1
|
Joshi A, Kaur J, Kulkarni R, Chaudhari R. In-vitro and Ex-vivo evaluation of Raloxifene hydrochloride delivery using nano-transfersome based formulations. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Goel A, Raghuvanshi A, Kumar A, Gautam A, Srivastava K, Kureel J, Singh D. 9-Demethoxy-medicarpin promotes peak bone mass achievement and has bone conserving effect in ovariectomized mice: Positively regulates osteoblast functions and suppresses osteoclastogenesis. Mol Cell Endocrinol 2015; 411:155-66. [PMID: 25957087 DOI: 10.1016/j.mce.2015.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/11/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
We report a new bone anabolic and anti-catabolic pterocarpan 9-demethoxy-medicarpin (DMM) for the management of postmenopausal osteoporosis. DMM promoted osteoblast functions via activation of P38MAPK/BMP-2 pathway and suppressed osteoclastogenesis in bone marrow cells (BMCs). In calvarial osteoblasts, DMM blocked nuclear factor kappaB (NFκB) signaling and inhibited the mRNA levels of pro-inflammatory cytokines. DMM treatment led to increased OPG (osteoprotegrin) and decreased transcript levels of TRAP (tartarate resistant acid phosphatase), RANK (receptor activator of NFκB) and RANKL (RANK ligand) in osteoblast-osteoclast co-cultures. Immature female SD rats administered with DMM exhibited increased bone mineral density, bone biomechanical strength, new bone formation and cortical bone parameters. Ovx mice administered with DMM led to significant restoration of trabecular microarchitecture and had reduced formation of osteoclasts and increased formation of osteoprogenitor cells in BMCs. DMM exhibited no uterine estrogenicity. Overall, these results demonstrate the therapeutic potential of DMM for the management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Atul Goel
- Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| | - Ashutosh Raghuvanshi
- Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar
- Medicinal & Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abnish Gautam
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kamini Srivastava
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jyoti Kureel
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Divya Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
3
|
Chen M, Qiao H, Su Z, Li H, Ping Q, Zong L. Emerging therapeutic targets for osteoporosis treatment. Expert Opin Ther Targets 2014; 18:817-31. [PMID: 24766518 DOI: 10.1517/14728222.2014.912632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To date, osteoporosis still remains a major public health burden especially for the aging populations. Over the last few decades treatments for osteoporosis have largely focused on anti-resorptive agents represented by bisphosphonates and estrogen therapy that dominated the market. Unsatisfactory efficacy, non-specificity and long-term safety of current therapies necessitate the need for new targets effectively preventing and treating of osteoporosis. AREAS COVERED This review expatiates on the mechanism of osteoporosis occurrence and bone remodeling cycle in detail. New targets of antiresorptive and anabolic agents based on the functions of osteoblasts and osteoclasts as well as associated signaling pathways are outlined. EXPERT OPINION Advanced understanding in the fields of bone remodeling, functions of osteoblasts, osteoclasts and osteocytes associated with osteoporosis occurrence offers the emerging bone-resorptive or bone-formative targets. Currently, molecules involving RANK-RANKL-OPG system and Wnt/β-catenin signaling pathway act as the most promising targets.
Collapse
Affiliation(s)
- Minglei Chen
- China Pharmaceutical University, Key Lab of State Natural Medicine, Department of Pharmaceutics , Nanjing 210009 , PR China +86 25 83271092; +86 25 83271317 ; +86 25 83271092; +86 25 83271317 ; ;
| | | | | | | | | | | |
Collapse
|
4
|
Bazin D, Dessombz A, Nguyen C, Ea HK, Lioté F, Rehr J, Chappard C, Rouzière S, Thiaudière D, Reguer S, Daudon M. The status of strontium in biological apatites: an XANES/EXAFS investigation. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:136-142. [PMID: 24365928 DOI: 10.1107/s1600577513023771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/22/2013] [Indexed: 06/03/2023]
Abstract
Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.
Collapse
Affiliation(s)
- Dominique Bazin
- CNRS-LCMCP-UPMC, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Arnaud Dessombz
- Laboratoire de Physique des Solides, Université Paris XI, Bâtiment 510, 91405 Orsay, France
| | | | - Hang Korng Ea
- INSERM, UMR-S 606, Lariboisière Hospital, F-75010 Paris, France
| | - Frédéric Lioté
- INSERM, UMR-S 606, Lariboisière Hospital, F-75010 Paris, France
| | - John Rehr
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Christine Chappard
- B2OA, UMR 7052 CNRS, Université Paris Diderot, 10 avenue de Verdun, F-75010 Paris, France
| | - Stephan Rouzière
- Laboratoire de Physique des Solides, Université Paris XI, Bâtiment 510, 91405 Orsay, France
| | - Dominique Thiaudière
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Solen Reguer
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Michel Daudon
- Service d'Explorations Fonctionnelles, AP-HP, Hôpital Tenon, 4 rue de la Chine, F-75020 Paris, France
| |
Collapse
|
5
|
Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Exploring drug delivery systems for treating osteoporosis. Expert Opin Drug Deliv 2013; 10:1123-36. [DOI: 10.1517/17425247.2013.785518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|