1
|
Wang YU, Lv H, Lan J, Zhang X, Zhu K, Yang S, Lv S, Lv S. Detection of Sodium Formaldehyde Sulfoxylate, Aluminum, and Borate Compounds in Bread and Pasta Products Consumed by Residents in Jilin Province, China. J Food Prot 2022; 85:1142-1147. [PMID: 35503969 DOI: 10.4315/jfp-22-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Food additives are widespread in the human diet; however, their excessive intake can have an impact on the quality of health. This study evaluated food additives in bread and pasta products consumed by residents in various regions of Jilin Province, People's Republic of China, from 2019 to 2021. We collected samples of bread and six types of pasta products from farmers' markets and morning markets and used high-performance liquid chromatography, UV-visible spectrophotometry, and graphite furnace atomic absorption spectrometry to detect the content of the following food additives: sodium formaldehyde sulfoxylate, aluminum, and borate compounds. For 836 samples in total, we detected the presence of sodium formaldehyde sulfoxylate, aluminum, and borate compounds in excess rates reaching 3.5, 10, and 4.7%, respectively. Aluminum in fried breadsticks exceeded the standard by 40%. The results of this study can be used to assess the overall pass rate of bread and pasta products sold in Jilin Province and support the detection of possible food safety problems. HIGHLIGHTS
Collapse
Affiliation(s)
- Y U Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Hang Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China.,School of food engineering, Jilin Engineering Normal University, Changchun, People's Republic of China
| | - Jiaqi Lan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Xin Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Ketong Zhu
- School of food engineering, Jilin Engineering Normal University, Changchun, People's Republic of China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | | |
Collapse
|
2
|
Song W, Li J, Fu C, Wang Z, Wang Z, Wang Q, Zhang X, Zhou Y, Du X. Low consumption and portable technology for dithionite detection based on potassium ferricyanide differential spectrophotometry method in related advanced oxidation processes. ENVIRONMENTAL RESEARCH 2022; 205:112430. [PMID: 34843722 DOI: 10.1016/j.envres.2021.112430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Carbon neutrality has been received more attention and emerged in wastewater treatment processes. Due to the development of treating technologies with the rising of new-emerging pollutants, the coupled chemical processes also should remain current for the goal of carbon-neutral operation. Among of those updated strategies, several advanced oxidation processes (AOPs) based on dithionite (DTN, S2O42-), a common water treatment agent, have been established for refractory organic contaminations removal. However, in terms of DTN detection, the traditional formol-titration method has several application limits including the low detection sensitivity and high consumption of formaldehyde. In this study, compared with traditional method, a low energy consumption technology has been developed based on the potassium ferricyanide with the carbon consumption decreasing by about 5 times. Moreover, detection limit of DTN (mmol/L level) also was lower than the titration method. The method was established based on the fact that every 1 mol of DTN can react with 2 mol [Fe(CN)6]3- under alkaline condition. According to that potassium ferricyanide (K3 [Fe(CN)6]) has the maximum absorption at 419 nm wavelength, a fitting equation based on the linear relationship between the absorbance variation of K3 [Fe(CN)6] and DTN amount in the ranges of 0-30 μmol with the detection limit of 0.6 μmol was established with the determination coefficient of 0.99935. It was found that there was no obvious influence of the ubiquitous foreign species with the amount lower than 6 mM, 4 mM, 6 mM, 4 mM and 1 mg/L for Cl-, HCO3-, NO3-, SO42- and NOM, respectively. Moreover, methanol and tert-butanol were employed to verify the influence of the presence of organic matters on the determination of DTN and no impact was observed in this study. The proposed method provides a new way for DTN detection with stable and countable performance in the related AOPs with the low electric energy and carbon source consumption and high detection efficiency.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, PR China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qiao Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Yuxin Zhou
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Yu D, Fang Y, Liu L, He J, Han X, Yu H, Dong S. Fabrication of a Novel, Cost-Effective Double-Sided Indium Tin Oxide-Based Nanoribbon Electrode and Its Application of Acute Toxicity Detection in Water. ACS Sens 2020; 5:3923-3929. [PMID: 33305577 DOI: 10.1021/acssensors.0c01566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microelectrode plays a crucial role in developing a rapid biosensor for detecting toxicity in water. In this study, a nanoribbon electrode (NRE) with amplified microelectrode signal was successfully prepared by electrodepositing 2-allylphenol on a double-sided indium tin oxide glass. The NRE provided a simple mean for obtaining large steady-state current response. Its advantages were discussed by contrasting the toxicity detection of 3,5-dichlorophenol (DCP) with single microelectrode, microelectrode array, and millimeter electrode as working electrodes in which potassium ferricyanide (K3[Fe(CN)6]) was adopted as a mediator, and Escherichia coli was selected as bioreceptor. At a constant potential of 450 mV, the current reached a steady state within 10 s. The biosensor was constructed using the NRE as working electrode, and its feasibility was verified by determining the toxicity of DCP. A 50% inhibitory concentration (IC50) of 3.01 mg/L was obtained by analyzing the current responses of different concentrations of DCP within 1 h. These results exhibited that the proposed method based on the as-prepared NRE was a rapid, sensitive, and cost-effective way for toxicity detection in water.
Collapse
Affiliation(s)
- Dengbin Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, Jilin 130102, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of Education, Wuhan, Hubei 430072, P. R. China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Jingting He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Xuerong Han
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, Jilin 130102, P. R. China
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
4
|
Yu D, Li J, Kang Z, Liu L, He J, Fang Y, Yu H, Dong S. An unexpected discovery of 1,4-benzoquinone as a lipophilic mediator for toxicity detection in water. Analyst 2020; 145:5266-5272. [PMID: 32724991 DOI: 10.1039/d0an00991a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since most toxicological risk assessments are based on individual single-species tests, there is uncertainty in extrapolating these results to ecosystem assessments. Herein, we successfully developed a mediated microbial electrochemical biosensor with mixed microorganisms for toxicity detection by microelectrode array (MEA). In order to fully mobilize all the mixed microorganisms to participate in electron transfer to amplify the current signal, 1,4-benzoquinone (BQ) was used as the lipophilic mediator to mediate the intracellular metabolic activities. Hydrophilic K3[Fe(CN)6] was employed as an extracellular electron acceptor to transport electrons from hydroquinone (HQ) to the working electrode. Under the optimal conditions of 50 mM phosphate buffer solution (PBS), 0.4 mM BQ, 10 mM K3[Fe(CN)6] and OD600 = 0.5 bacteria concentration, the half-maximal inhibitory concentration (IC50) values measured with the composite-mediated respiration (CM-RES) of BQ-K3[Fe(CN)6] for Cu2+, Cd2+ and Zn2+ were 5.95, 7.12 and 8.86 mg L-1, respectively. IC50 values obtained with the single mediator K3[Fe(CN)6] were 2.34, 5.88 and 2.42 mg L-1 for the same samples. The results indicate that the biosensor with the single mediator K3[Fe(CN)6] had higher sensitivity to heavy metal ions than the biosensor with composite mediators. After verification, we found that the addition of BQ cannot amplify the current. The IC50 value of 0.89 mg L-1 for BQ was obtained using K3[Fe(CN)6] as the single mediator. This suggests that BQ is highly toxic, which explained why the sensitivity of the biosensor with the combined mediator BQ-K3[Fe(CN)6] was lower than that of the biosensor with the single mediator K3[Fe(CN)6]. At the same time, this also implies that toxicity itself cannot be ignored when it is used as an electronic mediator in a mediated microbial electrochemical biosensor.
Collapse
Affiliation(s)
- Dengbin Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, Jilin, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fang D, Gao G, Yang Y, Wang Y, Gao L, Zhi J. Redox Mediator‐Based Microbial Biosensors for Acute Water Toxicity Assessment: A Critical Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202000367] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Deyu Fang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- Current address: Ningde Amperex Technology Limited (ATL) Ningde 352100 PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yajie Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yu Wang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 PR China
| | - Lijuan Gao
- Beijing Center for Physical and Chemical Analysis Beijing 100089 PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
6
|
Ma B, Xu X, Wei Y, Ge C, Peng Y. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants. BIORESOURCE TECHNOLOGY 2020; 299:122697. [PMID: 31902637 DOI: 10.1016/j.biortech.2019.122697] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Denitratation (NO3-→NO2-)/anammox is a promising method for anammox application in mainstream wastewater treatment plants (WWTPs) to reduce oxygen and organic matter consumption. Achieving nitrite production via denitratation and controlling denitritation (NO2-→N2) is the basis of the denitratation/anammox process. To control denitritation, the denitrifying biocommunity and growth rate are critically reviewed for biocommunity optimization. Then, the short-term and long-term effects of pH on denitritation were summarized and the possible mechanism was discussed, along with the effect of C/N ratio and organic matter type on denitritation. Meanwhile, the strategies for producing nitrite via controlling denitritation are discussed, as well as the processes for achieving nitrogen removal via denitratation/anammox in WWTPs. Finally, the practical application of denitratation/anammox in a full-scale mainstream WWTP is documented.
Collapse
Affiliation(s)
- Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Xinxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yan Wei
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Miao P, Liu Z, Guo J, Yuan M, Zhong R, Wang L, Zhang F. A novel ultrasensitive surface plasmon resonance-based nanosensor for nitrite detection. RSC Adv 2019; 9:17698-17705. [PMID: 35520579 PMCID: PMC9064595 DOI: 10.1039/c9ra02460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 02/03/2023] Open
Abstract
Nitrite is a common food additive, however, its reduction product, nitrosamine, is a strong carcinogen, and hence the ultra-sensitive detection of nitrite is an effective means to prevent related cancers. In this study, different sized gold nanoparticles (AuNPs) were modified with P-aminothiophenol (ATP) and naphthylethylenediamine (NED). In the presence of nitrite, satellite-like AuNPs aggregates formed via the diazotization coupling reaction and the color of the system was changed by the functionalized AuNPs aggregates. The carcinogenic nitrite content could be detected by colorimetry according to the change in the system color. The linear concentration range of sodium nitrite was 0-1.0 μg mL-1 and the detection limit was determined to be 3.0 ng mL-1. Compared with the traditional method, this method has the advantages of high sensitivity, low detection limit, good selectivity and can significantly lower the naked-eye detection limit to 3.0 ng mL-1. In addition, this method is suitable for the determination of nitrite in various foods. We think this novel designed highly sensitive nitrate nanosensor holds great market potential.
Collapse
Affiliation(s)
- Pandeng Miao
- Grain College, Henan University of Technology Zhengzhou 450001 P. R. China
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Zhongdong Liu
- Grain College, Henan University of Technology Zhengzhou 450001 P. R. China
| | - Jun Guo
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ming Yuan
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ruibo Zhong
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200241 P. R. China
| | - Feng Zhang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
- School of Biomedical Engineering, Shanghai Jiaotong University Shanghai 200241 P. R. China
| |
Collapse
|
8
|
Yu D, Liu C, Rao Y, Zhai J, Liu L, Dong S. Preparation, performance, and application of a stable, sensitive and cost-effective microelectrode array. Talanta 2018; 188:245-250. [DOI: 10.1016/j.talanta.2018.05.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 01/23/2023]
|
9
|
Yu D, Zhai J, Liu C, Zhang X, Bai L, Wang Y, Dong S. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity. ACS Sens 2017; 2:1637-1643. [PMID: 29043795 DOI: 10.1021/acssensors.7b00484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.
Collapse
Affiliation(s)
- Dengbin Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Junfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Changyu Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Xueping Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Lu Bai
- School
of Chemical and Environmental Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Yizhe Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Shaojun Dong
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Yu D, Yong YC, Liu C, Fang Y, Bai L, Dong S. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water. CHEMOSPHERE 2017; 184:106-111. [PMID: 28582765 DOI: 10.1016/j.chemosphere.2017.05.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 05/20/2023]
Abstract
A novel mediator-free method based on genetically modified bacteria was developed for detecting water toxicity, where genetically modified Pseudomonas aeruginosa (GM P. aeruginosa) was selected as the biosensor strain and pyocyanin (PYO) produced by this strain was used as the indicator. The toxicity response of GM P. aeruginosa to 3, 5-dichlorophenol (3, 5-DCP) was measured electrochemically and spectroscopically, and the half maximal inhibitory concentration (IC50) of 3, 5-DCP was determined to be 15.1 mg/L. Strikingly, the toxicity of sample solution with 3, 5-DCP could also be estimated visually by naked eyes at a concentration as low as 10 mg/L. The present study provided a convenient, sensitive and cost-effective method for water toxicity detection, and extended biosensing application of the genetically modified bacterium.
Collapse
Affiliation(s)
- Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Lu Bai
- School of Chemical and Environmental Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, Shanxi Province, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
11
|
Chohan S, Booysen IN, Mambanda A, Akerman MP. Synthesis, characterization and electrocatalytic behavior of cobalt and iron phthalocyanines bearing chromone or coumarin substituents. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1023196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sumayya Chohan
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Matthew Piers Akerman
- School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|