1
|
Chu F, Thornton DT, Nguyen HT. Chemical cross-linking in the structural analysis of protein assemblies. Methods 2018; 144:53-63. [PMID: 29857191 DOI: 10.1016/j.ymeth.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
For decades, chemical cross-linking of proteins has been an established method to study protein interaction partners. The chemical cross-linking approach has recently been revived by mass spectrometric analysis of the cross-linking reaction products. Chemical cross-linking and mass spectrometric analysis (CXMS) enables the identification of residues that are close in three-dimensional (3D) space but not necessarily close in primary sequence. Therefore, this approach provides medium resolution information to guide de novo structure prediction, protein interface mapping and protein complex model building. The robustness and compatibility of the CXMS approach with multiple biochemical methods have made it especially appealing for challenging systems with multiple biochemical compositions and conformation states. This review provides an overview of the CXMS approach, describing general procedures in sample processing, data acquisition and analysis. Selection of proper chemical cross-linking reagents, strategies for cross-linked peptide identification, and successful application of CXMS in structural characterization of proteins and protein complexes are discussed.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, United States.
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
2
|
Szent-Gyorgyi C, Stanfield RL, Andreko S, Dempsey A, Ahmed M, Capek S, Waggoner AS, Wilson IA, Bruchez MP. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces. J Mol Biol 2013; 425:4595-613. [PMID: 23978698 DOI: 10.1016/j.jmb.2013.08.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/19/2023]
Abstract
We report that a symmetric small-molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* fluorogen activating protein is a VL domain that binds malachite green (MG) dye to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity-determining regions are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high-affinity protein tags and capture reagents.
Collapse
Affiliation(s)
- Chris Szent-Gyorgyi
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mukherjee S, Pondaven SP, Jaroniec CP. Conformational Flexibility of a Human Immunoglobulin Light Chain Variable Domain by Relaxation Dispersion Nuclear Magnetic Resonance Spectroscopy: Implications for Protein Misfolding and Amyloid Assembly. Biochemistry 2011; 50:5845-57. [DOI: 10.1021/bi200410c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sujoy Mukherjee
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Simon P. Pondaven
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
4
|
Baden EM, Owen BAL, Peterson FC, Volkman BF, Ramirez-Alvarado M, Thompson JR. Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem 2008; 283:15853-60. [PMID: 18400753 DOI: 10.1074/jbc.m705347200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloidoses are devastating and currently incurable diseases in which the process of amyloid formation causes fatal cellular and organ damage. The molecular mechanisms underlying amyloidoses are not well known. In this study, we address the structural basis of immunoglobulin light chain amyloidosis, which results from deposition of light chains produced by clonal plasma cells. We compare light chain amyloidosis protein AL-09 to its wild-type counterpart, the kappaI O18/O8 light chain germline. Crystallographic studies indicate that both proteins form dimers. However, AL-09 has an altered dimer interface that is rotated 90 degrees from the kappaI O18/O8 dimer interface. The three non-conservative mutations in AL-09 are located within the dimer interface, consistent with their role in the decreased stability of this amyloidogenic protein. Moreover, AL-09 forms amyloid fibrils more quickly than kappaI O18/O8 in vitro. These results support the notion that the increased stability of the monomer and delayed fibril formation, together with a properly formed dimer, may be protective against amyloidogenesis. This could open a new direction into rational drug design for amyloidogenic proteins.
Collapse
Affiliation(s)
- Elizabeth M Baden
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
5
|
Ramirez-Alvarado M. Principles of protein misfolding. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:115-60. [PMID: 19121701 DOI: 10.1016/s0079-6603(08)00404-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marina Ramirez-Alvarado
- Department of Biochemistry, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
6
|
Vargas-Madrazo E, Paz-García E. An improved model of association for VH-VL immunoglobulin domains: asymmetries between VH and VL in the packing of some interface residues. J Mol Recognit 2003; 16:113-20. [PMID: 12833565 DOI: 10.1002/jmr.613] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The antibody-binding site is formed as a result of the association between VH and VL domains. Several studies have shown that this association plays an important role in the mechanism of antigen-antibody interaction (Stanfield et al. Structure 1: 83-93, 1993). Considering this, we propose that variations in the VH-VL association are part of the diversification strategy of the antibody repertoires. Previously, a model of association for VH-VL domains based on geometrical characteristics of the packing at the interface was developed by Chothia et al. (J. Mol. Biol. 186: 61-663, 1985). This model includes a common association form for antibodies and a three-layer structure for the interface. In the present work, a complementary model is introduced to account for the general geometrical restrictions of the VH-VL interface, and particular arrangements related to the chemical properties or the side-chain orientations of participating residues. Groups of residues assume common side-chain orientations, which are apparently related to particular functions of different interface zones. Analyses of amino acid usage and network are in agreement with the side-chain orientation patterns. Based on these observations, a three-zone model has evolved to illuminate geometrical and functional restrictions acting over the VH-VL interface. Additionally, this study has revealed the asymmetrical relationships between VH and VL residues important for the association of the two domains.
Collapse
Affiliation(s)
- Enrique Vargas-Madrazo
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, México.
| | | |
Collapse
|
7
|
Ramoni R, Vincent F, Ashcroft AE, Accornero P, Grolli S, Valencia C, Tegoni M, Cambillau C. Control of domain swapping in bovine odorant-binding protein. Biochem J 2002; 365:739-48. [PMID: 11931632 PMCID: PMC1222703 DOI: 10.1042/bj20011631] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 03/25/2002] [Accepted: 04/04/2002] [Indexed: 11/17/2022]
Abstract
As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping.
Collapse
Affiliation(s)
- Roberto Ramoni
- Dipartimento di Produzioni Animali, Biotecnologie Veterinaire, Qualità e Sicurezza degli Alimenti, Università di Parma, Via del Taglio 8, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pokkuluri PR, Gu M, Cai X, Raffen R, Stevens FJ, Schiffer M. Factors contributing to decreased protein stability when aspartic acid residues are in beta-sheet regions. Protein Sci 2002; 11:1687-94. [PMID: 12070321 PMCID: PMC2373667 DOI: 10.1110/ps.4920102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 03/26/2002] [Accepted: 03/28/2002] [Indexed: 10/14/2022]
Abstract
Asp residues are significantly under represented in beta-sheet regions of proteins, especially in the middle of beta-strands, as found by a number of studies using statistical, modeling, or experimental methods. To further understand the reasons for this under representation of Asp, we prepared and analyzed mutants of a beta-domain. Two Gln residues of the immunoglobulin light-chain variable domain (V(L)) of protein Len were replaced with Asp, and then the effects of these changes on protein stability and protein structure were studied. The replacement of Q38D, located at the end of a beta-strand, and that of Q89D, located in the middle of a beta-strand, reduced the stability of the parent immunoglobulin V(L) domain by 2.0 kcal/mol and 5.3 kcal/mol, respectively. Because the Q89D mutant of the wild-type V(L)-Len domain was too unstable to be expressed as a soluble protein, we prepared the Q89D mutant in a triple mutant background, V(L)-Len M4L/Y27dD/T94H, which was 4.2 kcal/mol more stable than the wild-type V(L)-Len domain. The structures of mutants V(L)-Len Q38D and V(L)-Len Q89D/M4L/Y27dD/T94H were determined by X-ray diffraction at 1.6 A resolution. We found no major perturbances in the structures of these Q-->D mutant proteins relative to structures of the parent proteins. The observed stability changes have to be accounted for by cumulative effects of the following several factors: (1) by changes in main-chain dihedral angles and in side-chain rotomers, (2) by close contacts between some atoms, and, most significantly, (3) by the unfavorable electrostatic interactions between the Asp side chain and the carbonyls of the main chain. We show that the Asn side chain, which is of similar size but neutral, is less destabilizing. The detrimental effect of Asp within a beta-sheet of an immunoglobulin-type domain can have very serious consequences. A somatic mutation of a beta-strand residue to Asp could prevent the expression of the domain both in vitro and in vivo, or it could contribute to the pathogenic potential of the protein in vivo.
Collapse
Affiliation(s)
- P R Pokkuluri
- Argonne National Laboratory, Biosciences Division, 9700 S Cass Avenue, Argonne, IL 60439, USA
| | | | | | | | | | | |
Collapse
|
9
|
Pokkuluri PR, Raffen R, Dieckman L, Boogaard C, Stevens FJ, Schiffer M. Increasing protein stability by polar surface residues: domain-wide consequences of interactions within a loop. Biophys J 2002; 82:391-8. [PMID: 11751325 PMCID: PMC1302478 DOI: 10.1016/s0006-3495(02)75403-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have examined the influence of surface hydrogen bonds on the stability of proteins by studying the effects of mutations of human immunoglobulin light chain variable domain (V(L)). In addition to the variants Y27dD, N28F, and T94H of protein kappa IV Len that were previously described, we characterized mutants M4L, L27cN, L27cQ, and K39T, double mutant M4L/Y27dD, and triple mutant M4L/Y27dD/T94H. The triple mutant had an enhanced thermodynamic stability of 4.2 kcal/mol. We determined the structure of the triple mutant by x-ray diffraction and correlated the changes in stability due to the mutations with changes in the three-dimensional structure. Y27dD mutant had increased stability of Len by 2.7 kcal/mol, a large value for a single mutation. Asp27d present in CDR1 formed hydrogen bonds with the side-chain and main-chain atoms within the loop. In the case of the K39T mutant, which reduces stability by 2 kcal/mol, Lys39 in addition to forming a hydrogen bond with a carbonyl oxygen of a neighboring loop may also favorably influence the surface electrostatics of the molecule. We showed that hydrogen bonds between residues in surface loops can add to the overall stability of the V(L) domains. The contribution to stability is further increased if the surface residue makes more than one hydrogen bond or if it forms a hydrogen bond between neighboring turns or loops separated from each other in the amino acid sequence. Based on our experiments we suggest that stabilization of proteins might be systematically accomplished by introducing additional hydrogen bonds on the surface. These substitutions are more straightforward to predict than core-packing interactions and can be selected to avoid affecting the protein's function.
Collapse
Affiliation(s)
- P R Pokkuluri
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kawahara M, Natsume A, Terada S, Kato K, Tsumoto K, Kumagai I, Miki M, Mahoney W, Ueda H, Nagamune T. Replacing factor-dependency with that for lysozyme: affordable culture of IL-6-dependent hybridoma by transfecting artificial cell surface receptor. Biotechnol Bioeng 2001; 74:416-23. [PMID: 11427943 DOI: 10.1002/bit.1132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytokines and growth factors are indispensable for the propagation and maintenance of factor-dependent mammalian cells. However, cytokines are often so expensive that the use of factor-dependent cells for industrial applications such as protein production is often not practical. Based on our previous design of a binary hen egg lysozyme (HEL)-specific receptor composed of portions of the anti-HEL antibody and the erythropoietin receptor, a new pair of chimeric receptors having the intracellular domain of gp130 were made and transfected to an interleukin-6 (IL-6)-dependent hybridoma, 7TD1. The clone expressing the two new receptors showed clear HEL dose-dependent cell growth and monoclonal antibody production in both serum-based and serum-free media without IL-6. These results establish the feasibility of applying receptor design to tailor cells for the inexpensive induction of cell growth for the purpose of producing therapeutic products.
Collapse
Affiliation(s)
- M Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Davis PD, Raffen R, Dul LJ, Vogen MS, Williamson KE, Stevens JF, Argon Y. Inhibition of amyloid fiber assembly by both BiP and its target peptide. Immunity 2000; 13:433-42. [PMID: 11070162 DOI: 10.1016/s1074-7613(00)00043-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunoglobulin light chain (LC) normally is a soluble, secreted protein, but some LC assemble into ordered fibrils whose deposition in tissues results in amyloidosis and organ failure. Here we reconstitute fibril formation in vitro and show that preformed fibrils can nucleate polymerization of soluble LC. This prion-like behavior has important physiological implications, since somatic mutations generate multiple related LC sequences. Furthermore, we demonstrate that fibril formation in vitro and aggregation of whole LC within cells are inhibited by BiP and by a synthetic peptide that is identical to a major LC binding site for BiP. We propose that LC form fibrils via an interprotein loop swap and that the underlying conformational change should be amenable to drug therapy.
Collapse
Affiliation(s)
- P D Davis
- Department of Pathology and Committee on Immunology, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pokkuluri PR, Cai X, Johnson G, Stevens FJ, Schiffer M. Change in dimerization mode by removal of a single unsatisfied polar residue located at the interface. Protein Sci 2000; 9:1852-5. [PMID: 11045631 PMCID: PMC2144710 DOI: 10.1110/ps.9.9.1852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The importance of unsatisfied hydrogen bonding potential on protein-protein interaction was studied. Two alternate modes of dimerization (conventional and flipped form) of an immunoglobulin light chain variable domain (V(L)) were previously identified. In the flipped form, interface residue Gln89 would have an unsatisfied hydrogen bonding potential. Removal of this Gln should render the flipped dimer as the more favorable quaternary form. High resolution crystallographic studies of the Q89A and Q89L mutants show, as we predicted, that these proteins indeed form flipped dimers with very similar interfaces. A small cavity is present in the Q89A mutant that is reflected in the approximately 100 times lower association constant than found for the Q89L mutant. The association constant of Q89A and Q89L proteins (4 x 10(6) M(-1) and >10(8) M(-1)) are 10- and 1,000-fold higher than that of the wild-type protein that forms conventional dimers clearly showing the energetic reasons for the flipped dimer formation.
Collapse
Affiliation(s)
- P R Pokkuluri
- Argonne National Laboratory, Biosciences Division, Illinois 60439, USA
| | | | | | | | | |
Collapse
|
13
|
Deivanayagam CC, Rich RL, Carson M, Owens RT, Danthuluri S, Bice T, Höök M, Narayana SV. Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure 2000; 8:67-78. [PMID: 10673425 DOI: 10.1016/s0969-2126(00)00081-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND [corrected] The Staphylococcus aureus collagen-binding protein Cna mediates bacterial adherence to collagen. The primary sequence of Cna has a non-repetitive collagen-binding A region, followed by the repetitive B region. The B region has one to four 23 kDa repeat units (B(1)-B(4)), depending on the strain of origin. The affinity of the A region for collagen is independent of the B region. However, the B repeat units have been suggested to serve as a 'stalk' that projects the A region from the bacterial surface and thus facilitate bacterial adherence to collagen. To understand the biological role of these B-region repeats we determined their three-dimensional structure. RESULTS B(1) has two domains (D(1) and D(2)) placed side-by-side. D(1) and D(2) have similar secondary structure and exhibit a unique fold that resembles but is the inverse of the immunoglobulin-like (IgG-like) domains. Comparison with similar immunoglobulin superfamily (IgSF) structures shows novel packing arrangements between the D(1) and D(2) domains. In the B(1)B(2) crystal structure, an omission of a single glycine residue in the D(2)-D(3) linker loop, compared to the D(1)-D(2) and D(3)-D(4) linker loops, resulted in projection of the D(3) and D(4) in a spatially new orientation. We also present a model for B(1)B(2)B(3)B(4). CONCLUSIONS The B region of the Cna collagen adhesin has a novel fold that is reminiscent of but is inverse in nature to the IgG fold. This B region assembly could effectively provide the needed flexibility and stability for presenting the ligand binding A region away from the bacterial cell surface.
Collapse
Affiliation(s)
- C C Deivanayagam
- Center for Macromolecular Crystallography, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Raffen R, Stevens FJ. Small zone, high-speed gel filtration chromatography to detect protein aggregation associated with light chain pathologies. Methods Enzymol 1999; 309:318-32. [PMID: 10507033 DOI: 10.1016/s0076-6879(99)09023-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Small zone gel filtration chromatography can be used for qualitative and quantitative analysis of protein interactions and aggregation phenomena. The technique is fast, accessible to most laboratories, and can be combined with computer simulation to extract quantitative information from experimental data. The programs KRUNCH and SCIMZ will be furnished on written request to the authors.
Collapse
Affiliation(s)
- R Raffen
- Biosciences Division, Argonne National Laboratory, Illinois 60439, USA
| | | |
Collapse
|
15
|
Abstract
Dysfunctional immunoglobulins (Igs) that are prone to aggregation are unavoidably generated by the diverse repertoire of B cells. Here, Fred Stevens and Yair Argon analyse the patterns of mutations that lead to pathological Igs, account for non-random mutations in human Ig sequences and suggest the exertion of selective forces, which contribute to determining and limiting the Ig repertoire.
Collapse
Affiliation(s)
- F J Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | |
Collapse
|