via a conserved arginine-glycine-aspartic acid (RGD) motif in the exposed, antigenic, GH loop of capsid protein VP1. Infection can also occur in tissue culture adapted virus in the absence of integrin via acquired basic mutations interacting with heparin sulphate (HS); this virus is attenuated in natural infections. HS interaction has been visualized at a conserved site in two serotypes suggesting a propensity for sulfated-sugar binding. Here we determined the interaction between αvβ6 and two tissue culture adapted FMDV strains by cryo-electron microscopy. In the preferred mode of engagement, the fully open form of the integrin, hitherto unseen at high resolution, attaches to an extended GH loop via interactions with the RGD motif plus downstream hydrophobic residues. In addition, an N-linked sugar of the integrin attaches to the previously identified HS binding site, suggesting a functional role.
Collapse
Affiliation(s)
- Abhay Kotecha
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Quan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianchi Dong
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Serban L. Ilca
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Marina Ondiviela
- Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain
| | - Rao Zihe
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Elizabeth E. Fry
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Nicola G. A. Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Timothy A. Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Juha T. Huiskonen
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - David I. Stuart
- Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
- Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
19
|
Scott KA, Kotecha A, Seago J, Ren J, Fry EE, Stuart DI, Charleston B, Maree FF. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. J Virol 2017; 91:e02312-16. [PMID: 28298597 PMCID: PMC5411616 DOI: 10.1128/jvi.02312-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses.
Collapse
Affiliation(s)
- Katherine A Scott
- Transboundary Animal Disease Programme, ARC-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Julian Seago
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Life Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | | - Francois F Maree
- Transboundary Animal Disease Programme, ARC-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Stabilization study of inactivated foot and mouth disease virus vaccine by size-exclusion HPLC and differential scanning calorimetry. Vaccine 2017; 35:2413-2419. [DOI: 10.1016/j.vaccine.2017.03.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/02/2017] [Accepted: 03/12/2017] [Indexed: 02/07/2023]
|
21
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
22
|
Kotecha A, Seago J, Scott K, Burman A, Loureiro S, Ren J, Porta C, Ginn HM, Jackson T, Perez-Martin E, Siebert CA, Paul G, Huiskonen JT, Jones IM, Esnouf RM, Fry EE, Maree FF, Charleston B, Stuart DI. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol 2015; 22:788-94. [PMID: 26389739 PMCID: PMC5985953 DOI: 10.1038/nsmb.3096] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022]
Abstract
Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.
Collapse
Affiliation(s)
- Abhay Kotecha
- Division of Structural Biology, University of Oxford, Oxford, UK
| | | | - Katherine Scott
- Transboundary Animal Disease Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | | | - Silvia Loureiro
- Animal and Microbial Sciences, University of Reading, Reading, UK
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, Oxford, UK
- The Pirbright Institute, Pirbright, UK
| | - Helen M. Ginn
- Division of Structural Biology, University of Oxford, Oxford, UK
| | | | | | | | - Guntram Paul
- Merck Sharp & Dohme Animal Health, Cologne, Germany
| | | | - Ian M. Jones
- Animal and Microbial Sciences, University of Reading, Reading, UK
| | - Robert M. Esnouf
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Francois F. Maree
- Transboundary Animal Disease Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | | | - David I. Stuart
- Division of Structural Biology, University of Oxford, Oxford, UK
- Life Science Division, Diamond Light Source, Didcot, UK
| |
Collapse
|
23
|
Rincón V, Rodríguez-Huete A, Mateu MG. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol 2015; 96:2595-2606. [DOI: 10.1099/vir.0.000187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Verónica Rincón
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G. Mateu
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 2014; 160:1-16. [PMID: 25377637 DOI: 10.1007/s00705-014-2278-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV. To examine host-FMDV interactions and viral pathogenesis from a structural perspective, the structures of viral structural and non-structural proteins are reviewed in the context of their relevance for virus assembly and dissociation, formation of capsid-like particles and virus-receptor complexes, and viral penetration and uncoating. Moreover, possibilities for devising novel antiviral treatments are discussed.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | |
Collapse
|
25
|
Mohapatra JK, Pandey LK, Rai DK, Das B, Rodriguez LL, Rout M, Subramaniam S, Sanyal A, Rieder E, Pattnaik B. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions. J Gen Virol 2014; 96:553-564. [PMID: 25381054 DOI: 10.1099/vir.0.071597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2) consistently gained positively charged amino acids in the putative heparin-sulfate-binding pocket (VP2 βE-βF loop, VP1 C-terminus and VP3 β-B knob) surrounding the fivefold symmetry axis (VP1 βF-βG loop) and at other discrete sites on the capsid (VP3 βG-βH loop, VP1 C-terminus, VP2 βC strand and VP1 βG-βH loop). A lysine insertion in the VP1 βF-βG loop of two of the BHK-21-adapted viruses supports the biological advantage of positively charged residues acquired in cell culture. The charge transitions occurred irrespective of cell line, suggesting their possible role in ionic interaction with ubiquitous negatively charged cell-surface molecules such as glycosaminoglycans (GAG). This was supported by the ability of the cell-culture-adapted variants to replicate in the integrin-deficient, GAG-positive CHO-K1 cells and their superior fitness in competition assays compared with the lower passage viruses with WT genotypes. Substitutions fixed in the VP1 βG-βH loop (-3, -2 and +2 'RGD' positions) or in the structural element known to be juxtaposed against that loop (VP1 βB-βC loop) suggest their possible role in modulating the efficiency and specificity of interaction of the 'RGD' motif with αv-integrin receptors. The nature and location of the substitutions described in this study could be applied in the rapid cell culture adaptation of viral strains for vaccine production.
Collapse
Affiliation(s)
- Jajati K Mohapatra
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Laxmi K Pandey
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Devendra K Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Biswajit Das
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Luis L Rodriguez
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Manoranjan Rout
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Saravanan Subramaniam
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Aniket Sanyal
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| |
Collapse
|
26
|
Rincón V, Rodríguez-Huete A, López-Argüello S, Ibarra-Molero B, Sanchez-Ruiz J, Harmsen M, Mateu M. Identification of the Structural Basis of Thermal Lability of a Virus Provides a Rationale for Improved Vaccines. Structure 2014; 22:1560-70. [DOI: 10.1016/j.str.2014.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
27
|
Gullberg M, Muszynski B, Organtini LJ, Ashley RE, Hafenstein SL, Belsham GJ, Polacek C. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. J Gen Virol 2013; 94:1769-1779. [PMID: 23740480 DOI: 10.1099/vir.0.054122-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3C(pro)) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3C(pro) can be toxic for cells. The expression level of 3C(pro) activity has now been reduced relative to the P1-2A, and the effect on the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells has been determined. Using a vaccinia-virus-based transient expression system, P1-2A (from serotypes O and A) and 3C(pro) were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3C(pro) expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3C(pro) with reduced catalytic activity or using two different mutant IRES elements (the wt GNRA tetraloop sequence GCGA converted, in the cDNA, to GAGA or GTTA) were analysed. For both serotypes, the P1-2A-mIRES-3C construct containing the inefficient GTTA mutant IRES produced the highest amount of processed capsid proteins. These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD-dependent integrin αvβ6, a cellular receptor for FMDV, and are recognized appropriately in serotype-specific antigen ELISAs.
Collapse
Affiliation(s)
- Maria Gullberg
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Bartosz Muszynski
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Lindsey J Organtini
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Robert E Ashley
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Susan L Hafenstein
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Charlotta Polacek
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
28
|
Polacek C, Gullberg M, Li J, Belsham GJ. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells. J Gen Virol 2013; 94:1249-1258. [PMID: 23364188 DOI: 10.1099/vir.0.050492-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The foot-and-mouth disease virus (FMDV) capsid protein precursor (P1-2A) is processed by the virus-encoded 3C protease (3C(pro)) to produce VP0, VP3, VP1 and 2A. Within the virus-encoded polyprotein, the P1-2A and 3C(pro) can be expected to be produced at equivalent concentrations. However, using transient-expression assays, within mammalian cells, it is possible to modify the relative amounts of the substrate and protease. It has now been shown that optimal production of the processed capsid proteins from P1-2A is achieved with reduced levels of 3C(pro) expression, relative to the P1-2A, compared with that achieved with a single P1-2A-3C polyprotein. Expression of the FMDV 3C(pro) is poorly tolerated by mammalian cells and higher levels of the 3C(pro) greatly inhibit protein expression. In addition, it is demonstrated that both the intact P1-2A precursor and the processed capsid proteins can be efficiently detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αvβ6, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer production of diagnostic reagents and improved vaccines against foot-and-mouth disease.
Collapse
Affiliation(s)
- Charlotta Polacek
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Maria Gullberg
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Jiong Li
- National Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu-730046, China
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
29
|
Maree FF, Blignaut B, de Beer TAP, Rieder E. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability. PLoS One 2013; 8:e61612. [PMID: 23717387 PMCID: PMC3661562 DOI: 10.1371/journal.pone.0061612] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/11/2013] [Indexed: 02/02/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.
Collapse
Affiliation(s)
- Francois F Maree
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.
| | | | | | | |
Collapse
|
30
|
Porta C, Kotecha A, Burman A, Jackson T, Ren J, Loureiro S, Jones IM, Fry EE, Stuart DI, Charleston B. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog 2013; 9:e1003255. [PMID: 23544011 PMCID: PMC3609824 DOI: 10.1371/journal.ppat.1003255] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals. Picornaviruses are small RNA viruses, responsible for important human and animal diseases for example polio, some forms of the common cold and foot-and-mouth disease. Safe and effective picornavirus vaccines could in principle be produced from recombinant virus-like particles, which lack the viral genome and so cannot propagate. However the synthesis of stable forms of such particles at scale has proved very difficult. Two key problems have been that a protease required for the proper processing of the polyprotein precursor is toxic for host cells and the empty recombinant particles tend to be physically unstable in comparison to virus particles containing nucleic acid. This is particularly true in the case of Foot-and-Mouth Disease Virus (FMDV). Here we report the production and evaluation of a novel vaccine against FMDV that addresses both of these shortcomings. Importantly, the strategies we have devised to produce improved FMDV vaccines can be directly applied to viruses pathogenic for humans.
Collapse
Affiliation(s)
- Claudine Porta
- The Pirbright Insitute, Pirbright, Woking, United Kingdom
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Headington, University of Oxford, Oxford, United Kingdom
| | - Abhay Kotecha
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Headington, University of Oxford, Oxford, United Kingdom
| | - Alison Burman
- The Pirbright Insitute, Pirbright, Woking, United Kingdom
| | - Terry Jackson
- The Pirbright Insitute, Pirbright, Woking, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Headington, University of Oxford, Oxford, United Kingdom
| | - Silvia Loureiro
- Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian M. Jones
- Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Headington, University of Oxford, Oxford, United Kingdom
- * E-mail: (EEF); (DIS); (BC)
| | - David I. Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Headington, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- * E-mail: (EEF); (DIS); (BC)
| | - Bryan Charleston
- The Pirbright Insitute, Pirbright, Woking, United Kingdom
- * E-mail: (EEF); (DIS); (BC)
| |
Collapse
|
31
|
Seago J, Jackson T, Doel C, Fry E, Stuart D, Harmsen MM, Charleston B, Juleff N. Characterization of epitope-tagged foot-and-mouth disease virus. J Gen Virol 2012; 93:2371-2381. [PMID: 22815275 PMCID: PMC3542126 DOI: 10.1099/vir.0.043521-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals with an almost-worldwide distribution. Conventional FMD vaccines consisting of chemically inactivated viruses have aided in the eradication of FMD from Europe and remain the main tool for control in endemic countries. Although significant steps have been made to improve the quality of vaccines, such as improved methods of antigen concentration and purification, manufacturing processes are technically demanding and expensive. Consequently, there is large variation in the quality of vaccines distributed in FMD-endemic countries compared with those manufactured for emergency use in FMD-free countries. Here, we have used reverse genetics to introduce haemagglutinin (HA) and FLAG tags into the foot-and-mouth disease virus (FMDV) capsid. HA- and FLAG-tagged FMDVs were infectious, with a plaque morphology similar to the non-tagged parental infectious copy virus and the field virus. The tagged viruses utilized integrin-mediated cell entry and retained the tag epitopes over serial passages. In addition, infectious HA- and FLAG-tagged FMDVs were readily purified from small-scale cultures using commercial antibodies. Tagged FMDV offers a feasible alternative to the current methods of vaccine concentration and purification, a potential to develop FMD vaccine conjugates and a unique tool for FMDV research.
Collapse
Affiliation(s)
- Julian Seago
- Pirbright Laboratory, Institute for Animal Health, Woking, Surrey, GU24 0NF, UK
| | - Terry Jackson
- Pirbright Laboratory, Institute for Animal Health, Woking, Surrey, GU24 0NF, UK
| | - Claudia Doel
- Pirbright Laboratory, Institute for Animal Health, Woking, Surrey, GU24 0NF, UK
| | - Elizabeth Fry
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Michiel M. Harmsen
- Central Veterinary Institute Wageningen UR, Division Virology, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Bryan Charleston
- Pirbright Laboratory, Institute for Animal Health, Woking, Surrey, GU24 0NF, UK
| | - Nicholas Juleff
- Pirbright Laboratory, Institute for Animal Health, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
32
|
Anil KU, Sreenivasa BP, Mohapatra JK, Hosamani M, Kumar R, Venkataramanan R. Sequence analysis of capsid coding region of foot-and-mouth disease virus type A vaccine strain during serial passages in BHK-21 adherent and suspension cells. Biologicals 2012; 40:426-30. [PMID: 23084588 DOI: 10.1016/j.biologicals.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 05/18/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022] Open
Abstract
Sequence variability within the capsid coding region of the foot-and-mouth disease virus type A vaccine strain during serial in vitro passage was investigated. Specifically, two methods of virus propagation were utilized, a monolayer and suspension culture of BHK-21 cells. At three positions (VP2(131) E-K in both monolayer and suspension passages, VP3(85) H-R in late monolayer passages and VP3(139) K-E in only suspension passages), all mapped to surface exposed loops, amino acid substitutions were apparently fixed without reversion till the end of the passage regime. Interestingly, VP2(131, 121) and VP3(85) which form part of the heparan sulphate binding pocket, showed a tendency to acquire positively charged amino acids in either monolayer or suspension environment probably to better interact with the negatively charged cell surface glycosaminoglycans. At three identified antigenically critical positions (VP2(79), VP3(139) and VP1(154)), amino acids substitutions even in the absence of immune pressure were noticed. Hence both random drift and adaptive mutations attributable to the strong selective pressure exerted by the proposed cell surface alternate receptors could play a role in modifying the capsid sequence of cell culture propagated FMDV vaccine virus, which in turn may alter the desired potency of the vaccine formulations.
Collapse
Affiliation(s)
- K U Anil
- Indian Veterinary Research Institute, Hebbal Campus, Bangalore 560 024, India
| | | | | | | | | | | |
Collapse
|
33
|
Effects of amino acid substitutions in the VP2 B-C loop on antigenicity and pathogenicity of serotype Asia1 foot-and-mouth disease virus. Virol J 2012; 9:191. [PMID: 22963009 PMCID: PMC3489780 DOI: 10.1186/1743-422x-9-191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 08/31/2012] [Indexed: 11/16/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) exhibits a high degree of antigenic variability. Studies of the antigenic diversity and determination of amino acid changes involved in this diversity are important to the design of broadly protective new vaccines. Although extensive studies have been carried out to explore the molecular basis of the antigenic variation of serotype O and serotype A FMDV, there are few reports on Asia1 serotype FMDV. Methods Two serotype Asia1 viruses, Asia1/YS/CHA/05 and Asia1/1/YZ/CHA/06, which show differential reactivity to the neutralizing monoclonal antibody (nMAb) 1B4, were subjected to sequence comparison. Then a reverse genetics system was used to generate mutant versions of Asia1/YS/CHA/05 followed by comparative analysis of the antigenicity, growth property and pathogenicity in the suckling mice. Results Three amino acid differences were observed when the structural protein coding sequences of Asia1/1/YZ/CHA/06 were compared to that of Asia1/YS/CHA/05. Site-directed mutagenesis and Immunofluorescence analysis showed that the amino acid substitution in the B-C loop of the VP2 protein at position 72 is responsible for the antigenic difference between the two Asia1 FMDV strains. Furthermore, alignment of the amino acid sequences of VP2 proteins from serotype Asia1 FMDV strains deposited in GenBank revealed that most of the serotype Asia1 FMDV strains contain an Asn residue at position 72 of VP2. Therefore, we constructed a mutant virus carrying an Asp-to-Asn substitution at position 72 and named it rD72N. Our analysis shows that the Asp-to-Asn substitution inhibited the ability of the rD72N virus to react with the MAb 1B4 in immunofluorescence and neutralization assays. In addition, this substitution decreased the growth rate of the virus in BHK-21 cells and decreased the virulence of the virus in suckling mice compared with the Asia1/YS/CHA/05 parental strain. Conclusions These results suggest that variations in domains other than the hyper variable VP1 G-H loop (amino acid 140 to 160) are relevant to the antigenic diversity of FMDV. In addition, amino acid substitutions in the VP2 influenced replicative ability and virulence of the virus. Thus, special consideration should be given to the VP2 protein in research on structure-function relationships and in the development of an FMDV vaccine.
Collapse
|
34
|
Opperman PA, Maree FF, Van Wyngaardt W, Vosloo W, Theron J. Mapping of antigenic determinants on a SAT2 foot-and-mouth disease virus using chicken single-chain antibody fragments. Virus Res 2012; 167:370-9. [PMID: 22698877 DOI: 10.1016/j.virusres.2012.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 11/28/2022]
Abstract
Recombinant single-chain variable fragments (scFvs) of antibodies make it possible to localize antigenic and immunogenic determinants, identify protective epitopes and can be exploited for the design of improved diagnostic tests and vaccines. A neutralizing epitope, as well as other potential antigenic sites of a SAT2 foot-and-mouth disease virus (FMDV) were identified using phage-displayed scFvs. Three unique ZIM/7/83-specific scFvs, designated scFv1, scFv2 and scFv3, were isolated. Further characterization of these scFvs revealed that only scFv2 was capable of neutralizing the ZIM/7/83 virus and was used to generate neutralization-resistant virus variants. Sequence analysis of the P1 region of virus escaping neutralization revealed a residue change from His to Arg at position 159 of the VP1 protein. Residue 159 is not only surface exposed but is also located at the C-terminal base of the G-H loop, a known immunogenic region of FMDV. A synthetic peptide, of which the sequence corresponded to the predicted antigenic site of the VP1 G-H loop of ZIM/7/83, inhibited binding of scFv2 to ZIM/7/83 in a concentration-dependent manner. This region can therefore be considered in the design of SAT2 vaccine seed viruses for the regional control of FMD in Africa.
Collapse
Affiliation(s)
- Pamela A Opperman
- Onderstepoort Veterinary Institute, Transboundary Animal Diseases Programme, Private Bag X05, Onderstepoort 0110, South Africa.
| | | | | | | | | |
Collapse
|
35
|
Jamal SM, Ferrari G, Ahmed S, Normann P, Curry S, Belsham GJ. Evolutionary analysis of serotype A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002-2009. J Gen Virol 2011; 92:2849-2864. [PMID: 21813704 DOI: 10.1099/vir.0.035626-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is endemic in Pakistan and Afghanistan. Three different serotypes of the virus, namely O, A and Asia-1, are responsible for the outbreaks of this disease in these countries. In the present study, the nucleotide-coding sequences for the VP1 capsid protein (69 samples) or for all four capsid proteins (P1, seven representative samples) of the serotype A FMD viruses circulating in Pakistan and Afghanistan were determined. Phylogenetic analysis of the foot-and-mouth disease virus (FMDV) VP1-coding sequences from these countries collected between 2002 and 2009 revealed the presence of at least four lineages within two distinct genotypes, all belonging to the Asia topotype, within serotype A. The predominant lineage observed was A-Iran05 but three other lineages (a new one is named here A-Pak09) were also identified. The A-Iran05 lineage is still evolving as revealed by the presence of seven distinct variants, the dominant being the A-Iran05AFG-07 and A-Iran05BAR-08 sublineages. The rate of evolution of the A-Iran05 lineage was found to be about 1.2×10(-2) substitutions per nucleotide per year. This high rate of change is consistent with the rapid appearance of new variants of FMDV serotype A in the region. The A22/Iraq FMDV vaccine is antigenically distinct from the A-Iran05BAR-08 viruses. Mapping of the amino acid changes between the capsid proteins of the A22/Iraq vaccine strain and the A-Iran05BAR-08 viruses onto the A22/Iraq capsid structure identified candidate amino acid substitutions, exposed on the virus surface, which may explain this antigenic difference.
Collapse
Affiliation(s)
- Syed M Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.,National Veterinary Laboratory, Park Road, 45500 Islamabad, Pakistan.,National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Giancarlo Ferrari
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Safia Ahmed
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Preben Normann
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Stephen Curry
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
36
|
Arzt J, Baxt B, Grubman MJ, Jackson T, Juleff N, Rhyan J, Rieder E, Waters R, Rodriguez LL. The Pathogenesis of Foot-and-Mouth Disease II: Viral Pathways in Swine, Small Ruminants, and Wildlife; Myotropism, Chronic Syndromes, and Molecular Virus-Host Interactions. Transbound Emerg Dis 2011; 58:305-26. [DOI: 10.1111/j.1865-1682.2011.01236.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Bøtner A, Kakker NK, Barbezange C, Berryman S, Jackson T, Belsham GJ. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. J Gen Virol 2011; 92:1141-1151. [PMID: 21270284 DOI: 10.1099/vir.0.029710-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived from the O/UKG/34/2001 or A/Turkey 2/2006 field viruses, were constructed using the backbone from the O1K B64 cDNA, and viable viruses (O1K/O-UKG and O1K/A-Tur, respectively) were successfully rescued in each case. These viruses grew well in primary bovine thyroid cells but grew less efficiently in BHK cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs of foot-and-mouth disease were observed, which then spread to in-contact animals. Thus, the surface-exposed capsid proteins of the O1K B64 strain are responsible for its attenuation in cattle. Consequently, there is no evidence for any adaptation, acquired during cell culture, outside the capsid coding region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo.
Collapse
Affiliation(s)
- Anette Bøtner
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Naresh K Kakker
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Cyril Barbezange
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Stephen Berryman
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Terry Jackson
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
38
|
Bai X, Bao H, Li P, Sun P, Kuang W, Cao Y, Lu Z, Liu Z, Liu X. Genetic characterization of the cell-adapted PanAsia strain of foot-and-mouth disease virus O/Fujian/CHA/5/99 isolated from swine. Virol J 2010; 7:208. [PMID: 20807416 PMCID: PMC2939563 DOI: 10.1186/1743-422x-7-208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022] Open
Abstract
Background According to Office International Des Epizooties (OIE) Bulletin, the PanAsia strain of Foot-and-Mouth Disease Virus (FMDV) was invaded into the People's Republic of China in May 1999. It was confirmed that the outbreaks occurred in Tibet, Hainan and Fujian provinces. In total, 1280 susceptible animals (68 cattle, 1212 swine) were destroyed for the epidemic control. To investigate the distinct biological properties, we performed plaque assay, estimated the pathogenicity in suckling mice and determined the complete genomic sequence of FMDV swine-isolated O/Fujian/CHA/5/99 strain. In addition, a molecular modeling was carried out with the external capsid proteins. Results The pathogenicity study showed that O/Fujian/CHA/5/99 had high virulence with respect to infection in 3-day-old suckling-mice (LD50 = 10-8.3), compared to O/Tibet/CHA/1/99 (LD50 = 10-7.0) which isolated from bovine. The plaque assay was distinguishable between O/Fujian/CHA/5/99 and O/Tibet/CHA/1/99 by their plaque phenotypes. O/Fujian/CHA/5/99 formed large plaque while O/Tibet/CHA/1/99 formed small plaque. The 8,172 nucleotides (nt) of O/Fujian/CHA/5/99 was sequenced, and a phylogenetic tree was generated from the complete nucleotide sequences of VP1 compared with other FMDV reference strains. The identity data showed that O/Fujian/CHA/5/99 is closely related to O/AS/SKR/2002 (94.1% similarity). Based on multiple sequence alignments, comparison of sequences showed that the characteristic nucleotide/amino acid mutations were found in the whole genome of O/Fujian/CHA/5/99. Conclusion Our finding suggested that C275T substitution in IRES of O/Fujian/CHA/5/99 may induce the stability of domain 3 for the whole element function. The structure prediction indicated that most of 14 amino acid substitutions are fixed in the capsid of O/Fujian/CHA/5/99 around B-C loop and E-F loop of VP2 (antigenic site 2), and G-H loop of VP1 (antigenic site 1), respectively. These results implicated that these substitutions close to heparin binding sites (E136G in VP2, A174 S in VP3) and at antigenic site 1 (T142A, A152T and Q153P in VP1) may influence plaque size and the pathogenicity to suckling mice. The potential of genetic characterization would be useful for microevolution and viral pathogenesis of FMDV in the further study.
Collapse
Affiliation(s)
- Xingwen Bai
- National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells. J Virol 2010; 84:9149-60. [PMID: 20592089 DOI: 10.1128/jvi.00642-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.
Collapse
|
40
|
Luna E, Rodríguez-Huete A, Rincón V, Mateo R, Mateu MG. Systematic study of the genetic response of a variable virus to the introduction of deleterious mutations in a functional capsid region. J Virol 2009; 83:10140-51. [PMID: 19625409 PMCID: PMC2748030 DOI: 10.1128/jvi.00903-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/11/2009] [Indexed: 11/20/2022] Open
Abstract
We have targeted the intersubunit interfaces in the capsid of foot-and-mouth disease virus to investigate the genetic response of a variable virus when individual deleterious mutations are systematically introduced along a functionally defined region of its genome. We had previously found that the individual truncation (by mutation to alanine) of 28 of the 42 amino acid side chains per protomer involved in interactions between capsid pentameric subunits severely impaired infectivity. We have now used viral RNAs individually containing each of those 28 deleterious mutations (or a few others) to carry out a total of 96 transfections of susceptible cells, generally followed by passage(s) of the viral progeny in cell culture. The results revealed a very high frequency of fixation in the capsid of second-site, stereochemically diverse substitutions that compensated for the detrimental effect of primary substitutions at many different positions. Most second-site substitutions occurred at or near the capsid interpentamer interfaces and involved residues that are spatially very close to the originally substituted residue. However, others occurred far from the primary substitution, and even from the interpentamer interfaces. Remarkably, most second-site substitutions involved only a few capsid residues, which acted as "second-site hot spots." Substitutions at these hot spots compensated for the deleterious effects of many different replacements at diverse positions. The remarkable capacity of the virus to respond to the introduction of deleterious mutations in the capsid with the frequent fixation of diverse second-site mutations, and the existence of second-site hot spots, may have important implications for virus evolution.
Collapse
Affiliation(s)
- Eva Luna
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Azuma H, Yoneda S. Structure and dynamics of the GH loop of the foot-and-mouth disease virus capsid. J Mol Graph Model 2009; 28:278-86. [PMID: 19734079 DOI: 10.1016/j.jmgm.2009.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
The GH loop of VP1 of the foot-and-mouth disease virus capsid is important because it is a major antigenic site and an integrin recognition site. The GH loop is disordered in all X-ray structures of the capsid except for serotype O under reduced conditions in which the loop lies on the capsid surface. Although the structure of the capsid-integrin complex has not yet been determined, the GH loop is known to protrude from the capsid surface when the capsid is bound with an antigen-binding fragment (Fab). To clarify the structure and dynamics of the GH loop under natural unreduced conditions before binding to integrins or Fab fragments, we performed molecular dynamics simulation of 16.3 ns long under rotational symmetry boundary conditions for the capsid of serotype O using the X-ray structure of the reduced capsid for the initial coordinates. When the disulfide bond at the base of the GH loop was formed by the molecular mutation method, the loop protruded into the surrounding water, as reported for Fab-capsid complexes, and fluctuated like a tentacle. After equilibration, the GH loop overlapped the surface of the capsid but continued to fluctuate, being directed toward a 2-fold axis. The conformational change of the GH loop after formation of the disulfide bond was explained by a model of elastic tube. The side chains of arginine and aspartic acid of the integrin recognition residues (RGD tripeptide) extended in opposite directions, and the residues on the C-terminal side of the RGD tripeptide formed a hydrophobic cluster in close proximity of the arginine residue of the tripeptide.
Collapse
Affiliation(s)
- Hiroko Azuma
- Graduate School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara-shi, Kanagawa-ken 228-8555, Japan
| | | |
Collapse
|
42
|
Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines. J Virol 2008; 82:12232-40. [PMID: 18829763 DOI: 10.1128/jvi.01553-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have rationally engineered foot-and-mouth disease virus to increase its stability against thermal dissociation into subunits without disrupting the many biological functions needed for its infectivity. Amino acid side chains located near the capsid intersubunit interfaces and either predicted or found to be dispensable for infectivity were replaced by others that could establish new disulfide bonds or electrostatic interactions between subunits. Two engineered viruses were normally infectious, genetically stable, and antigenically indistinguishable from the natural virus but showed substantially increased stability against irreversible dissociation. Electrostatic interactions mediated this stabilizing effect. For foot-and-mouth disease virus and other viruses, some evidence had suggested that an increase in virion stability could be linked to an impairment of infectivity. The results of the present study show, in fact, that virion thermostability against dissociation into subunits may not be selectively constrained by functional requirements for infectivity. The thermostable viruses obtained, and others similarly engineered, could be used for the production, using current procedures, of foot-and-mouth disease vaccines that are less dependent on a faultless cold chain. In addition, introduction of those stabilizing mutations in empty (nucleic acid-free) capsids could facilitate the production of infection-risk-free vaccines against the disease, one of the economically most important animal diseases worldwide.
Collapse
|
43
|
Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol 2008; 82:9075-85. [PMID: 18614639 DOI: 10.1128/jvi.00732-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus, which is virulent for susceptible animals, infects cells via four members of the alpha(V) subclass of cellular integrins. In contrast, tissue culture adaptation of some FMDV serotypes results in the loss of viral virulence in the animal, accompanied by the loss of virus' ability to use integrins as receptors. These avirulent viral variants acquire positively charged amino acids on surface-exposed structural proteins, resulting in the utilization of cell surface heparan sulfate (HS) molecules as receptors. We have recently shown that FMDV serotypes utilizing integrin receptors enter cells via a clathrin-mediated mechanism into early endosomes. Acidification within the endosome results in a breakdown of the viral capsid, releasing the RNA, which enters the cytoplasm by a still undefined mechanism. Since there is evidence that HS internalizes bound ligands via a caveola-mediated mechanism, it was of interest to analyze the entry of FMDV by cell-surface HS. Using a genetically engineered variant of type O(1)Campos (O(1)C3056R) which can utilize both integrins and HS as receptors and a second variant (O(1)C3056R-KGE) which can utilize only HS as a receptor, we followed viral entry using confocal microscopy. After virus bound to cells at 4 degrees C, followed by a temperature shift to 37 degrees C, type O(1)C3056R-KGE colocalized with caveolin-1, while O(1)C3056R colocalized with both clathrin and caveolin-1. Compounds which either disrupt or inhibit the formation of lipid rafts inhibited the replication of O(1)C3056R-KGE. Furthermore, a caveolin-1 knockdown by RNA interference also considerably reduced the efficiency of O(1)C3056R-KGE infection. These results indicate that HS-binding FMDV enters the cells via the caveola-mediated endocytosis pathway and that caveolae can associate and traffic with endosomes. In addition, these results further suggest that the route of FMDV entry into cells is a function solely of the viral receptor.
Collapse
|
44
|
Frimann TH, Barfoed AM, Aasted B, Kamstrup S. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus--importance of dominant and subdominant epitopes for antigenicity and protection. Vaccine 2007; 25:6191-200. [PMID: 17640782 DOI: 10.1016/j.vaccine.2007.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent example of a dominant and variable site. This variability is a problem when designing vaccines against this disease, because it necessitates a close match between vaccine strain and virus in an outbreak. We have introduced a series of mutations into viral capsid proteins with the aim of selectively silencing two dominant and highly variable epitopes and thereby divert immune responses toward less dominant but more conserved, protective epitopes. When mice were immunized with modified antigens, the resulting immune responses showed a higher degree of cross-reactivity towards heterologous virus as compared to mice vaccinated with wild type epitopes. Most of the modifications did not adversely affect the ability of the plasmids to induce complete protection of mice against homologous challenge.
Collapse
Affiliation(s)
- Tine Holland Frimann
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | | | | | | |
Collapse
|
45
|
Perales C, Mateo R, Mateu MG, Domingo E. Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 2007; 369:985-1000. [PMID: 17481660 DOI: 10.1016/j.jmb.2007.03.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/20/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
RNA virus behavior can be influenced by interactions among viral genomes and their expression products within the mutant spectra of replicating viral quasispecies. Here, we report the extent of interference of specific capsid and polymerase mutants of foot-and-mouth disease virus (FMDV) on replication of wild-type (wt) RNA. The capsid and polymerase mutants chosen for this analysis had been characterized biochemically and structurally. Upon co-electroporation of BHK-21 cells with wt RNA and a tenfold excess of mutant RNA, some mutants displayed strong interference (<10% of progeny production by wt RNA alone), while other mutants did not show detectable interference. The capacity to interfere required an excess of mutant RNA and was associated with intracellular replication, irrespective of the formation of infectious particles by the mutant virus. The extent of interference did not correlate with the known types and number of interactions involving the amino acid residue affected in each mutant. Synergistic interference was observed upon co-electroporation of wt RNA and mixtures of capsid and polymerase mutants. Interference was specific, in that the mutants did not affect expression of encephalomyocarditis virus RNA, and that a two nucleotide insertion mutant of FMDV expressing a truncated polymerase did not exert any detectable interference. The results support the lethal defection model for viral extinction by enhanced mutagenesis, and provide further evidence that the population behavior of highly variable viruses can be influenced strongly by the composition of the quasispecies mutant spectrum as a whole.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular, Severo Ochoa CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Burman A, Clark S, Abrescia NGA, Fry EE, Stuart DI, Jackson T. Specificity of the VP1 GH loop of Foot-and-Mouth Disease virus for alphav integrins. J Virol 2006; 80:9798-810. [PMID: 16973584 PMCID: PMC1617245 DOI: 10.1128/jvi.00577-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) can use a number of integrins as receptors to initiate infection. Attachment to the integrin is mediated by a highly conserved arginine-glycine-aspartic acid (RGD) tripeptide located on the GH loop of VP1. Other residues of this loop are also conserved and may contribute to integrin binding. In this study we have used a 17-mer peptide, whose sequence corresponds to the GH loop of VP1 of type O FMDV, as a competitor of integrin-mediated virus binding and infection. Alanine substitution through this peptide identified the leucines at the first and fourth positions following RGD (RGD+1 and RGD+4 sites) as key for inhibition of virus binding and infection mediated by alphavbeta6 or alphavbeta8 but not for inhibition of virus binding to alphavbeta3. We also show that FMDV peptides containing either methionine or arginine at the RGD+1 site, which reflects the natural sequence variation seen across the FMDV serotypes, are effective inhibitors for alphavbeta6. In contrast, although RGDM-containing peptides were effective for alphavbeta8, RGDR-containing peptides were not. These observations were confirmed by showing that a virus containing an RGDR motif uses alphavbeta8 less efficiently than alphavbeta6 as a receptor for infection. Finally, evidence is presented that shows alphavbeta3 to be a poor receptor for infection by type O FMDV. Taken together, our data suggest that the integrin binding loop of FMDV has most likely evolved for binding to alphavbeta6 with a higher affinity than to alphavbeta3 and alphavbeta8.
Collapse
Affiliation(s)
- Alison Burman
- Division of Microbiology, Institute for Animal Health, Pirbright, Surrey, GU24 ONF, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Rieder E, Henry T, Duque H, Baxt B. Analysis of a foot-and-mouth disease virus type A24 isolate containing an SGD receptor recognition site in vitro and its pathogenesis in cattle. J Virol 2005; 79:12989-98. [PMID: 16189001 PMCID: PMC1235811 DOI: 10.1128/jvi.79.20.12989-12998.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) initiates infection by binding to integrin receptors via an Arg-Gly-Asp (RGD) sequence found in the G-H loop of the structural protein VP1. Following serial passages of a type A(24) Cruzeiro virus (A(24)Cru) in bovine, via tongue inoculation, a virus was generated which contained an SGD sequence in the cell receptor-binding site and expressed a turbid plaque phenotype in BHK-21 cells. Propagation of this virus in these cells resulted in the rapid selection of viruses that grew to higher titers, produced clear plaques, and now contained an RGD sequence in place of the original SGD. To study the role of the SGD sequence in FMDV receptor recognition and bovine virulence, we assembled an infectious cDNA clone of an RGD-containing A(24)Cru and derived mutant clones containing either SGD with a single nucleotide substitution in the R(144) codon or double substitutions at this position to prevent mutation of the S to an R. The SGD viruses grew poorly in BHK-21 cells and stably maintained the sequence during propagation in BHK-21 cells expressing the bovine alpha(V)beta(6) integrin (BHK3-alpha(V)beta(6)), as well as in experimentally infected and contact steers. While all the SGD-containing viruses used only the bovine alpha(V)beta(6) integrin as a cellular receptor with relatively high efficiency, the revertant RGD viruses utilized either the alpha(V)beta(1) or alpha(V)beta(3) bovine integrins with higher efficiency than alpha(V)beta(6) and grew well in BHK-21 cells. Replacing the R at the -1 SGD position with either K or E showed that this residue did not contribute to integrin utilization in vitro. These results illustrate the rapid evolution of FMDV with alteration in receptor specificity and suggest that viruses with sequences other than RGD, but closely related to it, can still infect via integrin receptors and induce and transmit the disease to susceptible animals.
Collapse
Affiliation(s)
- Elizabeth Rieder
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, New York 11944, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Structural studies of foot-and-mouth disease virus (FMDV) have largely focused on the mature viral particle, providing atomic resolution images of the spherical protein capsid for a number of sero- and sub-types, structures of the highly immunogenic surface loop, Fab and GAG receptor complexes. Additionally, structures are available for a few non-structural proteins. The chapter reviews our current structural knowledge and its impact on our understanding of the virus life cycle proceeding from the mature virus through immune evasion/inactivation, cell-receptor binding and replication and alludes to future structural targets.
Collapse
Affiliation(s)
- E E Fry
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | |
Collapse
|
49
|
Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005; 18:343-84. [PMID: 16094605 DOI: 10.1002/jmr.747] [Citation(s) in RCA: 660] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulation, recognition and cell signaling involve the coordinated actions of many players. To achieve this coordination, each participant must have a valid identification (ID) that is easily recognized by the others. For proteins, these IDs are often within intrinsically disordered (also ID) regions. The functions of a set of well-characterized ID regions from a diversity of proteins are presented herein to support this view. These examples include both more recently described signaling proteins, such as p53, alpha-synuclein, HMGA, the Rieske protein, estrogen receptor alpha, chaperones, GCN4, Arf, Hdm2, FlgM, measles virus nucleoprotein, RNase E, glycogen synthase kinase 3beta, p21(Waf1/Cip1/Sdi1), caldesmon, calmodulin, BRCA1 and several other intriguing proteins, as well as historical prototypes for signaling, regulation, control and molecular recognition, such as the lac repressor, the voltage gated potassium channel, RNA polymerase and the S15 peptide associating with the RNA polymerase S-protein. The frequent occurrence and the common use of ID regions in important protein functions raise the possibility that the relationship between amino acid sequence, disordered ensemble and function might be the dominant paradigm for the molecular recognition that serves as the basis for signaling and regulation by protein molecules.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Molecular Kinetics, 6201 La Pas Trail, Suite 160, Indianapolis, IN 46268, USA
| | | | | |
Collapse
|
50
|
Berryman S, Clark S, Monaghan P, Jackson T. Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol 2005; 79:8519-34. [PMID: 15956594 PMCID: PMC1143743 DOI: 10.1128/jvi.79.13.8519-8534.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have shown that foot-and-mouth disease virus (FMDV) infection mediated by the integrin alphavbeta6 takes place through clathrin-dependent endocytosis but not caveolae or other endocytic pathways that depend on lipid rafts. Inhibition of clathrin-dependent endocytosis by sucrose treatment or expression of a dominant-negative version of AP180 inhibited virus entry and infection. Similarly, inhibition of endosomal acidification inhibited an early step in infection. Blocking endosomal acidification did not interfere with surface expression of alphavbeta6, virus binding to the cells, uptake of the virus into endosomes, or cytoplasmic virus replication, suggesting that the low pH within endosomes is a prerequisite for delivery of viral RNA into the cytosol. Using immunofluorescence confocal microscopy, FMDV colocalized with alphavbeta6 at the cell surface but not with the B subunit of cholera toxin, a marker for lipid rafts. At 37 degrees C, virus was rapidly taken up into the cells and colocalized with markers for early and recycling endosomes but not with a marker for lysosomes, suggesting that infection occurs from within the early or recycling endosomal compartments. This conclusion was supported by the observation that FMDV infection is not inhibited by nocodazole, a reagent that inhibits vesicular trafficking between early and late endosomes (and hence trafficking to lysosomes). The integrin alphavbeta6 was also seen to accumulate in early and recycling endosomes on virus entry, suggesting that the integrin serves not only as an attachment receptor but also to deliver the virus to the acidic endosomes. These findings are all consistent with FMDV infection proceeding via clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Stephen Berryman
- Mammalian Virology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, United Kingdom
| | | | | | | |
Collapse
|