1
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Miao J, Wei Z, Zhou S, Li J, Shi D, Yang D, Jiang G, Yin J, Yang ZW, Li JW, Jin M. Predicting the concentrations of enteric viruses in urban rivers running through the city center via an artificial neural network. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129506. [PMID: 35999718 DOI: 10.1016/j.jhazmat.2022.129506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Viral waterborne diseases are widespread in cities due largely to the occurrence of enteric viruses in urban rivers, which pose a significant concern to human health. Yet, the application of rapid detection technology for enteric viruses in environmental water remains undeveloped globally. Here, multiple linear regression (MLR) modeling and artificial neural network (ANN) modeling, which used frequently measured physicochemical parameters in river water, were constructed to predict the concentration of enteric viruses including human enteroviruses (EnVs), rotaviruses (HRVs), astroviruses (AstVs), noroviruses GⅡ (HuNoVs GⅡ), and adenoviruses (HAdVs) in rivers. After training, testing, and validating, ANN models showed better performance than any MLR model for predicting the viral concentration in Jinhe River. All determined R-values for ANN models exceeded 0.89, suggesting a strong correlation between the predicted and measured outputs for target enteric viruses. Furthermore, ANN models provided a better congruence between the observed and predicted concentrations of each virus than MLR models did. Together, these findings strongly suggest that ANN modeling can provide more accurate and timely predictions of viral concentrations based on frequent (or routine) measurements of physicochemical parameters in river water, which would improve assessments of waterborne disease prevalence in cities.
Collapse
Affiliation(s)
- Jing Miao
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Zilin Wei
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, QLD 4103, Australia
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Zhong Wei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Jun Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China.
| |
Collapse
|
3
|
Liu O, Paul-Pont I, Rubio A, Dhand N, Whittington RJ. Detection of ostreid herpesvirus-1 in plankton and seawater samples at an estuary scale. DISEASES OF AQUATIC ORGANISMS 2020; 138:1-15. [PMID: 32132267 DOI: 10.3354/dao03445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ostreid herpesvirus-1 (OsHV-1) is known to associate with particles in seawater, leading to infection and disease in the Pacific oyster Crassostrea gigas. The estuarine environment is highly complex and changeable, and this needs to be considered when collecting environmental samples for pathogen detection. The aims of this study were to (1) compare different aspects of collecting natural seawater and plankton samples for detection of OsHV-1 DNA and (2) determine whether detection of OsHV-1 DNA in such environmental samples has merit for disease risk prediction. The results of one experiment suggest that sampling on the outgoing tide may improve the detection of OsHV-1 DNA in seawater and plankton tow samples (odds ratio 2.71). This statistical comparison was not possible in 2 other experiments. The method (plankton tow or beta bottle) and depth of collection (range: 250-1250 mm) had no effect on the likelihood of detection of OsHV-1. OsHV-1 DNA was found at low concentrations in plankton tow and seawater samples, and only when outbreaks of mortality associated with OsHV-1 were observed in nearby experimental or farmed populations of C. gigas. This suggests that single point in time environmental samples of seawater or plankton are not sufficient to rule out the presence of OsHV-1 in an estuary. The association of OsHV-1 with particles in seawater needs to be better understood in order to determine whether more selective and sensitive methods can be devised to detect it, before environmental samples can be reliably used in disease risk prediction.
Collapse
Affiliation(s)
- Olivia Liu
- School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
4
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Kaas L, Ogorzaly L, Lecellier G, Berteaux-Lecellier V, Cauchie HM, Langlet J. Detection of Human Enteric Viruses in French Polynesian Wastewaters, Environmental Waters and Giant Clams. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:52-64. [PMID: 30426392 DOI: 10.1007/s12560-018-9358-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/02/2018] [Indexed: 05/27/2023]
Abstract
Lack of wastewater treatment efficiency causes receiving seawaters and bivalve molluscan shellfish to become contaminated, which can lead to public health issues. Six wastewater samples, five seawater samples and three batches of giant clams from Tahiti (French Polynesia) were investigated for the presence of enteric viruses, but also if present, for the diversity, infectivity and integrity of human adenoviruses (HAdV). Enteroviruses (EV), sapoviruses (SaV) and human polyomaviruses (HPyV) were detected in all wastewater samples. In decreasing frequency, noroviruses (NoV) GII and HAdV, rotaviruses (RoV), astroviruses (AsV), NoV GI and finally hepatitis E viruses (HEV) were also observed. Nine types of infectious HAdV were identified. HPyV and EV were found in 80% of seawater samples, NoV GII in 60%, HAdV and SaV in 40% and AsV and RoV in 20%. NoV GI and HEV were not detected in seawater. Intact and infectious HAdV-41 were detected in one of the two seawater samples that gave a positive qPCR result. Hepatitis A viruses were never detected in any water types. Analysis of transcriptomic data from giant clams revealed homologues of fucosyltransferases (FUT genes) involved in ligand biosynthesis that strongly bind to certain NoV strains, supporting the giant clams ability to bioaccumulate NoV. This was confirmed by the presence of NoV GII in one of the three batches of giant clams placed in a contaminated marine area. Overall, all sample types were positive for at least one type of virus, some of which were infectious and therefore likely to cause public health concerns.
Collapse
Affiliation(s)
- Laetitia Kaas
- Enteric, Environmental and Food Virology Laboratory, Institute of Environmental Science and Research (ESR), Kenepuru Science Centre, PO BOX 50-348, Porirua, 5240, New Zealand
| | - Leslie Ogorzaly
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Gaël Lecellier
- PSL CRIOBE USR3278 CNRS-EPHE-UPVD, Labex CORAIL, Papetoai, Moorea, French Polynesia
- Département de Biologie, Université de Paris Saclay UVSQ, 45 Ave des Etats-Unis, 78000, Versailles, France
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Labex CORAIL, Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
| | - Véronique Berteaux-Lecellier
- PSL CRIOBE USR3278 CNRS-EPHE-UPVD, Labex CORAIL, Papetoai, Moorea, French Polynesia
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Labex CORAIL, Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
| | - Henry-Michel Cauchie
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Jérémie Langlet
- Enteric, Environmental and Food Virology Laboratory, Institute of Environmental Science and Research (ESR), Kenepuru Science Centre, PO BOX 50-348, Porirua, 5240, New Zealand.
| |
Collapse
|
6
|
Kaas L, Gourinat AC, Urbès F, Langlet J. A 1-Year Study on the Detection of Human Enteric Viruses in New Caledonia. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:46-56. [PMID: 26670603 DOI: 10.1007/s12560-015-9224-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 05/02/2023]
Abstract
Human enteric viruses occur in high concentrations in wastewater and can contaminate receiving environmental waters. Due to the lack of data on the prevalence of enteric viruses in New Caledonia, the presence and the concentrations of enteric viruses in wastewater and seawater were determined. Untreated wastewater and seawater samples were collected monthly for 1 year from a wastewater treatment plant (WWTP) and from the WWTP's outlet, located directly on a popular recreational beach. Samples were tested for norovirus genogroups I and II (NoV GI and GII), astroviruses (AsV), sapoviruses (SaV), enteroviruses (EV), hepatitis A viruses (HAV), rotaviruses (RoV), human adenoviruses (HAdV) and human polyomaviruses (HPyV). To support these data, faecal samples from cases of gastroenteritis were tested for the first time for NoV and detected in the population. NoV GI, NoV GII, EV, SaV, HAdV and HPyV were detected in all wastewaters, RoV in 75% and AsV in 67%. HAV were not detected in wastewater. Overall, 92% of seawater samples were positive for at least one virus. HPyV were detected most frequently in 92% of samples and at concentrations up to 7.7 × 10(3) genome copies/L. NoV GI, NoV GII, EV, SaV, RoV and HAdV were found in 33, 66, 41, 33, 16 and 66% of seawater samples, respectively. AsV were not detected in seawater. This study reports for the first time the presence of NoV and other enteric viruses in New Caledonia and highlights the year-round presence of enteric viruses in the seawater of a popular beach.
Collapse
Affiliation(s)
- Laetitia Kaas
- Environmental and Food Virology Laboratory, Institute of Environmental Science & Research Ltd. (ESR), Kenepuru Science Centre, PO Box 50-348, Porirua, 5240, New Zealand
| | | | - Florence Urbès
- Institut Pasteur de Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Jérémie Langlet
- Environmental and Food Virology Laboratory, Institute of Environmental Science & Research Ltd. (ESR), Kenepuru Science Centre, PO Box 50-348, Porirua, 5240, New Zealand.
| |
Collapse
|
7
|
Chigor VN, Okoh AI. Quantitative RT-PCR detection of hepatitis A virus, rotaviruses and enteroviruses in the Buffalo River and source water dams in the Eastern Cape Province of South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202829 PMCID: PMC3524610 DOI: 10.3390/ijerph9114017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human enteric viruses (HEntVs) are a major cause of water-related diseases. The prevalence of hepatitis A virus (HAV), rotaviruses (RoV) and enteroviruses (EnV) in Buffalo River waters was assessed quantitatively over a period of 12 months (August 2010 to July 2011). Seventy-two samples were collected from six sites, including three dams, and concentrated using the adsorption-elution method. Viral RNA was extracted using a commercial kit, and the viruses were quantified by real-time quantitative reverse transcriptase PCR (RT-qPCR). Two or more viruses were detected in 12.5% of the samples. HAV was detected in 43.1% of the samples and in significantly (p < 0.05) varying concentrations of 1.5 × 10(1)–1.9 × 10(5) genome copies/L compared to RoV and EnV, while RoVs were detected in 13.9% of samples, with concentrations ranging from 2.5 × 10(1)–2.1 × 10(3) genome copies/L, and EnV were detected in 9.7% of the samples, with concentrations ranging from 1.3 × 10(1)–8.6 × 10(1) genome copies/L. Only HAV was detected at all the sites, with the Bridle Drift Dam recording significantly higher (p < 0.05) concentrations. The presence of enteric viruses in Buffalo River may constitute public health risks and the incidence of HAV at all the sites could reflect both the epidemiological status of hepatitis A and HAV persistence in the water environments.
Collapse
Affiliation(s)
- Vincent Nnamdigadi Chigor
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
| | | |
Collapse
|
8
|
Ming HX, Zhu L, Zhang Y. Rapid quantification of infectious enterovirus from surface water in Bohai Bay, China using an integrated cell culture-qPCR assay. MARINE POLLUTION BULLETIN 2011; 62:2047-2054. [PMID: 21889173 DOI: 10.1016/j.marpolbul.2011.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/31/2023]
Abstract
To rapidly quantify infectious enteroviruses polluting the coastal seawaters, a newly developed integrated cell culture and reverse transcription quantitative PCR (ICC-RT-qPCR) assay was used to identify the contamination by enteroviruses in winter seawater samples of Bohai Bay, Tianjin, China. The gene copies of enteroviral 5'UTRs correlated to the initial inoculum numbers across the concentration range of 0.05-500 PFU mL(-1) (correlation coefficient (R(2)) was 0.9667). ICC-qPCR revealed that five of seven samples (70.4%) were positive for infectious enteroviruses. The concentration of enteroviruses was estimated at 0.2-21 PFU L(-1). The result demonstrated that the contamination of enteroviruses in this coastal area may constitute a potential public health risk. This study established a practical assay for widespread monitoring studies of aquatic environments for viral contamination and provided meaningful data for human waterborne viral risk assessment.
Collapse
Affiliation(s)
- Hong-Xia Ming
- College of Environmental Science and Engineering, Key Laboratory of Pollution and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|