1
|
Chen Z, Meng X, Lu Y, Ding C, Huo J, Meng X, Li Z, Guo F, Wu K. Molecular Triplet Generation Enabled by Adjacent Metal Nanoparticles. J Am Chem Soc 2024; 146:19360-19368. [PMID: 39015060 DOI: 10.1021/jacs.4c05364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
High-efficiency generation of spin-triplet states in organic molecules is of great interest in diverse areas such as photocatalysis, photodynamic therapy, and upconversion photonics. Recent studies have introduced colloidal semiconductor nanocrystals as a new class of photosensitizers that can efficiently transfer their photoexcitation energy to molecular triplets. Here, we demonstrate that metallic Ag nanoparticles can also assist in the generation of molecular triplets in polycyclic aromatic hydrocarbons (PAHs), but not through a conventional sensitization mechanism. Instead, the triplet formation is mediated by charge-separated states resulting from hole transfer from photoexcited PAHs (anthracene and pyrene) to Ag nanoparticles, which is established through the rapid formation and subsequent decay of molecular anions revealed in our transient absorption measurements. The dominance of hole transfer over electron transfer, while both are energetically allowed, could be attributed to a Marcus inverted region of charge transfer. Owing to the rapid charge separation and the rapid spin-flip in metals, the triplet formation yields are remarkably high, as confirmed by their engagement in production of singlet oxygen with a quantum efficiency reaching 58.5%. This study not only uncovers the fundamental interaction mechanisms between metallic nanoparticles and organic molecules in both charge and spin degrees of freedom but also greatly expands the scope of triplet "sensitization" using inorganic nanomaterials for a variety of emerging applications.
Collapse
Affiliation(s)
- Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyi Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yinjie Lu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenxi Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingzhu Huo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyi Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhengxiao Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fengqi Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yang G, Hao S, Deng X, Song X, Sun B, Hyun WJ, Li MD, Dang L. Efficient intersystem crossing and tunable ultralong organic room-temperature phosphorescence via doping polyvinylpyrrolidone with polyaromatic hydrocarbons. Nat Commun 2024; 15:4674. [PMID: 38824140 PMCID: PMC11144212 DOI: 10.1038/s41467-024-48913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
Polymer-based pure organic room-temperature phosphorescent materials have tremendous advantages in applications owing to their low cost, vast resources, and easy processability. However, designing polymer-based room-temperature phosphorescent materials with large Stokes shifts as key requirements in biocompatibility and environmental-friendly performance is still challenging. By generating charge transfer states as the gangplank from singlet excited states to triplet states in doped organic molecules, we find a host molecule (pyrrolidone) that affords charge transfer with doped guest molecules, and excellent polymer-based organic room-temperature phosphorescent materials can be easily fabricated when polymerizing the host molecule. By adding polyaromatic hydrocarbon molecules as electron-donor in polyvinylpyrrolidone, efficient intersystem crossing and tunable phosphorescent from green to near-infrared can be achieved, with maximum phosphorescence wavelength and lifetime up to 757 nm and 3850 ms, respectively. These doped polyvinylpyrrolidone materials have good photoactivation properties, recyclability, advanced data encryption, and anti-counterfeiting. This reported design strategy paves the way for the design of polyvinylpyrrolidone-based room-temperature phosphorescent materials.
Collapse
Affiliation(s)
- Guangxin Yang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Subin Hao
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Xin Deng
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Xinluo Song
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Bo Sun
- State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Woo Jin Hyun
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Li Dang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China.
| |
Collapse
|
3
|
Roy D, Paul S, Dasgupta J. Visible light-mediated C (sp 3)-H bond functionalization inside an all-organic nanocavity. Chem Commun (Camb) 2023; 59:13143-13146. [PMID: 37849327 DOI: 10.1039/d3cc03987k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Ultrafast C-H bond activation and functionalization in confinement using visible light will enable engineering chemical reactions with extraordinary speed and selectivity. To provide a transition metal-free route, here we demonstrate C-H bond activation reactions on poly-aromatic hydrocarbons (PAH) in all-organic cationic nanocage ExBox4+ for the first time. Visible light excitation in the host-guest charge transfer (CT) state allows the formation of oxidized photoproducts with high selectivity. Mechanistic understanding of this CT-mediated photoreaction using femtosecond broadband transient absorption revealed a few ∼100 ps timescale for C-H bond breaking on the attached -CH3 group via sequential electron transfer and proton transfer steps. We envision that our photosensitizer-free method will open up new avenues to pursue organic reactions using cavities that could serve both as photoredox catalysts and hosts for reactive reaction intermediates.
Collapse
Affiliation(s)
- Debojyoti Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1-Homi Bhabha Road, Mumbai-400005, India.
| | - Sunandita Paul
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1-Homi Bhabha Road, Mumbai-400005, India.
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1-Homi Bhabha Road, Mumbai-400005, India.
| |
Collapse
|
4
|
Daisymol KB, Gopidas KR. Thousand-Fold Enhancement of Charge-Separated State Lifetimes Caused by an Adamantane Bridge in Dimethylaniline-Anthracene and Dimethylaniline-Pyrene Dyads. J Phys Chem Lett 2023; 14:977-982. [PMID: 36692390 DOI: 10.1021/acs.jpclett.2c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A long-standing challenge in photoinduced electron transfer research is the design of compact donor-acceptor dyads that can generate long-lived charge-separated (CS) states for use as sensitizers in solar energy harvesting. Reports of dyads exhibiting CS state lifetimes in the microsecond time domain are very rare. Herein, we report two compact donor-bridge-acceptor dyads exhibiting lifetimes in the microsecond domain. We employed an adamantane moiety as a bridge, and the lifetimes obtained are nearly 1000-fold larger when compared to those of the same donor-acceptor dyads bridged through C3-alkyl chains. In addition to long-lived CS state decays, slow formation of acceptor triplets was also observed via nanosecond flash photolysis. The long lifetime of the CS state is attributed to the extremely small value of the electronic coupling matrix element for the charge recombination compared to charge separation.
Collapse
Affiliation(s)
- Kurisingal B Daisymol
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Karical R Gopidas
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Gallaga-González U, Morales-Avila E, Torres-García E, Estrada JA, Díaz-Sánchez LE, Izquierdo G, Aranda-Lara L, Isaac-Olivé K. Photoactivation of Chemotherapeutic Agents with Cerenkov Radiation for Chemo-Photodynamic Therapy. ACS OMEGA 2022; 7:23591-23604. [PMID: 35847323 PMCID: PMC9280781 DOI: 10.1021/acsomega.2c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cerenkov radiation (CR) can be used as an internal light source in photodynamic therapy (PDT). Methotrexate (MTX) and paclitaxel (PTX), chemotherapeutic agents with wide clinical use, have characteristics of photosensitizers (PS). This work evaluates the possibility of photoexciting MTX and PTX with CR from 18F-FDG to produce reactive oxygen species (ROS) capable of inducing cytotoxicity. PTX did not produce ROS when excited by CR from 18F-FDG, so it is not useful for PDT. In contrast, MTX produces 1O2 (detected by ABMA) in amounts sufficient to significantly decrease the viability of the T47D cells. MTX solutions of 100 nM combined with 18F-FDG activities of 50 (1.85 MBq) and 100 μCi (3.7 MBq) produced a significant decrease in cell viability to (50.09 ± 4.95) and (47.96 ± 11.19)%, respectively, compared to MTX (66.29 ± 5.92)% and 18F-FDG (91.35 ± 7.00% for 50 μCi and 99.43 ± 11.03% for 100 μCi) alone. Using the CellRox Green reagent, the intracellular production of ROS was confirmed as the main mechanism of cytotoxicity. The results confirm the therapeutic potential of photoactivation with CR and the synergy of the combined treatment with chemotherapy + photodynamic therapy (CMT + PDT). The combination of chemotherapeutic agents with PS properties and β-emitting radiopharmaceuticals, previously approved for clinical use, will make it possible to shorten the evaluation stages of new CMT + PDT systems.
Collapse
Affiliation(s)
- Uriel Gallaga-González
- Laboratorio
de Investigación Teranóstica. Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| | - Enrique Morales-Avila
- Laboratorio
de Toxicología y Farmacia,
Facultad de Química, Universidad
Autónoma del Estado de México, Toluca, 50120 Estado de México, México
| | - Eugenio Torres-García
- Laboratorio
de Dosimetría y Simulación Monte Carlo, Facultad de
Medicina, Universidad Autónoma del
Estado de México, Toluca, 50180 Estado de México, México
| | - José A. Estrada
- Laboratorio
de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| | - Luis Enrique Díaz-Sánchez
- Facultad
de Ciencias, Universidad Autónoma
del Estado de México, Toluca, 50120 Estado de México, México
| | - German Izquierdo
- Facultad
de Ciencias, Universidad Autónoma
del Estado de México, Toluca, 50120 Estado de México, México
| | - Liliana Aranda-Lara
- Laboratorio
de Investigación Teranóstica. Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| | - Keila Isaac-Olivé
- Laboratorio
de Investigación Teranóstica. Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, 50180 Estado de México, México
| |
Collapse
|
6
|
DuBose JT, Kamat PV. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem Rev 2022; 122:12475-12494. [PMID: 35793168 DOI: 10.1021/acs.chemrev.2c00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Srivastava A, Grewal S, Bari NK, Saraswat M, Sinha S, Venkataramani S. Light-controlled shape-changing azomacrocycles exhibiting reversible modulation of pyrene fluorescence emission. Org Biomol Chem 2022; 20:5284-5292. [PMID: 35713091 DOI: 10.1039/d2ob00866a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the design, synthesis, and study of light-induced shape-changing azomacrocycles. These systems have been incorporated with azobenzene photoswitches using alkoxy tethers and triazole units to afford flexibility and binding. We envision that such azomacrocycles are capable of reversibly binding with the guest molecule. Remarkably, we have demonstrated fully light-controlled fluorescence quenching and enhancement in the monomeric emission of pyrene (guest). Such modulations have been achieved by the photoisomerization of the azomacrocycle and, in turn, host-guest interactions. Also, the azomacrocycles tend to aggregate and can also be controlled by light or heat. We uncovered such phenomena using spectroscopic, microscopic, and isothermal titration calorimetry (ITC) studies and computations.
Collapse
Affiliation(s)
- Anjali Srivastava
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Surbhi Grewal
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Naimat K Bari
- Institute of Nano Science and Technology (INST) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Mayank Saraswat
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Sharmistha Sinha
- Institute of Nano Science and Technology (INST) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| | - Sugumar Venkataramani
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140 306, Punjab, India.
| |
Collapse
|
8
|
Imran M, Sukhanov AA, Maity P, Elmali A, Zhao J, Karatay A, Mohammed OF, Voronkova VK. Chromophore Orientation-Dependent Photophysical Properties of Pyrene-Naphthalimide Compact Electron Donor-Acceptor Dyads: Electron Transfer and Intersystem Crossing. J Phys Chem B 2021; 125:9244-9259. [PMID: 34355560 DOI: 10.1021/acs.jpcb.1c03537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to study the effect of mutual orientation of the chromophores in compact electron donor-acceptor dyads on the spin-orbit charge transfer intersystem crossing (SOCT-ISC), we prepared naphthalimide (NI)-pyrene (Py) compact electron donor-acceptor dyads, in which pyrene acts as an electron donor and NI is an electron acceptor. The connection of the two units is at the 4-C and 3-C positions of the NI unit and the 1-position of the pyrene moiety for dyads NI-Py-1 and NI-Py-2, respectively. A charge transfer absorption band was observed for both dyads in the UV-vis absorption spectra. Upon nanosecond pulsed laser excitation, long-lived triplet states (lifetime is 220 μs) were observed and the triplet state was confined to the pyrene moiety. The ISC efficiency is moderate to high in nonpolar to polar solvents (singlet oxygen quantum yield: ΦΔ = 14-52%). Ultrafast charge separation (ca. 0.81 ps) and charge recombination-induced ISC (∼3.0 ns) were observed by femtosecond transient absorption spectroscopy. Time-resolved electron paramagnetic resonance spectroscopy confirms the SOCT-ISC mechanism; interestingly, the observed electron spin polarization pattern of the triplet state is chromophore orientation-dependent; and the population rates of the triplet sublevels of NI-Py-1 (Px:Py:Pz = 0.2:0.8:0) are drastically different from those of NI-Py-2 (Px:Py:Pz = 0:0:1).
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
| | - Partha Maity
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Rd., Dalian 116024, P. R. China
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
| |
Collapse
|
9
|
Xu J, Tojo S, Fujitsuka M, Kawai K. Dynamics of Single‐Stranded RNA Looping Probed and Photoregulated by Sulfonated Pyrene. ChemistrySelect 2020. [DOI: 10.1002/slct.202002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jie Xu
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8–1 Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
10
|
Coles MS, Quach G, Beves JE, Moore EG. A Photophysical Study of Sensitization‐Initiated Electron Transfer: Insights into the Mechanism of Photoredox Activity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Max S. Coles
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD 4072 Australia
| | - Gina Quach
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD 4072 Australia
| | - Jonathon E. Beves
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Evan G. Moore
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
11
|
Coles MS, Quach G, Beves JE, Moore EG. A Photophysical Study of Sensitization‐Initiated Electron Transfer: Insights into the Mechanism of Photoredox Activity. Angew Chem Int Ed Engl 2020; 59:9522-9526. [DOI: 10.1002/anie.201916359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/04/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Max S. Coles
- School of Chemistry and Molecular BiosciencesThe University of Queensland Brisbane QLD 4072 Australia
| | - Gina Quach
- School of Chemistry and Molecular BiosciencesThe University of Queensland Brisbane QLD 4072 Australia
| | - Jonathon E. Beves
- School of ChemistryUniversity of New South Wales Sydney NSW 2052 Australia
| | - Evan G. Moore
- School of Chemistry and Molecular BiosciencesThe University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
12
|
Xu J, Miyamoto S, Tojo S, Kawai K. Sulfonated Pyrene as a Photoregulator for Single‐Stranded DNA Looping. Chemistry 2020; 26:5075-5084. [DOI: 10.1002/chem.202000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Xu
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Shunichi Miyamoto
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
13
|
Ishimatsu R, Tashiro S, Kasahara T, Oshima J, Mizuno J, Nakano K, Adachi C, Imato T. Kinetics of Excimer Electrogenerated Chemiluminescence of Pyrene and 1-Pyrenebutyricacid 2-Ethylhexylester in Acetonitrile and an Ionic Liquid, Triethylpentylphosphonium Bis(trifluoromethanesulfonyl)imide. J Phys Chem B 2019; 123:10825-10836. [PMID: 31804083 DOI: 10.1021/acs.jpcb.9b08813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the kinetics of excimer electrogenerated chemiluminescence (ECL) of a liquid pyrene derivative, 1-pyrenebutyricacid 2-ethylhexylester (PLQ) dissolved in a molecular solvent, acetonitrile (MeCN), and an ionic liquid, triethylpentylphosphonium bis(trifluoromethanesulfonyl)imide ([P2225][TFSI]). Pyrene was also used for comparison. To discuss the kinetics of the excimer ECLs, the photophysical and electrochemical properties and electronic states of PLQ and pyrene were revealed. The photoluminescence (PL) spectra, rate constants for the radiative transitions, and redox potentials of PLQ and pyrene dissolved in MeCN and [P2225][TFSI] suggest that as a solvent, [P2225][TFSI] behaves more polar than MeCN. By analyzing the PL decay curves, the rate constants to form the excimer were determined to be on the order of 109 and 107 M-1 s-1 in MeCN and [P2225][TFSI], respectively, which were limited by the diffusion. For neat PLQ (1.6 M), a delay of 0.3-0.4 ns for the excimer emission compared to the monomer emission was observed. It is likely that the delay corresponds to the timescale for arranging the conformation to form the excimer. The ECL of PLQ was generated by applying a square wave voltage to produce the radical anion and cation, and on the ECL spectra, the excimer emission was more prevailed compared to the PL spectra. Kinetic analysis for the electron transfer reaction between the radical ions based on Marcus theory indicates that the electron transfer is limited by the diffusion of the radical ions. Moreover, the electron transfer distance (det) between the radical cation and anion to generate excited states was calculated with a framework of the theory. Kinetically, the electron transfer can take place at det < ∼11 Å in MeCN and det < ∼12 Å in [P2225][TFSI]. The density functional theory (DFT) and time-dependent DFT calculations show that the potential energy curve of the excimer against the distance between the pyrene rings reaches a minimum at 3.50 Å. This suggests that through the electron transfer, the process of the direct formation of the monomer S1 state followed by the excimer formation is more prevailed than that of the direct excimer formation.
Collapse
Affiliation(s)
- Ryoichi Ishimatsu
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Shuya Tashiro
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Takashi Kasahara
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering , Hosei University , 3-7-2 Kajino-cho , Koganei , Tokyo 184-8584 , Japan
| | - Juro Oshima
- Frontier Materials Research Department, Materials Research Laboratories , Nissan Chemical Corporation , 488-6 Suzumi-cho , Funabashi , Chiba 274-0052 , Japan
| | - Jun Mizuno
- Research Organization for Nano and Life Innovation , Waseda University , 513 Wasedatsurumaki-cho , Shinjuku-ku, Tokyo 162-0041 , Japan
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Chihaya Adachi
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Toshihiko Imato
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
14
|
Borovkov VI. Unexpectedly Large Spin Coherence Effects in the Recombination Fluorescence from Irradiated Highly Polar Solutions on a Nanosecond Time Scale. J Phys Chem B 2017; 121:9422-9428. [PMID: 28915031 DOI: 10.1021/acs.jpcb.7b08813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spin correlation effects in the geminate recombination of radical ion pairs in irradiated highly polar liquids are typically believed to be negligible due to a high escape probability for the ions. This report presents the results of an exploratory study of organic polar solvents aimed at the searching for, and estimating the magnitude of, the time-resolved magnetic field effects (TR MFEs) in the delayed radiation-induced fluorescence from diluted solutions of a luminophore. It has been found that upon the high-energy irradiation of the solutions in polar liquids, such as dichloroethane (ε ≈ 10), methanol (ε ≈ 33), acetonitrile (ε ≈ 37), dimethylformamide (ε ≈ 37), dimethyl sulfoxide (ε ≈ 47), ethylene carbonate (ε ≈ 89), substantial spin coherence effects in the delayed fluorescence can be observed within a time range up to ∼100 ns. In most of the cases studied, magnetic resonance characteristics of primary or very early solvent-related radical ions were evaluated from the TR MFE curves. This approach can, therefore, be widely used to complement results obtained by the pulse radiolysis technique with structural and kinetic data extracted from the magnetic resonance characteristics of the short-lived radical ions formed in irradiated media.
Collapse
Affiliation(s)
- Vsevolod I Borovkov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science , 3 Institutskaya Street, Novosibirsk 630090, Russia.,Novosibirsk State University , 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
|
16
|
Aryl-substituted dimethylbenzimidazolines as effective reductants of photoinduced electron transfer reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bao D, Upadhyayula S, Larsen JM, Xia B, Georgieva B, Nuñez V, Espinoza EM, Hartman JD, Wurch M, Chang A, Lin CK, Larkin J, Vasquez K, Beran GJO, Vullev VI. Dipole-mediated rectification of intramolecular photoinduced charge separation and charge recombination. J Am Chem Soc 2014; 136:12966-73. [PMID: 25162490 DOI: 10.1021/ja505618n] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Controlling charge transfer at a molecular scale is critical for efficient light harvesting, energy conversion, and nanoelectronics. Dipole-polarization electrets, the electrostatic analogue of magnets, provide a means for "steering" electron transduction via the local electric fields generated by their permanent electric dipoles. Here, we describe the first demonstration of the utility of anthranilamides, moieties with ordered dipoles, for controlling intramolecular charge transfer. Donor-acceptor dyads, each containing a single anthranilamide moiety, distinctly rectify both the forward photoinduced electron transfer and the subsequent charge recombination. Changes in the observed charge-transfer kinetics as a function of media polarity were consistent with the anticipated effects of the anthranilamide molecular dipoles on the rectification. The regioselectivity of electron transfer and the molecular dynamics of the dyads further modulated the observed kinetics, particularly for charge recombination. These findings reveal the underlying complexity of dipole-induced effects on electron transfer and demonstrate unexplored paradigms for molecular rectifiers.
Collapse
Affiliation(s)
- Duoduo Bao
- Department of Bioengineering, ‡Department of Biochemistry, §Department of Chemistry, and ∥Materials Science and Engineering Program, University of California , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Manna B, Ghosh R, Palit DK. In stationary regime, electron transfer rates in RTIL media are diffusion controlled: experimental evidence from pulse radiolysis study. J Phys Chem B 2013; 117:5113-20. [PMID: 23537113 DOI: 10.1021/jp312330h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report electron transfer (ET) process from the long-lived radical anions of pyrene and benzophenone to molecular acceptors, e.g., benzophenone and fluorenone, respectively, in two RTIL media, namely, [BMIM][PF6] and [BMIM][BF4], as well as a few other conventional organic solvents using the nanosecond pulse radiolysis technique. Decay of the donor radical anion and concomitant formation of the acceptor radical anion ensure a bimolecular ET process. The rate constants for the bimolecular ET process in both normal organic solvents and RTILs have been found to be nearly equal to diffusion controlled rate calculated for the corresponding solvent. For long-lived anions, having lifetimes longer than a few hundred nanoseconds, quenching occurs mainly in the stationary regime. In this regime, the ET rate is fully controlled by the rate of diffusion of the reactive species in those solvents. To the best of our knowledge, this is the first experimental evidence of the diffusion controlled ET process occurring in the stationary regime in RTIL media.
Collapse
Affiliation(s)
- Biswajit Manna
- Radiation & Photo Chemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | | | | |
Collapse
|
19
|
|
20
|
Tarasova NP, Smetannikov YV, Artemkina IM, Lavrov IA, Sinaiskii MA, Ermakov VI. Effect of the polarity of the medium on the ionic radiation-induced polymerization of elemental (white) phosphorus. DOKLADY CHEMISTRY 2006. [DOI: 10.1134/s0012500806100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Reduction of tetranitromethane by electronically excited aromatics in acetonitrile: Spectra and molar absorption coefficients of radical cations of anthracene, phenanthrene and pyrene. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|