1
|
Vögele J, Duchardt-Ferner E, Kruse H, Zhang Z, Sponer J, Krepl M, Wöhnert J. Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA. RNA (NEW YORK, N.Y.) 2023; 29:790-807. [PMID: 36868785 PMCID: PMC10187676 DOI: 10.1261/rna.079506.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.
Collapse
Affiliation(s)
- Jennifer Vögele
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zhengyue Zhang
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
2
|
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010400. [PMID: 36615615 PMCID: PMC9823393 DOI: 10.3390/molecules28010400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV-Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt.
Collapse
|
3
|
Kuhle B, Hirschi M, Doerfel LK, Lander GC, Schimmel P. Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nat Commun 2022; 13:5100. [PMID: 36042193 PMCID: PMC9427863 DOI: 10.1038/s41467-022-32544-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human mitochondrial gene expression relies on the specific recognition and aminoacylation of mitochondrial tRNAs (mtRNAs) by nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs). Despite their essential role in cellular energy homeostasis, strong mutation pressure and genetic drift have led to an unparalleled sequence erosion of animal mtRNAs. The structural and functional consequences of this erosion are not understood. Here, we present cryo-EM structures of the human mitochondrial seryl-tRNA synthetase (mSerRS) in complex with mtRNASer(GCU). These structures reveal a unique mechanism of substrate recognition and aminoacylation. The mtRNASer(GCU) is highly degenerated, having lost the entire D-arm, tertiary core, and stable L-shaped fold that define canonical tRNAs. Instead, mtRNASer(GCU) evolved unique structural innovations, including a radically altered T-arm topology that serves as critical identity determinant in an unusual shape-selective readout mechanism by mSerRS. Our results provide a molecular framework to understand the principles of mito-nuclear co-evolution and specialized mechanisms of tRNA recognition in mammalian mitochondrial gene expression.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marscha Hirschi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Lili K Doerfel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92121, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Scripps Florida Research Institute at the University of Florida, Jupiter, FL, 33458, USA
| |
Collapse
|
4
|
Gosavi D, Wower I, Beckmann IK, Hofacker IL, Wower J, Wolfinger MT, Sztuba-Solinska J. Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. RNA Biol 2022; 19:496-506. [PMID: 35380920 PMCID: PMC8986297 DOI: 10.1080/15476286.2022.2058818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The internal ribosome entry site (IRES) RNA of bovine viral diarrhoea virus (BVDV), an economically significant Pestivirus, is required for the cap-independent translation of viral genomic RNA. Thus, it is essential for viral replication and pathogenesis. We applied a combination of high-throughput biochemical RNA structure probing (SHAPE-MaP) and in silico modelling approaches to gain insight into the secondary and tertiary structures of BVDV IRES RNA. Our study demonstrated that BVDV IRES RNA in solution forms a modular architecture composed of three distinct structural domains (I-III). Two regions within domain III are represented in tertiary interactions to form an H-type pseudoknot. Computational modelling of the pseudoknot motif provided a fine-grained picture of the tertiary structure and local arrangement of helices in the BVDV IRES. Furthermore, comparative genomics and consensus structure predictions revealed that the pseudoknot is evolutionarily conserved among many Pestivirus species. These studies provide detailed insight into the structural arrangement of BVDV IRES RNA H-type pseudoknot and encompassing motifs that likely contribute to the optimal functionality of viral cap-independent translation element.
Collapse
Affiliation(s)
- Devadatta Gosavi
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL, United States
| | - Iwona Wower
- Department of Animal and Dairy Sciences, Auburn University, Auburn, AL, United States
| | - Irene K Beckmann
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Jacek Wower
- Department of Animal and Dairy Sciences, Auburn University, Auburn, AL, United States
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL, United States.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
5
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
6
|
Welty R, Hall KB. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding. J Mol Biol 2016; 428:4490-4502. [PMID: 27693721 DOI: 10.1016/j.jmb.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg2+ ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Shi YZ, Jin L, Wang FH, Zhu XL, Tan ZJ. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. Biophys J 2016; 109:2654-2665. [PMID: 26682822 DOI: 10.1016/j.bpj.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 10/24/2022] Open
Abstract
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Schudoma C. It's a loop world - single strands in RNA as structural and functional elements. Biomol Concepts 2015; 2:171-81. [PMID: 25962027 DOI: 10.1515/bmc.2011.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/25/2011] [Indexed: 01/31/2023] Open
Abstract
Unpaired regions in RNA molecules - loops - are centrally involved in defining the characteristic three-dimensional (3D) architecture of RNAs and are of high interest in RNA engineering and design. Loops adopt diverse, but specific conformations stabilised by complex tertiary structural interactions that provide structural flexibility to RNA structures that would otherwise not be possible if they only consisted of the rigid A-helical shapes usually formed by canonical base pairing. By participating in sequence-non-local contacts, they furthermore contribute to stabilising the overall fold of RNA molecules. Interactions between RNAs and other nucleic acids, proteins, or small molecules are also generally mediated by RNA loop structures. Therefore, the function of an RNA molecule is generally dependent on its loops. Examples include intermolecular interactions between RNAs as part of the microRNA processing pathways, ribozymatic activity, or riboswitch-ligand interactions. Bioinformatics approaches have been successfully applied to the identification of novel RNA structural motifs including loops, local and global RNA 3D structure prediction, and structural and conformational analysis of RNAs and have contributed to a better understanding of the sequence-structure-function relationships in RNA loops.
Collapse
|
9
|
Abstract
The 60-nt GTPase center (GAC) of 23S rRNA has a phylogenetically conserved secondary structure with two hairpin loops and a 3-way junction. It folds into an intricate tertiary structure upon addition of Mg(2+) ions, which is stabilized by the L11 protein in cocrystal structures. Here, we monitor the kinetics of its tertiary folding and Mg(2+)-dependent intermediate states by observing selected nucleobases that contribute specific interactions to the GAC tertiary structure in the cocrystals. The fluorescent nucleobase 2-aminopurine replaced three individual adenines, two of which make long-range stacking interactions and one that also forms hydrogen bonds. Each site reveals a unique response to Mg(2+) addition and temperature, reflecting its environmental change from secondary to tertiary structure. Stopped-flow fluorescence experiments revealed that kinetics of tertiary structure formation upon addition of MgCl2 are also site specific, with local conformational changes occurring from 5 ms to 4s and with global folding from 1 to 5s. Site-specific substitution with (15)N-nucleobases allowed observation of stable hydrogen bond formation by NMR experiments. Equilibrium titration experiments indicate that a stable folding intermediate is present at stoichiometric concentrations of Mg(2+) and suggest that there are two initial sites of Mg(2+) ion association.
Collapse
|
10
|
Gottstein-Schmidtke SR, Duchardt-Ferner E, Groher F, Weigand JE, Gottstein D, Suess B, Wöhnert J. Building a stable RNA U-turn with a protonated cytidine. RNA (NEW YORK, N.Y.) 2014; 20:1163-72. [PMID: 24951555 PMCID: PMC4105743 DOI: 10.1261/rna.043083.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/16/2014] [Indexed: 05/28/2023]
Abstract
The U-turn is a classical three-dimensional RNA folding motif first identified in the anticodon and T-loops of tRNAs. It also occurs frequently as a building block in other functional RNA structures in many different sequence and structural contexts. U-turns induce sharp changes in the direction of the RNA backbone and often conform to the 3-nt consensus sequence 5'-UNR-3' (N = any nucleotide, R = purine). The canonical U-turn motif is stabilized by a hydrogen bond between the N3 imino group of the U residue and the 3' phosphate group of the R residue as well as a hydrogen bond between the 2'-hydroxyl group of the uridine and the N7 nitrogen of the R residue. Here, we demonstrate that a protonated cytidine can functionally and structurally replace the uridine at the first position of the canonical U-turn motif in the apical loop of the neomycin riboswitch. Using NMR spectroscopy, we directly show that the N3 imino group of the protonated cytidine forms a hydrogen bond with the backbone phosphate 3' from the third nucleotide of the U-turn analogously to the imino group of the uridine in the canonical motif. In addition, we compare the stability of the hydrogen bonds in the mutant U-turn motif to the wild type and describe the NMR signature of the C+-phosphate interaction. Our results have implications for the prediction of RNA structural motifs and suggest simple approaches for the experimental identification of hydrogen bonds between protonated C-imino groups and the phosphate backbone.
Collapse
Affiliation(s)
- Sina R Gottstein-Schmidtke
- Institute of Molecular Biosciences, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| | - Florian Groher
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Daniel Gottstein
- Institute for Biophysical Chemistry, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| |
Collapse
|
11
|
Bouchard P, Legault P. Structural insights into substrate recognition by the Neurospora Varkud satellite ribozyme: importance of U-turns at the kissing-loop junction. Biochemistry 2013; 53:258-69. [PMID: 24325625 PMCID: PMC3893828 DOI: 10.1021/bi401491g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Substrate
recognition by the Neurospora Varkud
satellite ribozyme depends on the formation of a magnesium-dependent
kissing-loop interaction between the stem-loop I (SLI) substrate and
stem-loop V (SLV) of the catalytic domain. From mutagenesis studies,
it has been established that this I/V kissing-loop interaction involves
three Watson–Crick base pairs and is associated with a structural
rearrangement of the SLI substrate that facilitates catalysis. Here,
we report the NMR structural characterization of this I/V kissing-loop
using isolated stem-loops. NMR studies were performed on different
SLI/SLV complexes containing a common SLV and shiftable, preshifted,
or double-stranded SLI variants. These studies confirm the presence
of three Watson–Crick base pairs at the kissing-loop junction
and provide evidence for the structural rearrangement of shiftable
SLI variants upon SLV binding. NMR structure determination of an SLI/SLV
complex demonstrates that both the SLI and SLV loops adopt U-turn
structures, which facilitates intermolecular Watson–Crick base
pairing. Several other interactions at the I/V interface, including
base triples and base stacking, help create a continuously stacked
structure. These NMR studies provide a structural basis to understand
the stability of the I/V kissing-loop interaction and lead us to propose
a kinetic model for substrate activation in the VS ribozyme.
Collapse
Affiliation(s)
- Patricia Bouchard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | |
Collapse
|
12
|
Cantara WA, Bilbille Y, Kim J, Kaiser R, Leszczyńska G, Malkiewicz A, Agris PF. Modifications Modulate Anticodon Loop Dynamics and Codon Recognition of E. coli tRNAArg1,2. J Mol Biol 2012; 416:579-97. [DOI: 10.1016/j.jmb.2011.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 12/13/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
|
13
|
Levengood JD, Rollins C, Mishler CHJ, Johnson CA, Miner G, Rajan P, Znosko BM, Tolbert BS. Solution structure of the HIV-1 exon splicing silencer 3. J Mol Biol 2011; 415:680-98. [PMID: 22154809 DOI: 10.1016/j.jmb.2011.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic RNA is necessary to produce the complete viral protein complement, and aberrations in the splicing pattern impair HIV-1 replication. Genome splicing in HIV-1 is tightly regulated by the dynamic assembly/disassembly of trans host factors with cis RNA control elements. The host protein, heterogeneous nuclear ribonucleoprotein (hnRNP) A1, regulates splicing at several highly conserved HIV-1 3' splice sites by binding 5'-UAG-3' elements embedded within regions containing RNA structure. The physical determinants of hnRNP A1 splice site recognition remain poorly defined in HIV-1, thus precluding a detailed understanding of the molecular basis of the splicing pattern. Here, the three-dimensional structure of the exon splicing silencer 3 (ESS3) from HIV-1 has been determined using NMR spectroscopy. ESS3 adopts a 27-nucleotide hairpin with a 10-bp A-form stem that contains a pH-sensitive A(+)C wobble pair. The seven-nucleotide hairpin loop contains the high-affinity hnRNP-A1-responsive 5'-UAGU-3' element and a proximal 5'-GAU-3' motif. The NMR structure shows that the heptaloop adopts a well-organized conformation stabilized primarily by base stacking interactions reminiscent of a U-turn. The apex of the loop is quasi-symmetric with UA dinucleotide steps from the 5'-GAU-3' and 5'-UAGU-3' motifs stacking on opposite sides of the hairpin. As a step towards understanding the binding mechanism, we performed calorimetric and NMR titrations of several hnRNP A1 subdomains into ESS3. The data show that the UP1 domain forms a high-affinity (K(d)=37.8±1.1 nM) complex with ESS3 via site-specific interactions with the loop.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
U12 snRNA is analogous to U2 snRNA of the U2-dependent spliceosome and is essential for the splicing of U12-dependent introns in metazoan cells. The essential region of U12 snRNA, which base pairs to the branch site of minor class introns is well characterized. However, other regions which are outside of the branch site base pairing region are not yet characterized and the requirement of these structures in U12-dependent splicing is not clear. U12 snRNA is predicted to form an intricate secondary structure containing several stem-loops and single-stranded regions. Using a previously characterized branch site genetic suppression assay, we generated second-site mutations in the suppressor U12 snRNA to investigate the in vivo requirement of structural elements in U12-dependent splicing. Our results show that stem-loop IIa is essential and required for in vivo splicing. Interestingly, an evolutionarily conserved stem-loop IIb is dispensable for splicing. We also show that stem-loop III, which binds to a p65 RNA binding protein of the U11-U12 di.snRNP complex, is essential for in vivo splicing. The data validate the existence of proposed stem-loops of U12 snRNA and provide experimental support for individual secondary structures.
Collapse
Affiliation(s)
- Kavleen Sikand
- Center for Gene Regulation in Health and Disease, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | |
Collapse
|
15
|
Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol Cell 2010; 38:416-27. [PMID: 20471947 DOI: 10.1016/j.molcel.2010.02.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/10/2009] [Accepted: 02/16/2010] [Indexed: 12/16/2022]
Abstract
U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here, we identify a U2 snRNA structure, the branchpoint-interacting stem loop (BSL), which presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests that it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing.
Collapse
|
16
|
Zargarian L, Kanevsky I, Bazzi A, Boynard J, Chaminade F, Fossé P, Mauffret O. Structural and dynamic characterization of the upper part of the HIV-1 cTAR DNA hairpin. Nucleic Acids Res 2009; 37:4043-54. [PMID: 19417069 PMCID: PMC2709575 DOI: 10.1093/nar/gkp297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
First strand transfer is essential for HIV-1 reverse transcription. During this step, the TAR RNA hairpin anneals to the cTAR DNA hairpin; this annealing reaction is promoted by the nucleocapsid protein and involves an initial loop–loop interaction between the apical loops of TAR and cTAR. Using NMR and probing methods, we investigated the structural and dynamic properties of the top half of the cTAR DNA (mini-cTAR). We show that the upper stem located between the apical and the internal loops is stable, but that the lower stem of mini-cTAR is unstable. The residues of the internal loop undergo slow motions at the NMR time-scale that are consistent with conformational exchange phenomena. In contrast, residues of the apical loop undergo fast motions. The lower stem is destabilized by the slow interconversion processes in the internal loop, and thus the internal loop is responsible for asymmetric destabilization of mini-cTAR. These findings are consistent with the functions of cTAR in first strand transfer: its apical loop is suitably exposed to interact with the apical loop of TAR RNA and its lower stem is significantly destabilized to facilitate the subsequent action of the nucleocapsid protein which promotes the annealing reaction.
Collapse
Affiliation(s)
- Loussiné Zargarian
- Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Joli F, Bouchemal N, Laigle A, Hartmann B, Hantz E. Solution structure of a purine rich hexaloop hairpin belonging to PGY/MDR1 mRNA and targeted by antisense oligonucleotides. Nucleic Acids Res 2006; 34:5740-51. [PMID: 17041234 PMCID: PMC1694020 DOI: 10.1093/nar/gkl617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A preferential target of antisense oligonucleotides directed against human PGY/MDR1 mRNA is a hairpin containing a stem with a G*U wobble pair, capped by the purine-rich 5'r(GGGAUG)3' hexaloop. This hairpin is studied by multidimensional NMR and restrained molecular dynamics, with special emphasis on the conformation of south sugars and non-standard phosphate linkages evidenced in both the stem and the loop. The hairpin is found to be highly structured. The G*U wobble pair, a strong counterion binding site, displays structural particularities that are characteristic of this type of mismatch. The upper part of the stem undergoes distortions that optimize its interactions with the beginning of the loop. The loop adopts a new fold in which the single-stranded GGGA purine tract is structured in A-like conformation stacked in continuity of the stem and displays an extensive hydrogen bonding surface for recognition. The remarkable hairpin stability results from classical inter- and intra-strand interactions reinforced by numerous hydrogen bonds involving unusual backbone conformations and ribose 2'-hydroxyl groups. Overall, this work emphasizes numerous features that account for the well-ordered structure of the whole hairpin and highlights the loop properties that facilitate interaction with antisense oligonucleotides.
Collapse
Affiliation(s)
- Flore Joli
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
- Laboratoire de Biochimie Théorique, CNRS UPR 9080Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 158415167; Fax: +33 158415026;
| | - Nadia Bouchemal
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| | - Alain Laigle
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biochimie Théorique, CNRS UPR 9080Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 158415167; Fax: +33 158415026;
| | - Edith Hantz
- Laboratoire BioMoCeTi, CNRS UMR 7033UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France
| |
Collapse
|
18
|
Ogawa T, Inoue S, Yajima S, Hidaka M, Masaki H. Sequence-specific recognition of colicin E5, a tRNA-targeting ribonuclease. Nucleic Acids Res 2006; 34:6065-73. [PMID: 16963495 PMCID: PMC1635277 DOI: 10.1093/nar/gkl629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colicin E5 is a novel Escherichia coli ribonuclease that specifically cleaves the anticodons of tRNA(Tyr), tRNA(His), tRNA(Asn) and tRNA(Asp). Since this activity is confined to its 115 amino acid long C-terminal domain (CRD), the recognition mechanism of E5-CRD is of great interest. The four tRNA substrates share the unique sequence UQU within their anticodon loops, and are cleaved between Q (modified base of G) and 3' U. Synthetic minihelix RNAs corresponding to the substrate tRNAs were completely susceptible to E5-CRD and were cleaved in the same manner as the authentic tRNAs. The specificity determinant for E5-CRD was YGUN at -1 to +3 of the 'anticodon'. The YGU is absolutely required and the extent of susceptibility of minihelices depends on N (third letter of the anticodon) in the order A > C > G > U accounting for the order of susceptibility tRNA(Tyr) > tRNA(Asp) > tRNA(His), tRNA(Asn). Contrastingly, we showed that GpUp is the minimal substrate strictly retaining specificity to E5-CRD. The effect of contiguous nucleotides is inconsistent between the loop and linear RNAs, suggesting that nucleotide extension on each side of GpUp introduces a structural constraint, which is reduced by a specific loop structure formation that includes a 5' pyrimidine and 3' A.
Collapse
Affiliation(s)
- Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
19
|
Kieken F, Paquet F, Brulé F, Paoletti J, Lancelot G. A new NMR solution structure of the SL1 HIV-1Lai loop-loop dimer. Nucleic Acids Res 2006; 34:343-52. [PMID: 16410614 PMCID: PMC1331991 DOI: 10.1093/nar/gkj427] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dimerization of genomic RNA is directly related with the event of encapsidation and maturation of the virion. The initiating sequence of the dimerization is a short autocomplementary region in the hairpin loop SL1. We describe here a new solution structure of the RNA dimerization initiation site (DIS) of HIV-1Lai. NMR pulsed field-gradient spin-echo techniques and multidimensional heteronuclear NMR spectroscopy indicate that this structure is formed by two hairpins linked by six Watson–Crick GC base pairs. Hinges between the stems and the loops are stabilized by intra and intermolecular interactions involving the A8, A9 and A16 adenines. The coaxial alignment of the three A-type helices present in the structure is supported by previous crystallography analysis but the A8 and A9 adenines are found in a bulged in position. These data suggest the existence of an equilibrium between bulged in and bulged out conformations in solution.
Collapse
Affiliation(s)
| | | | | | | | - Gérard Lancelot
- To whom correspondence should be addressed. Tel: +33 2 38 25 55 71;
| |
Collapse
|
20
|
Sakamoto T, Oguro A, Kawai G, Ohtsu T, Nakamura Y. NMR structures of double loops of an RNA aptamer against mammalian initiation factor 4A. Nucleic Acids Res 2005; 33:745-54. [PMID: 15687383 PMCID: PMC548364 DOI: 10.1093/nar/gki222] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A high affinity RNA aptamer (APT58, 58 nt long) against mammalian initiation factor 4A (eIF4A) requires nearly its entire nucleotide sequence for efficient binding. Since splitting either APT58 or eIF4A into two domains diminishes the affinity for each other, it is suggested that multiple interactions or a global interaction between the two molecules accounts for the high affinity. To understand the structural basis of APT58's global recognition of eIF4A, we determined the solution structure of two essential nucleotide loops (AUCGCA and ACAUAGA) within the aptamer using NMR spectroscopy. The AUCGCA loop is stabilized by a U-turn motif and contains a non-canonical A:A base pair (the single hydrogen bond mismatch: Hoogsteen/Sugar-edge). On the other hand, the ACAUAGA loop is stabilized by an AUA tri-nucleotide loop motif and contains the other type of A:A base pair (single hydrogen bond mismatch: Watson-Crick/Watson-Crick). Considering the known structural and functional properties of APT58, we propose that the AUCGCA loop is directly involved in the interaction with eIF4A, while the flexibility of the ACAUAGA loop is important to support this interaction. The Watson-Crick edges of C7 and C9 in the AUCGCA loop may directly interact with eIF4A.
Collapse
Affiliation(s)
| | | | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of TechnologyNarashino-shi, Chiba 275-0016, Japan
| | | | - Yoshikazu Nakamura
- To whom correspondence should be addressed. Tel: +81 3 5449 5307; Fax: +81 3 5449 5415;
| |
Collapse
|
21
|
Popenda M, Milecki J, Adamiak RW. High salt solution structure of a left-handed RNA double helix. Nucleic Acids Res 2004; 32:4044-54. [PMID: 15292450 PMCID: PMC506817 DOI: 10.1093/nar/gkh736] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Right-handed RNA duplexes of (CG)n sequence undergo salt-induced helicity reversal, forming left-handed RNA double helices (Z-RNA). In contrast to the thoroughly studied Z-DNA, no Z-RNA structure of natural origin is known. Here we report the NMR structure of a half-turn, left-handed RNA helix (CGCGCG)2 determined in 6 M NaClO4. This is the first nucleic acid motif determined at such high salt. Sequential assignments of non-exchangeable proton resonances of the Z-form were based on the hitherto unreported NOE connectivity path [H6(n)-H5'/H5''(n)-H8(n+1)-H1'(n+1)-H6(n+2)] found for left-handed helices. Z-RNA structure shows several conformational features significantly different from Z-DNA. Intra-strand but no inter-strand base stacking was observed for both CpG and GpC steps. Helical twist angles for CpG steps have small positive values (4-7 degrees), whereas GpC steps have large negative values (-61 degrees). In the full-turn model of Z-RNA (12.4 bp per turn), base pairs are much closer to the helix axis than in Z-DNA, thus both the very deep, narrow minor groove with buried cytidine 2'-OH groups, and the major groove are well defined. The 2'-OH group of cytidines plays a crucial role in the Z-RNA structure and its formation; 2'-O-methylation of cytidine, but not of guanosine residues prohibits A to Z helicity reversal.
Collapse
Affiliation(s)
- Mariusz Popenda
- Laboratory of Structural Chemistry of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznań, Poland and Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | | |
Collapse
|
22
|
Heidrich N, Brantl S. Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense RNA. J Mol Biol 2003; 333:917-29. [PMID: 14583190 DOI: 10.1016/j.jmb.2003.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antisense-RNA mediated gene regulation has been found and studied in detail mainly in prokaryotic accessory DNA elements. In spite of different regulatory mechanisms, in all cases a rapid interaction between antisense and target RNA has been shown to be crucial for efficient regulation. Recently, a sequence comparison revealed in 45 antisense RNA control systems a 5' YUNR motif indicative for the formation of a U-turn structure in either an antisense or a target RNA loop and confirmed in the case of the hok/sok system of plasmid R1 its importance for regulation.Here, we demonstrate the importance of the 5' YUNR motif in the target RNA (RNAII) loop L1 of the replication control system of plasmid pIP501. The effect of four individual mutations in L1 was studied in vivo and in vitro. Mutations that maintained the putative U-turn or swapped it from sense to antisense RNA were silent, whereas mutations that eliminated the 5'-YUNR motif showed two- to threefold elevated copy numbers in vivo in correlation with three- to fourfold reduced inhibition rate constants of the complementary RNAIII species in vitro, whereas the half-lives of all RNAIII species were not affected. ENU probing experiments confirmed the U-turn structure for the silent mutation (N-C) and disruption of this structure upon alteration of the invariant U or inversion of the YUNR motif-containing loop. RNA secondary structure probing excluded loop size alterations as a reason for altered inhibition rates. Implications for the pathway and efficiency of RNAII/RNAIII interaction, and hence, pIP501 copy-number control, are discussed.
Collapse
Affiliation(s)
- Nadja Heidrich
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | |
Collapse
|
23
|
Abstract
DNA sequences containing short adenine tracts are intrinsically curved and play a role in transcriptional regulation. Despite many high-resolution NMR and x-ray studies, the origins of curvature remain disputed. Long-range restraints provided by 85 residual dipolar couplings were measured for a DNA decamer containing an adenine (A)(4)-tract and used to refine the structure. The overall bend in the molecule is a result of in-phase negative roll in the A-tract and positive roll at its 5' junction, as well as positive and negative tilt inside the A-tract and near its junctions. The bend magnitude and direction obtained from NMR structures is 9.0 degrees into the minor groove in a coordinate frame located at the third AT base pair. We evaluated long-range and wedge models for DNA curvature and concluded that our data for A-tract curvature are best explained by a "delocalized bend" model. The global bend magnitude and direction of the NMR structure are in excellent agreement with the junction model parameters used to rationalize gel electrophoretic data and with preliminary results of a cyclization kinetics assay from our laboratory.
Collapse
Affiliation(s)
- Andrej Barbic
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
24
|
Vallurupalli P, Moore PB. The solution structure of the loop E region of the 5S rRNA from spinach chloroplasts. J Mol Biol 2003; 325:843-56. [PMID: 12527295 DOI: 10.1016/s0022-2836(02)01270-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A structure has been obtained for the loop E region of the 5S rRNA from Spinacia oleracia chloroplast ribosomes using residual dipolar coupling data as well as NOE, J coupling and chemical shift information. Even though the loop E sequence of this chloroplast 5S rRNA differs from that of Escherichia coli loop E at approximately 40% of its positions, its conformation is remarkably similar to that of E.coli loop E. Consistent with this conclusion, ribosomal protein L25 from E.coli, which binds to the loop E region of both intact E.coli 5S rRNA and to oligonucleotides containing that sequence, also binds to the chloroplast-derived oligonucleotide discussed here.
Collapse
|
25
|
Lebars I, Yoshizawa S, Stenholm AR, Guittet E, Douthwaite S, Fourmy D. Structure of 23S rRNA hairpin 35 and its interaction with the tylosin-resistance methyltransferase RlmAII. EMBO J 2003; 22:183-92. [PMID: 12514124 PMCID: PMC140097 DOI: 10.1093/emboj/cdg022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bacterial rRNA methyltransferase RlmAII (formerly TlrB) contributes to resistance against tylosin-like 16-membered ring macrolide antibiotics. RlmAII was originally discovered in the tylosin-producer Streptomyces fradiae, and members of this subclass of methyltransferases have subsequently been found in other Gram-positive bacteria, including Streptococcus pneumoniae. In all cases, RlmAII methylates 23S rRNA at nucleotide G748, which is situated in a stem-loop (hairpin 35) at the macrolide binding site of the ribosome. The conformation of hairpin 35 recognized by RlmAII is shown here by NMR spectroscopy to resemble the anticodon loop of tRNA. The loop folds independently of the rest of the 23S rRNA, and is stabilized by a non-canonical G-A pair and a U-turn motif, rendering G748 accessible. Binding of S.pneumoniae RlmAII induces changes in NMR signals at specific nucleotides that are involved in the methyltransferase-RNA interaction. The conformation of hairpin 35 that interacts with RlmAII is radically different from the structure this hairpin adopts within the 50S subunit. This indicates that the hairpin undergoes major structural rearrangement upon interaction with ribosomal proteins during 50S assembly.
Collapse
Affiliation(s)
- Isabelle Lebars
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France and Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Corresponding authors e-mail: or
| | - Satoko Yoshizawa
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France and Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Corresponding authors e-mail: or
| | - Anne R. Stenholm
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France and Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Corresponding authors e-mail: or
| | - Eric Guittet
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France and Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Corresponding authors e-mail: or
| | - Stephen Douthwaite
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France and Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Corresponding authors e-mail: or
| | - Dominique Fourmy
- Laboratoire de RMN, ICSN-CNRS, 1 ave de la terrasse, 91190 Gif-sur-Yvette, France and Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark Corresponding authors e-mail: or
| |
Collapse
|
26
|
Cromsigt J, van Buuren B, Schleucher J, Wijmenga S. Resonance assignment and structure determination for RNA. Methods Enzymol 2002; 338:371-99. [PMID: 11460559 DOI: 10.1016/s0076-6879(02)38229-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Cromsigt
- Department of Medical Biosciences-Medical Biophysics, Umea University, S-901 87 Umea, Sweden
| | | | | | | |
Collapse
|
27
|
Nagaswamy U, Gao X, Martinis SA, Fox GE. NMR structure of a ribosomal RNA hairpin containing a conserved CUCAA pentaloop. Nucleic Acids Res 2001; 29:5129-39. [PMID: 11812846 PMCID: PMC97551 DOI: 10.1093/nar/29.24.5129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure of a 23 nt RNA sequence, rGGACCCGGGCUCAACCUGGGUCC, was elucidated using homonuclear NMR, distance geometry and restrained molecular dynamics. This RNA is analogous to residues 612-628 of the Escherichia coli 16S rRNA. The structure of the RNA reveals the presence of a pentaloop closed by a duplex stem in typical A-form conformation. The loop does not form a U-turn motif, as previously predicted. A non-planar A.C.A triple base interaction (hydrogen bonds A13 NH6-C10 O2 and C10 N3-A14 NH6) stabilizing the loop structure is inferred from structure calculations. The CUCAA loop structure is asymmetrical, characterized by a reversal of the phosphodiester backbone at the UC step (hydrogen bond C12 NH4-C10 O2') and 3'-stacking within the CAA segment. Loop base U11 is oriented towards the major groove and the consecutive adenosines on the 3'-end of the loop are well stacked, exposing their reactive functional groups in the minor groove defined by the duplex stem. The solution structure of the loop resembles that seen in the 3.3 A X-ray structure of the entire 30S subunit, where the analogous loop interacts with a ribosomal protein and a receptor RNA helix.
Collapse
Affiliation(s)
- U Nagaswamy
- Department of Biology and Biochemistry, 3201 Cullen Boulevard, University of Houston, Houston, TX 77204-5501, USA
| | | | | | | |
Collapse
|
28
|
Huber PW, Rife JP, Moore PB. The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge. J Mol Biol 2001; 312:823-32. [PMID: 11575935 DOI: 10.1006/jmbi.2001.4966] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of an oligonucleotide containing the helix III sequence from Xenopus oocyte 5 S rRNA has been determined by NMR spectroscopy. Helix III includes two unpaired adenosine residues, flanked on either side by G:C base-pairs, that are required for binding of ribosomal protein L5. The consensus conformation of helix III in the context provided by this oligonucleotide has the two adenosine residues located in the minor groove and stacked upon the 3' flanking guanosine residue, consistent with biochemical studies of free 5 S rRNA in solution. A distinct break in stacking that occurs between the first adenosine residue of the bulge and the flanking 5' guanosine residue exposes the base of the adenosine residue in the minor groove and the base of the guanosine residue in the major groove. The major groove of the helix is widened at the site of the unpaired nucleotides and the helix is substantially bent; nonetheless, the G:C base-pairs flanking the bulge are intact. The data indicate that there may be conformational heterogeneity centered in the bulge region. The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution. Thus, the conformation of helix III probably changes when 5 S rRNA is incorporated into the ribosome.
Collapse
Affiliation(s)
- P W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
29
|
Sekine M, Kurasawa O, Shohda KI, Seio K, Wada T. Essential Factors for Stabilization of the Predominant C3′-endo Conformation in Dinucleoside Phosphotriester Derivatives with Cyclonucleotide Bridge Structures at the Downstream 3′-Position. European J Org Chem 2001. [DOI: 10.1002/1099-0690(200105)2001:10<1989::aid-ejoc1989>3.0.co;2-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Morosyuk SV, SantaLucia J, Cunningham PR. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. III. Functional analysis of the 690 loop. J Mol Biol 2001; 307:213-28. [PMID: 11243815 DOI: 10.1006/jmbi.2000.4432] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An instant-evolution experiment was performed on the eight nucleotides comprising the loop region of the 690 hairpin in Escherichia coli 16 S ribosomal RNA. Positions 690 to 697 were randomly mutated and 101 unique functional mutants were isolated, sequenced and analyzed for function in vivo. Non-random nucleotide distributions were observed at each of the mutated positions except 693 and 694. Nucleotide identity significantly affected ribosome function at positions 690, 695, 696 and 697. Pyrimidines were absent at position 696 in the instant-evolution pool as were C at position 691 and G at position 697. A highly significant covariation was observed between nucleotides 690 and 697. No functional double mutants at positions 691 and 696 were obtained from the instant-evolution pool. In our NMR structure of the 690 loop, both the G690.U697 and G691.A696 form sheared hydrogen-bonded mismatches. To further examine the functional constraints between these paired nucleotides, one set of site-directed mutations was constructed at positions 690:697 and another set was constructed at positions 691:696. Functional analysis of the site-directed mutants is consistent with our instant-evolution findings and revealed constraints on the placement of specific functional groups observed in the NMR structure. Ten instant-evolution mutants were isolated that are more functional than the wild-type. Hyperactivity in these mutants correlates with a single mutation at position 693.
Collapse
MESH Headings
- Base Pair Mismatch/physiology
- Conserved Sequence
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/physiology
- Evolution, Molecular
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Phylogeny
- Protons
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/physiology
Collapse
Affiliation(s)
- S V Morosyuk
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
31
|
Morosyuk SV, Cunningham PR, SantaLucia J. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. II. NMR solution structure. J Mol Biol 2001; 307:197-211. [PMID: 11243814 DOI: 10.1006/jmbi.2000.4431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of the conserved 690 hairpin from Escherichia coli 16 S rRNA was determined by NMR spectroscopy. The 690 loop is located at the surface of the 30 S subunit in the platform region and has been implicated in interactions with P-site bound tRNA, E-site mRNA, S11 binding, IF3 binding, and in RNA-RNA interactions with the 790 loop of 16 S rRNA and domain IV of 23 S rRNA. The structure reveals a novel sheared type G690.U697 base-pair with a single hydrogen bond from the G690 amino to U697-04. G691 and A696 also form a sheared pair and U692 forms a U-turn with an H-bond to the A695 non-bridging phosphate oxygen. The sheared pairs and U-turn result in the continuous single-stranded stacking of five residues from 6693 to U697 with their Watson-Crick functional groups exposed in the minor groove. The overall fold of the 690 hairpin is similar to the anticodon loop of tRNA. The structure provides an explanation for chemical protection patterns in the loop upon interaction with tRNA, the 50 S subunit, and S11. In vivo genetic studies demonstrate the functional importance of the motifs observed in the solution structure of the 690 hairpin.
Collapse
Affiliation(s)
- S V Morosyuk
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
32
|
Affiliation(s)
- S E Wells
- Center for Molecular Biology of RNA, University of California, Santa Cruz 95064, USA
| | | | | | | |
Collapse
|
33
|
Gutell RR, Cannone JJ, Shang Z, Du Y, Serra MJ. A story: unpaired adenosine bases in ribosomal RNAs. J Mol Biol 2000; 304:335-54. [PMID: 11090278 DOI: 10.1006/jmbi.2000.4172] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1985 an analysis of the Escherichia coli 16 S rRNA covariation-based structure model revealed a strong bias for unpaired adenosines. The same analysis revealed that the majority of the G, C, and U bases were paired. These biases are (now) consistent with the high percentage of unpaired adenosine nucleotides in several structure motifs. An analysis of a larger set of bacterial comparative 16 S and 23 S rRNA structure models has substantiated this initial finding and revealed new biases in the distribution of adenosine nucleotides in loop regions. The majority of the adenosine nucleotides are unpaired, while the majority of the G, C, and U bases are paired in the covariation-based structure model. The unpaired adenosine nucleotides predominate in the middle and at the 3' end of loops, and are the second most frequent nucleotide type at the 5' end of loops (G is the most common nucleotide). There are additional biases for unpaired adenosine nucleotides at the 3' end of loops and adjacent to a G at the 5' end of the helix. The most prevalent consecutive nucleotides are GG, GA, AG, and AA. A total of 70 % of the GG sequences are within helices, while more than 70 % of the AA sequences are unpaired. Nearly 50 % of the GA sequences are unpaired, and approximately one-third of the AG sequences are within helices while another third are at the 3' loop.5' helix junction. Unpaired positions with an adenosine nucleotide in more than 50 % of the sequences at the 3' end of 16 S and 23 S rRNA loops were identified and arranged into the A-motif categories XAZ, AAZ, XAG, AAG, and AAG:U, where G or Z is paired, G:U is a base-pair, and X is not an A and Z is not a G in more than 50 % of the sequences. These sequence motifs were associated with several structural motifs, such as adenosine platforms, E and E-like loops, A:A and A:G pairings at the end of helices, G:A tandem base-pairs, GNRA tetraloop hairpins, and U-turns.
Collapse
MESH Headings
- Adenosine/genetics
- Adenosine/metabolism
- Bacteria/genetics
- Base Composition
- Base Pairing
- Base Sequence
- Computational Biology
- Introns/genetics
- Molecular Sequence Data
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Sequence Alignment
- Software
Collapse
Affiliation(s)
- R R Gutell
- Institute for Cellular and Molecular Biology, University of Texas, 2500 Speedway, Austin, TX, 78712-1095, USA.
| | | | | | | | | |
Collapse
|
34
|
Gutell RR, Cannone JJ, Konings D, Gautheret D. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J Mol Biol 2000; 300:791-803. [PMID: 10891269 DOI: 10.1006/jmbi.2000.3900] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U-turn is a well-known RNA motif characterized by a sharp reversal of the RNA backbone following a single-stranded uridine base. In experimentally determined U-turn motifs, the nucleotides 3' to the turn are frequently involved in tertiary interactions, rendering this motif particularly attractive in RNA modeling and functional studies. The U-turn signature is composed of an UNR sequence pattern flanked by a Y:Y, Y:A (Y=pyrimidine) or G:A base juxtaposition. We have identified 33 potential UNR-type U-turns and 25 related GNRA-type U-turns in a large set of aligned 16 S and 23 S rRNA sequences. U-turn candidates occur in hairpin loops (34 times) as well as in internal and multi-stem loops (24 times). These are classified into ten families based on loop type, sequence pattern (UNR or GNRA) and the nature of the closing base juxtaposition. In 13 cases, the bases on the 3' side of the turn, or on the immediate 5' side, are involved in tertiary covariations, making these sites strong candidates for tertiary interactions.
Collapse
MESH Headings
- Animals
- Anticodon/chemistry
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Chloroplasts/genetics
- Consensus Sequence/genetics
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- R R Gutell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712-1095, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
An RNA motif is a discrete sequence or combination of base juxtapositions found in naturally occurring RNAs in unexpectedly high abundance. Because all the motifs examined so far have three-dimensional structures independent of the context in which they are embedded, they are important components of the "kit" of structural elements from which RNAs are constructed. This review discusses the structures of the motifs that have been identified so far and speculates on the importance of their role in determining RNA conformation and their evolutionary origin.
Collapse
Affiliation(s)
- P B Moore
- Department of Chemistry and Molecular Biophysics, Yale University, New Haven, Connecticut 06520-8107, USA.
| |
Collapse
|
36
|
Abstract
Conventional antisense RNAs, such as those controlling plasmid replication and maintenance, inhibit the function of their target RNAs rapidly and efficiently. Novel findings show that a common U-turn loop structure mediates fast RNA pairing in the majority of these RNA controlled systems. Usually, an antisense RNA regulates a single, cognate target RNA only. Recent reports, however, show that antisense RNAs can act as promiscuous regulators that control multiple genes in concert to integrate complex physiological responses in Escherichia coli.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genes, Regulator/genetics
- Genes, Regulator/physiology
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
Collapse
Affiliation(s)
- T Franch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | | |
Collapse
|
37
|
Abstract
Several crystal structures of RNA fragments, alone or in complex with a specific protein, have been recently solved. In addition, the structures of an artificial ribozyme, the leadzyme, and the cleavage product of a human pathogen ribozyme, have extended the structural diversity of ribozyme architectures. The attained set of folding rules and motifs expand the repertoire seen previously in tRNA structures.
Collapse
Affiliation(s)
- E Westhof
- UPR9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg-Cedex, F-67084, France.
| | | |
Collapse
|
38
|
Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 1999; 294:1115-25. [PMID: 10600370 DOI: 10.1006/jmbi.1999.3306] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient gene control by antisense RNA requires rapid bi-molecular interaction with a cognate target RNA. A comparative analysis revealed that a YUNR motif (Y=pyrimidine, R=purine) is ubiquitous in RNA recognition loops in antisense RNA-regulated gene systems. The (Y)UNR sequence motif specifies two intraloop hydrogen bonds forming U-turn structures in many anticodon-loops and all T-loops of tRNAs, the hammerhead ribozyme and in other conserved RNA loops. This structure creates a sharp bend in the RNA phosphate-backbone and presents the following three to four bases in a solvent-exposed, stacked configuration providing a scaffold for rapid interaction with complementary RNA. Sok antisense RNA from plasmid R1 inhibits translation of the hok mRNA by preventing ribosome entry at the mok Shine & Dalgarno element. The 5' single-stranded region of Sok-RNA recognizes a loop in the hok mRNA. We show here, that the initial pairing between Sok antisense RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1). Mutations that eliminate the YUNR motif in the target loop of hok mRNA resulted in reduced antisense RNA pairing kinetics, whereas mutations maintaining the YUNR motif were silent. In addition, RNA phosphate-backbone accessibility probing by ethylnitrosourea was consistent with a U-turn structure formation promoted by the YUNR motif. Since the YUNR U-turn motif is present in the recognition units of many antisense/target pairs, the motif is likely to be a generally employed enhancer of RNA pairing rates. This suggestion is consistent with the re-interpretation of the mutational analyses of several antisense control systems including RNAI/RNAII of ColE1, CopA/CopT of R1 and RNA-IN/RNA-OUT of IS10.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Toxins
- Base Pairing/genetics
- Base Sequence
- Escherichia coli Proteins
- Ethylnitrosourea/metabolism
- Gene Expression Regulation, Bacterial/genetics
- Hydrogen Bonding
- Kinetics
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- Prokaryotic Cells/metabolism
- RNA
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- T Franch
- Department of Molecular Biology, Odense University Campusvej, Denmark
| | | | | | | | | |
Collapse
|
39
|
Culver GM, Cate JH, Yusupova GZ, Yusupov MM, Noller HF. Identification of an RNA-protein bridge spanning the ribosomal subunit interface. Science 1999; 285:2133-6. [PMID: 10497132 DOI: 10.1126/science.285.5436.2133] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 7.8 angstrom crystal structure of the 70S ribosome reveals a discrete double-helical bridge (B4) that projects from the 50S subunit, making contact with the 30S subunit. Preliminary modeling studies localized its contact site, near the bottom of the platform, to the binding site for ribosomal protein S15. Directed hydroxyl radical probing from iron(II) tethered to S15 specifically cleaved nucleotides in the 715 loop of domain II of 23S ribosomal RNA, one of the known sites in 23S ribosomal RNA that are footprinted by the 30S subunit. Reconstitution studies show that protection of the 715 loop, but none of the other 30S-dependent protections, is correlated with the presence of S15 in the 30S subunit. The 715 loop is specifically protected by binding free S15 to 50S subunits. Moreover, the previously determined structure of a homologous stem-loop from U2 small nuclear RNA fits closely to the electron density of the bridge.
Collapse
Affiliation(s)
- G M Culver
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
40
|
Rife JP, Stallings SC, Correll CC, Dallas A, Steitz TA, Moore PB. Comparison of the crystal and solution structures of two RNA oligonucleotides. Biophys J 1999; 76:65-75. [PMID: 9876123 PMCID: PMC1302500 DOI: 10.1016/s0006-3495(99)77178-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Until recently, there were no examples of RNAs whose structures had been determined by both NMR and x-ray crystallography, and thus there was no experimental basis for assessing the accuracy of RNA solution structures. A comparison of the solution and the crystal structures of two RNAs is presented, which demonstrates that NMR can produce solution structures that resemble crystal structures and thus validates the application to RNA of a methodology developed initially for the determination of protein conformations. Models for RNA solution structures are appreciably affected by the parameters used for their refinement that describe intramolecular interactions. For the RNAs of interest here, the more realistic those parameters, the greater the similarity between solution structures and crystal structures.
Collapse
Affiliation(s)
- J P Rife
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 USA
| | | | | | | | | | | |
Collapse
|
41
|
Puglisi EV, Puglisi JD. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. NATURE STRUCTURAL BIOLOGY 1998; 5:1033-6. [PMID: 9846871 DOI: 10.1038/4141] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interaction of HIV-1 genomic RNA and human tRNA(Lys)3 initiates viral reverse transcription. An adenosine-rich (A-rich) loop in HIV RNA mediates complex formation between tRNA and viral RNA. We have determined the structure of an A-rich loop oligonucleotide using nuclear magnetic resonance spectroscopy. The loop structure is stabilized by a noncanonical G-A pair and a U-turn motif, which leads to stacking of the conserved adenosines. The structure has similarity to the tRNA anticodon structure, and suggests possible mechanisms for its role in initiation of reverse transcription.
Collapse
Affiliation(s)
- E V Puglisi
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | |
Collapse
|
42
|
Steinbeck C, Richert C. The Role of Ionic Backbones in RNA Structure: An Unusually Stable Non-Watson−Crick Duplex of a Nonionic Analog in an Apolar Medium. J Am Chem Soc 1998. [DOI: 10.1021/ja9817951] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph Steinbeck
- Contribution from the Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| | - Clemens Richert
- Contribution from the Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| |
Collapse
|
43
|
Lee AJ, Crothers DM. The solution structure of an RNA loop-loop complex: the ColE1 inverted loop sequence. Structure 1998; 6:993-1005. [PMID: 9739090 DOI: 10.1016/s0969-2126(98)00101-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Replication of the ColE1 plasmid of Escherichia coli is regulated by the interaction of sense and antisense plasmid-encoded transcripts. The antisense RNA I negatively regulates the replication of the plasmid by duplex formation with complementary RNA II. The interaction is initiated by the formation of a double helix between seven-nucleotide loops from each RNA and is stabilized by binding of the RNA one modulator (ROM) protein. The ROM protein is thought to recognize a specific RNA structure, regardless of sequence. RESULTS The solution structure of a loop-loop complex between model RNA hairpins that resemble RNA I and RNA II has been determined by nuclear magnetic resonance spectroscopy. The model hairpins have loop sequences inverted 5' to 3' relative to the wild-type sequence and were chosen because of their complex's slow dissociation in comparison to the wild type. The complex has continuous stacking from the 3'-side of one stem helix through the loop-loop helix to the other stem helix. One residue from each hairpin has a unique phosphodiester bond which bridges and narrows the major groove. These bridging phosphates are in close proximity to the phosphate groups of the adjacent bases, forming unique structural motifs called phosphate clusters. The purine residue at the 3'-end of the loop-loop helix of one RNA stacks on a purine residue on the 5'-side of the other RNA stem, and there are strong cross-strand stacking interactions between guanine bases in the stem helices adjacent to the loops. CONCLUSIONS Unique distortions, such as the strong bend and the phosphate clusters flanking the major groove of the loop-loop helix, provide an attractive nonsequence-specific structural feature for recognition by the ROM protein. The structure provides a basis for rationalizing the sequence dependence of the stability of loop-loop interaction.
Collapse
Affiliation(s)
- A J Lee
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | |
Collapse
|
44
|
Abstract
BACKGROUND Ribosomal RNAs contain many modified nucleotides. The functions of these nucleotides are poorly understood and few of them are strongly conserved. The final stem loop in 16S-like rRNAs is an exception in both regards. In both prokaryotes and eukaryotes, the tetranucleotide loop that caps the 3'-terminal stem contains two N6, N6-dimethyladenosine residues. The sequence and pattern of methylation are conserved within the loop, and there is evidence that these methylated nucleotides play an important role in subunit association and the initiation of protein synthesis. Because of the integral role that helix 45 plays in ribosome function, it is important to know what consequences these methylated nucleotides have on its structure. RESULTS We have solved the solution structure of a 14-nucleotide analog of the terminal stem loop of bacterial 16S rRNA, which contains N2-methylguanosine as well as two N6,N6-dimethyladenosines. CONCLUSIONS The methylation of the 16S rRNA stem loop completely alters its conformation, which would otherwise be a GNRA tetraloop. It is likely that the conformation of this loop is crucial for its function, having implications for its interaction with ribosomal subunits and its role in the initiation of protein synthesis.
Collapse
Affiliation(s)
- J P Rife
- Department of Chemistry, Yale University New Haven, CT 06520, USA
| | | |
Collapse
|
45
|
Abstract
New information concerning RNA structure is accumulating at an ever increasing rate-from short helices with mismatched bases of 5S rRNA and complex RNA aptamers. The importance of recurring structural motifs, ion binding, and the kinetics and energetics of folding in RNA structure and function is now being recognized and addressed.
Collapse
Affiliation(s)
- G L Conn
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
46
|
Diener JL, Moore PB. Solution Structure of a Substrate for the Archaeal Pre-tRNA Splicing Endonucleases: The Bulge-Helix-Bulge Motif. Mol Cell 1998. [DOI: 10.1016/s1097-2765(00)80087-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Dallas A, Moore PB. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure 1997; 5:1639-53. [PMID: 9438864 DOI: 10.1016/s0969-2126(97)00311-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND 5S ribosomal RNA is the smallest rRNA. Its Watson-Crick helices were identified more than 20 years ago, but the conformations of its loops have long defied analysis. One of the three arms of 5S rRNA, residues 69-106 in Escherichia coli, contains a 14-residue internal loop called loop E. The sequence of loop E is conserved within kingdoms, and is terminated by a pyrimidine-rich loop called loop D. Loop E is the binding site for the ribosomal protein L25 in the E. coli ribosome. RESULTS The solution structure of a 42-nucleotide derivative of E. coli 5S rRNA that includes loops D and E has been determined by nuclear magnetic resonance spectroscopy. Formally, loop E is not a loop at all; it is a double helical structure that contains seven, consecutive non-Watson-Crick base pairs. The major groove of the molecule is narrowed in loop E, and an unusual array of hydrogen-bond donors and acceptors appear in its minor groove. Loop D, which on paper looks like a three-pyrimidine terminal loop closed by a GC, is better thought of as a five-base loop because its closing GC is not a normal Watson-Crick pair. The two pyrimidines on the 5'-side of the loop are stacked on each other, and tilt into the minor groove of the adjacent helix. The third pyrimidine is fully exposed to solvent. CONCLUSIONS This structure rationalizes all the biochemical and chemical protection data available for the loop E-loop D arm of intact 5S rRNA. While the molecule is double helical over its entire length, the geometry of its internal loop is highly irregular, and its irregularities may explain why the loop E-loop D arm of 5S rRNA interacts specifically with ribosomal protein L25 in E. coli.
Collapse
Affiliation(s)
- A Dallas
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | |
Collapse
|