1
|
Zhang JJ, Fu H, Lin R, Zhou J, Haider A, Fang W, Elghazawy NH, Rong J, Chen J, Li Y, Ran C, Collier TL, Chen Z, Liang SH. Imaging Cholinergic Receptors in the Brain by Positron Emission Tomography. J Med Chem 2023; 66:10889-10916. [PMID: 37583063 PMCID: PMC10461233 DOI: 10.1021/acs.jmedchem.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/17/2023]
Abstract
Cholinergic receptors represent a promising class of diagnostic and therapeutic targets due to their significant involvement in cognitive decline associated with neurological disorders and neurodegenerative diseases as well as cardiovascular impairment. Positron emission tomography (PET) is a noninvasive molecular imaging tool that has helped to shed light on the roles these receptors play in disease development and their diverse functions throughout the central nervous system (CNS). In recent years, there has been a notable advancement in the development of PET probes targeting cholinergic receptors. The purpose of this review is to provide a comprehensive overview of the recent progress in the development of these PET probes for cholinergic receptors with a specific focus on ligand structure, radiochemistry, and pharmacology as well as in vivo performance and applications in neuroimaging. The review covers the structural design, pharmacological properties, radiosynthesis approaches, and preclinical and clinical evaluations of current state-of-the-art PET probes for cholinergic receptors.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hualong Fu
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruofan Lin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key
Laboratory of Radiopharmaceuticals, Ministry of Education, College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ahmed Haider
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Weiwei Fang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Nehal H. Elghazawy
- Department
of Pharmaceutical, Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Jian Rong
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02114, United States
| | - Thomas L. Collier
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Steven H. Liang
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Norbury R, Travis MJ, Erlandsson K, Waddington W, Owens J, Ell PJ, Murphy DG. SPET imaging of central muscarinic receptors with (R,R)[123I]-I-QNB: methodological considerations. Nucl Med Biol 2004; 31:583-90. [PMID: 15219276 DOI: 10.1016/j.nucmedbio.2004.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 01/23/2004] [Accepted: 01/24/2004] [Indexed: 11/21/2022]
Abstract
Investigations on the effect of normal healthy ageing on the muscarinic system have shown conflicting results. Also, in vivo determination of muscarinic receptor binding has been hampered by a lack of subtype selective ligands and differences in methods used for quantification of receptor densities. Recent in vitro and in vivo work with the muscarinic antagonist (R,R)-I-QNB indicates this ligand has selectivity for m(1) and m(4) muscarinic receptor subtypes. Therefore, we used (R,R)[(123)I]-I-QNB and single photon emission tomography to study brain m(1) and m(4) muscarinic receptors in 25 healthy female subjects (11 younger subjects, age range 26-32 years and 14 older subjects, age range 57-82 years). Our aims were to ascertain the viability of tracer administration and imaging within the same day, and to evaluate whether normalization to whole brain, compared to normalization to cerebellum, could alter the clinical interpretation of results. Images were analyzed using the simplified reference tissue model and by two ratio methods: normalization to whole brain and normalization to cerebellum. Significant correlations were observed between kinetic analysis and normalization to cerebellum, but not to whole brain. Both the kinetic analysis and normalization to cerebellum showed age-related reductions in muscarinic binding in frontal, orbitofrontal, and parietal regions. Normalization to whole brain, however, failed to detect age-related changes in any region. Here we show that, for this radiotracer, normalizing to a region of negligible specific binding (cerebellum) significantly improves sensitivity when compared to global normalization.
Collapse
Affiliation(s)
- R Norbury
- Psychological Medicine, Institute of Psychiatry, Denmark Hill, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
3
|
Piggott MA, Owens J, O'Brien J, Colloby S, Fenwick J, Wyper D, Jaros E, Johnson M, Perry RH, Perry EK. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease. J Chem Neuroanat 2003; 25:161-73. [PMID: 12706204 DOI: 10.1016/s0891-0618(03)00002-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Derivatives of the muscarinic antagonist 3-quinuclidinyl-4-iodobenzilate (QNB), particularly [123I]-(R,R)-I-QNB, are currently being assessed as in vivo ligands to monitor muscarinic receptors in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), relating changes to disease symptoms and to treatment response with cholinergic medication. To assist in the evaluation of in vivo binding, muscarinic receptor density in post-mortem human brain was measured by autoradiography with [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB and compared to M1 ([3H]pirenzepine) and M2 and M4 ([3H]AF-DX 384) receptor binding. Binding was calculated in tissue containing striatum, globus pallidus (GPe), claustrum, and cingulate and insula cortex, in cases of AD, DLB, Parkinson's disease (PD) and normal elderly controls. Pirenzepine, AF-DX 384 and (R,S)-I-QNB binding in the striatum correlated positively with increased Alzheimer-type pathology, and AF-DX 384 and (R,R)-I-QNB cortical binding correlated positively with increased Lewy body (LB) pathology; however, striatal pirenzepine binding correlated negatively with cortical LB pathology. M1 receptors were significantly reduced in striatum in DLB compared to AD, PD, and controls and there was a significant correlation between M1 and dopamine D2 receptor densities. [3H]AF-DX 384 binding was higher in the striatum and GPe in AD. Binding of [125I]-(R,R)-I-QNB, which may reflect increased muscarinic M4 receptors, was higher in cortex and claustrum in DLB and AD. [125I]-(R,S)-I-QNB binding was higher in the GPe in AD. Low M1 and D2 receptors in DLB imply altered regulation of the striatal projection neurons which express these receptors. Low density of striatal M1 receptors may relate to the extent of movement disorder in DLB, and to a reduced risk of parkinsonism with acetylcholinesterase inhibition.
Collapse
Affiliation(s)
- Margaret A Piggott
- MRC/University of Newcastle Centre in Clinical Brain Ageing, MRC Building, Newcastle General Hospital, Westgate Road, NE4 6BE, Newcastle-upon-Tyne, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Piggott M, Owens J, O'Brien J, Paling S, Wyper D, Fenwick J, Johnson M, Perry R, Perry E. Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R,R)-I-QNB and (R,S)-I-QNB to human brain. J Chem Neuroanat 2002; 24:211-23. [PMID: 12297267 DOI: 10.1016/s0891-0618(02)00066-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Quinuclidinyl benzilate (QNB) and its derivatives are being developed to investigate muscarinic receptor changes in vivo in Alzheimer's disease and dementia with Lewy bodies. This is the first study of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB binding in vitro in human brain. We have compared the in vitro binding of the muscarinic ligands [3H]pirenzepine and [3H]AF-DX 384, which have selectivity for the M1 and M2/M4 receptor subtypes, respectively, to the binding of [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB. This will provide a guide to the interpretation of in vivo SPET images generated with [123I]-(R,R)-I-QNB and [123I]-(R,S)-I-QNB. Binding was investigated in striatum, globus pallidus, thalamus and cerebellum, and cingulate, insula, temporal and occipital cortical areas, which show different proportions of muscarinic receptor subtypes, in post-mortem brain from normal individuals. M1 receptors are of high density in cortex and striatum and are relatively low in the thalamus and cerebellum, while M4 receptors are mainly expressed in the striatum, and M2 receptors are most evident in the cerebellum and thalamus. [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB density distribution patterns were consistent with binding to both M1 and M4 receptors, with [125I]-(R,R)-I-QNB additionally binding to a non-cholinergic site not displaceable by atropine. This distribution can be exploited by in vivo imaging, developing ligands for both SPET and PET, to reveal muscarinic receptor changes in Alzheimer's disease and dementia with Lewy bodies during the disease process and following cholinergic therapy.
Collapse
Affiliation(s)
- Margaret Piggott
- Newcastle General Hospital, MRC/University of Newcastle Centre Development in Clinical Brain Ageing, MRC Building, Westgate Road, NE4 6BE, Newcastle-upon-Tyne, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cohen VI, Jin B, McRee RC, Boulay SF, Cohen EI, Sood VK, Zeeberg BR, Reba RC. In vitro and in vivo m2 muscarinic subtype selectivity of some dibenzodiazepinones and pyridobenzodiazepinones. Brain Res 2000; 861:305-15. [PMID: 10760492 DOI: 10.1016/s0006-8993(00)02020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype receptors in cortical and hippocampal regions of the human brain. Emission tomographic study of the loss of m2 receptors in AD has been limited by the absence of available m2-selective radioligands, which can penetrate the blood-brain barrier. We now report on the in vitro and in vivo m2 muscarinic subtype selectivity of a series of dibenzodiazepinones and pyridobenzodiazepinones determined by competition studies against (R)-3-quinuclidinyl (S)-4-iodobenzilate ((R,S)-[125I]IQNB) or [3H]QNB. Of the compounds examined, three of the 5-[[4-[(4-dialkylamino)butyl]-1-piperidinyl]acetyl]-10, 11-dihydro-5-H-dibenzo[b,e][1,4]diazepin-11-ones (including DIBA) and three of the 11-[[4-[4-(dialkylamino)butyl]-1-phenyl]acetyl]-5, 11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepin-6-ones (including PBID) exhibited both high binding affinity for the m2 subtype (</=5 nM) and high m2/m1 selectivity (>/=10). In vivo rat brain dissection studies of the competition of PBID or DIBD against (R,S)[125I]IQNB or [3H]QNB exhibited a dose-dependent preferential decrease in the binding of the radiotracer in brain regions that are enriched in the m2 muscarinic subtype. In vivo rat brain autoradiographic studies of the competition of PBID, BIBN 99, or DIBD against (R,S)[125I]IQNB exhibited an insignificant effect of BIBN 99 and confirmed the effect of PBID and DIBD in decreasing the binding of (R,S)[125I]IQNB in brain regions that are enriched in the m2 muscarinic subtype. We conclude that PBID and DIBD are potentially useful parent compounds from which in vivo m2 selective derivatives may be prepared for potential use in positron emission tomographic (PET) study of the loss of m2 receptors in AD.
Collapse
Affiliation(s)
- V I Cohen
- Section of Radiopharmaceutical Chemistry, George Washington University Medical Center, Walter G. Ross Hall, 2300 Eye St., N.W., Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zeeberg BR. Pharmacokinetic computer simulations of the relationship between in vivo and in vitro neuroreceptor subtype selectivity of radioligands. Nucl Med Biol 1999; 26:803-9. [PMID: 10628560 DOI: 10.1016/s0969-8051(99)00061-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharmacokinetic computer simulations reveal a discrepancy between the in vivo and in vitro neuroreceptor subtype selectivity of radioligands. For radioligands with an in vitro neuroreceptor subtype selectivity between 0.1 and 10.0, the in vivo neuroreceptor subtype selectivity appears to be constrained to be between 0.1 and 10.0, but, in general, is not equal to the in vitro selectivity. For example, if the in vitro selectivity is 1.0 (that is, the radioligand is nonselective in vitro) the in vivo selectivity may be thought of as a random variable having a significant nonzero probability for values as low as 0.1 or as high as 10.0, with a moderate peak at a value of 1.0. For a radioligand whose in vitro subtype selectivity is greater than 10.0, the in vivo selectivity is bounded above by the in vitro subtype selectivity, but may be several orders of magnitude lower than the in vitro subtype selectivity. Thus, in spite of the discrepancy between the in vivo and in vitro neuroreceptor subtype selectivity of radioligands, there are two useful inferences about the in vivo selectivity that might be drawn from knowledge of the in vitro selectivity: (1) If the in vitro selectivity is between 0.1 and 10.0, then, at best, the in vivo selectivity might be as high as 10.0. (2) If the in vitro selectivity is greater than 10.0, then, at best, the in vivo selectivity might be as high as the in vitro selectivity.
Collapse
Affiliation(s)
- B R Zeeberg
- Department of Radiology, George Washington University Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Boulay SF, Sood VK, Rayeq MR, Zeeberg BR, Eckelman WC. Autoradiographic evidence that (R)-3-quinuclidinyl (S)-4-fluoromethylbenzilate ((R,S)-FMeQNB) displays in vivo selectivity for the muscarinic m2 subtype. Nucl Med Biol 1996; 23:889-96. [PMID: 8971856 DOI: 10.1016/s0969-8051(96)00121-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype neuroreceptors in cortical and hippocampal regions of the human brain. Until recently, emission tomographic study of the loss of m2 receptors in AD has been limited by the absence of available m2-selective radioligands that can penetrate the blood-brain barrier. We now demonstrate the in vivo m2 selectivity of a fluorinated derivative of QNB, (R)-3-quinuclidinyl (S)-4-fluoromethylbenzilate ((R,S)-FMeQNB), by studying autoradiographically the in vivo inhibition of radioiodinated (R)-3-quinuclidinyl (S)-4-iodobenzilate ((R,S)-[125I]IQNB) binding by unlabelled (R,S)-FMeQNB. In the absence of (R,S)-FMeQNB, (R,S)-[125I]IQNB labels brain regions in proportion to the total muscarinic receptor concentration; in the presence of 75 nmol of (R,S)-FMeQNB, (R,S)-[125I]IQNB labelling in those brain regions containing predominantly m2 subtype is reduced to background levels. We conclude that (R,S)-FMeQNB is m2-selective in vivo, and that (R,S)-[18F]FMeQNB may be of potential use in positron emission tomographic (PET) study of the loss of m2 receptors in AD.
Collapse
Affiliation(s)
- S F Boulay
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|