1
|
Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep 2013; 3:3045. [PMID: 24157711 PMCID: PMC7365327 DOI: 10.1038/srep03045] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/08/2013] [Indexed: 01/05/2023] Open
Abstract
The two glucose analogs 2-deoxy-D-glucose (2-DG) and 2-fluoro-2-deoxy-D-glucose (FDG) are preferentially taken up by cancer cells, undergo phosphorylation and accumulate in the cells. Owing to their exchangeable protons on their hydroxyl residues they exhibit significant chemical exchange saturation transfer (CEST) effect in MRI. Here we report CEST-MRI on mice bearing orthotopic mammary tumors injected with 2-DG or FDG. The tumor exhibited an enhanced CEST effect of up to 30% that persisted for over one hour. Thus 2-DG/FDG CEST MRI can replace PET/CT or PET/MRI for cancer research in laboratory animals, but also has the potential to be used in the clinic for the detection of tumors and metastases, distinguishing between malignant and benign tumors and monitoring tumor response to therapy as well as tumors metabolism noninvasively by using MRI, without the need for radio-labeled isotopes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel,
| | - Judith Horev
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv Israel,
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv Israel,
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel,
| |
Collapse
|
2
|
Alcolea Palafox M. Molecular structure differences between the antiviral Nucleoside Analogue 5-iodo-2′-deoxyuridine and the natural nucleoside 2′-deoxythymidine using MP2 and DFT methods: conformational analysis, crystal simulations, DNA pairs and possible behaviour. J Biomol Struct Dyn 2013; 32:831-51. [DOI: 10.1080/07391102.2013.789402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 2009; 55:483-95. [PMID: 20023328 DOI: 10.1088/0031-9155/55/2/010] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with (18)F-FDG can be detected with optical imaging techniques. (18)F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the (18)F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that (18)F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to beta(+) but also to pure beta(-) emitters.
Collapse
Affiliation(s)
- Antonello E Spinelli
- Medical Physics Department, San Raffaele Scientific Institute, Via Olgettina N. 60, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Rudin M. Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol 2007; 17:2441-57. [PMID: 17340100 DOI: 10.1007/s00330-007-0619-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 02/06/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
Surrogate markers and biomarkers based on imaging readouts providing predictive information on clinical outcome are of increasing importance in the preclinical and clinical evaluation of novel therapies. They are primarily used in studies designed to establish evidence that the therapeutic principle is valid in a representative patient population or in an individual. A critical step in the development of (imaging) surrogates is validation: correlation with established clinical endpoints must be demonstrated. Biomarkers must not fulfill such stringent validation criteria; however, they should provide insight into mechanistic aspects of the therapeutic intervention (proof-of-mechanism) or document therapy efficacy with prognostic quality with regard to the long-term clinical outcome (proof of concept). Currently used imaging biomarkers provide structural, physiological and metabolic information. Novel imaging approaches annotate structure with molecular signatures that are tightly linked to the pathophysiology or to the therapeutic principle. These cellular and molecular imaging methods yield information on drug biodistribution, receptor expression and occupancy, and/or intra- and intercellular signaling. The design of novel target-specific imaging probes is closely related to the development of the therapeutic agents and should be considered early in the discovery phase. Significant technical and regulatory hurdles have to be overcome to foster the use of imaging biomarkers for clinical drug evaluation.
Collapse
Affiliation(s)
- Markus Rudin
- Institute for Biomedical Engineering, University of Zürich/ETH Zürich, AIC-HCI E488.2, 8093, Zürich, Switzerland.
| |
Collapse
|
5
|
Chen Y, Huang ZW, He L, Zheng SL, Li JL, Qin DL. Synthesis and evaluation of a technetium-99m-labeled diethylenetriaminepentaacetate–deoxyglucose complex ([99mTc]–DTPA–DG) as a potential imaging modality for tumors. Appl Radiat Isot 2006; 64:342-7. [PMID: 16290170 DOI: 10.1016/j.apradiso.2005.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 08/21/2005] [Accepted: 08/22/2005] [Indexed: 11/30/2022]
Abstract
This study describes the radiolabeling and preliminary biologic testing of diethylenetriaminepentaacetic acid (DTPA)-deoxyglucose (DG) labeled with (99m)Tc. A one-step [(99m)Tc]-DTPA-DG kit was prepared using the stannous chloride reduction method. When (99m)TcO(4)(-) was added to the DTPA-DG kit at room temperature the radiochemical purity 30 min later was 99.2%, and it remained >98.6% for 6 h. Rapid blood clearance of [(99m)Tc]-DTPA-DG was observed in in vivo biodistribution, the main route of clearance was via the kidneys. No significant accumulation in any other organs was seen. The tumor-to-brain and tumor-to-muscle concentration ratios for [(99m)Tc]-DTPA-DG uptake were higher than those for fluorine-18-flurodeoxyglucose ((18)F-FDG). Scintigraphic results demonstrated the feasibility of [(99m)Tc]-DTPA-DG imaging tumors. The [(99m)Tc]-DTPA-DG complex is a potential imaging agent due to the ideal physical characteristics of the radionuclide, ease of preparation, low cost, early accumulation and the preference for the renal route of excretion.
Collapse
Affiliation(s)
- Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital, Luzhou Medical College, Luzhou, Sichuan 646000, PR China.
| | | | | | | | | | | |
Collapse
|
6
|
Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, Link JM, Guyton KZ, Eckelman WC, Scher HI, O'Shaughnessy J, Cheson BD, Sigman CC, Tatum JL, Mills GQ, Sullivan DC, Woodcock J. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 2006; 11:7967-85. [PMID: 16299226 DOI: 10.1158/1078-0432.ccr-05-1302] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As addressed by the recent Food and Drug Administration Critical Path Initiative, tools are urgently needed to increase the speed, efficiency, and cost-effectiveness of drug development for cancer and other diseases. Molecular imaging probes developed based on recent scientific advances have great potential as oncologic drug development tools. Basic science studies using molecular imaging probes can help to identify and characterize disease-specific targets for oncologic drug therapy. Imaging end points, based on these disease-specific biomarkers, hold great promise to better define, stratify, and enrich study groups and to provide direct biological measures of response. Imaging-based biomarkers also have promise for speeding drug evaluation by supplementing or replacing preclinical and clinical pharmacokinetic and pharmacodynamic evaluations, including target interaction and modulation. Such analyses may be particularly valuable in early comparative studies among candidates designed to interact with the same molecular target. Finally, as response biomarkers, imaging end points that characterize tumor vitality, growth, or apoptosis can also serve as early surrogates of therapy success. This article outlines the scientific basis of oncology imaging probes and presents examples of probes that could facilitate progress. The current regulatory opportunities for new and existing probe development and testing are also reviewed, with a focus on recent Food and Drug Administration guidance to facilitate early clinical development of promising probes.
Collapse
Affiliation(s)
- Gary J Kelloff
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rudin M, Beckmann N, Rausch M. Evaluation of drug candidates: efficacy readouts during lead optimization. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 62:185-255. [PMID: 16329258 DOI: 10.1007/3-7643-7426-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Markus Rudin
- Institute for Biomedical Engineering, University of Zurich/ETH Zurich, Switzerland.
| | | | | |
Collapse
|
8
|
Buchmann I, Vogg ATJ, Glatting G, Schultheiss S, Möller P, Leithäuser F, Schulte M, Gfrörer W, Kotzerke J, Reske SN. [18F]5-fluoro-2-deoxyuridine-PET for imaging of malignant tumors and for measuring tissue proliferation. Cancer Biother Radiopharm 2003; 18:327-37. [PMID: 12954120 DOI: 10.1089/108497803322285080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The nucleoside 5-fluoro-2-deoxyuridine is a pyrimidine analogue accumulating in proliferative cells. We prospectively evaluated biodistribution of the PET tracer [(18)F]5-fluoro-2-deoxyuridine (FdUrd), its value for imaging malignant tumors, and its correlation to both [(18)F]2-fluoro-2-deoxyglucose (FDG)-PET findings and histological proliferation indices. In 11 previously untreated patients (5 lung carcinoma; 3 soft tissue sarcoma; 2 gastrointestinal carcinoma; 1 non-Hodgkin lymphoma [NHL]), mean doses of 290 MBq FdUrd and 390 MBq FDG were administered intravenously on subsequent days. Static PET scans were initiated 50-70 min after administration and the mean standardized uptake values (SUV) were calculated. Dynamic emission FdUrd scans were performed in 8/11 patients. Time-activity curves of blood and tumors as well as SUV of tumor lesions and organs were calculated. Proliferative activity was evaluated by Ki-67 immunohistostaining of biopsies. Tracer accumulated physiologically in liver, kidney, and bladder. SUVs were: kidney, 4.8 +/- 0.66; liver, 4.1 +/- 0.36; vertebrae, 0.70 +/- 0.17; spleen, 0.37 +/- 0.06; lungs, 0.19 +/- 0.05; femora/humeri, 0.14 +/- 0.03. Five patients exhibited significant intratumoral FdUrd-uptake (2 sarcomas; 1 NHL; 2 lung carcinomas) with mean SUVs ranging from 0.7 to 10.5. Metastases were not detected. Time-activity curves showed a rapid initial increase of intratumoral activity followed by activity retention. FDG-PET was positive in 10/11 patients. Correlation between the SUV of FdUrd-PET and FDG-PET or the tissue proliferation index, respectively, was not significant. FdUrd was a suitable tracer for imaging malignant tumors only in exceptional cases: Sarcoma, NHL, and some lung carcinomas were detected. FdUrd-PET was less effective than FDG-PET. In this group of patients, it was not useful in measuring tissue proliferation.
Collapse
Affiliation(s)
- Inga Buchmann
- Abteilung für Nuklearmedizin, Universittskliniken Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot 2003; 58:657-66. [PMID: 12798374 DOI: 10.1016/s0969-8043(03)00029-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The non-natural amino acid anti-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid (FACBC) has shown promise for tumor imaging with positron emission tomography. An improved synthesis of the precursor of anti-[18F]FACBC has been devised which demonstrates high stereoselectivity and suitability for large-scale preparations. An automated radiosynthesis has been developed which provides anti-[18F]FACBC in 24% decay-corrected yield. Additionally, the major non-radioactive species present in doses of anti-[18F]FACBC has been identified as anti-1-amino-3-hydroxycyclobutane-1-carboxylic acid. Together, these results are important steps towards the routine production of anti-[18F]FACBC for human use.
Collapse
Affiliation(s)
- Jonathan McConathy
- Department of Radiology, EUH, Emory University, 1364 Clifton Road NE, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
10
|
Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD. Molecular Imaging of Gliomas. Mol Imaging 2002; 1:309-35. [PMID: 12926228 DOI: 10.1162/15353500200221392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gliomas are the most common types of brain tumors. Although sophisticated regimens of conventional therapies are being carried out to treat patients with gliomas, the disease invariably leads to death over months or years. Before new and potentially more effective treatment strategies, such as gene- and cell-based therapies, can be effectively implemented in the clinical application, certain prerequisites have to be established. First of all, the exact localization, extent, and metabolic activity of the glioma must be determined to identify the biologically active target tissue for a biological treatment regimen; this is usually performed by imaging the expression of up-regulated endogenous genes coding for glucose or amino acid transporters and cellular hexokinase and thymidine kinase genes, respectively. Second, neuronal function and functional changes within the surrounding brain tissue have to be assessed in order to save this tissue from therapy-induced damage. Third, pathognomonic genetic changes leading to disease have to be explored on the molecular level to serve as specific targets for patient-tailored therapies. Last, a concerted noninvasive analysis of both endogenous and exogenous gene expression in animal models as well as the clinical setting is desirable to effectively translate new treatment strategies from experimental into clinical application. All of these issues can be addressed by multimodal radionuclide and magnetic resonance imaging techniques and fall into the exciting and fast growing field of molecular and functional imaging. Noninvasive imaging of endogenous gene expression by means of positron emission tomography (PET) may reveal insight into the molecular basis of pathogenesis and metabolic activity of the glioma and the extent of treatment response. When exogenous genes are introduced to serve for a therapeutic function, PET imaging may reveal the assessment of the “location,” “magnitude,” and “duration” of therapeutic gene expression and its relation to the therapeutic effect. Detailed reviews on molecular imaging have been published from the perspective of radionuclide imaging (Gambhir et al., 2000; Blasberg and Tjuvajev, 2002) as well as magnetic resonance and optical imaging (Weissleder, 2002). The present review focuses on molecular imaging of gliomas with special reference on the status and perspectives of imaging of endogenous and exogenously introduced gene expression in order to develop improved diagnostics and more effective treatment strategies of gliomas and, in that, to eventually improve the grim prognosis of this devastating disease.
Collapse
Affiliation(s)
- A H Jacobs
- Max-Planck-Institute for Neurological Research, University of Cologne, Germany.
| | | | | | | | | |
Collapse
|
11
|
Jacobs AH, Winkler A, Dittmar C, Gossman A, Deckert M, Kracht L, Thiel A, Garlip G, Hilker R, Sobesky J, Vollmar S, Kummer C, Graf R, Voges J, Wienhard K, Herholz K, Heiss WD. Molecular and functional imaging technology for the development of efficient treatment strategies for gliomas. Technol Cancer Res Treat 2002; 1:187-204. [PMID: 12622512 DOI: 10.1177/153303460200100304] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gliomas are the most common types of brain tumors, which invariably lead to death over months or years. Before new and potentially more effective treatment strategies, such as gene therapy, can be effectively introduced into clinical application the following goals must be reached: (1) the determination of localization, extent and metabolic activity of the glioma; (2) the assessment of functional changes within the surrounding brain tissue; (3) the identification of genetic changes on the molecular level leading to disease; and in addition (4) a detailed non-invasive analysis of both endogenous and exogenous gene expression in animal models and in the clinical setting. Non-invasive imaging of endogenous gene expression by means of positron emission tomography (PET) may reveal insight into the molecular basis of pathogenesis and metabolic activity of the glioma and the extent of treatment response. When exogenous genes are introduced to serve for a therapeutic function, PET imaging techniques may reveal the assessment of the location, magnitude and duration of therapeutic gene expression and its relation to the therapeutic effect. Here, we review the main principles of PET imaging and its key roles in neurooncology research.
Collapse
Affiliation(s)
- A H Jacobs
- Max Planck-Institute for Neurological Research, Center of Molecular Medicine (ZMMK), University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Positron emission tomography (PET) scanning with F18-fluorodeoxyglucose or FDG is a becoming a standard method for tumor staging. The prediction and evaluation of therapy response are newer applications of FDG-PET. PET often offers an early readout of treatment efficacy and is an attractive alternative to conventional anatomic assessments of treatment response. This article reviews the methods available with PET to monitor therapy response. Disease specific applications of PET imaging are then reviewed. While FDG is the most commonly used radiotracer for PET, many other radioligands could be applied in the future.
Collapse
Affiliation(s)
- Christian Cohade
- Division of Nuclear Medicine, The Johns Hopkins Hospital, Baltimore, Maryland 21287-0817, USA
| | | |
Collapse
|