1
|
Rasool Kamli M, Malik A, S M Sabir J, Ahmad Rather I, Kim CB. Insights into the biodegradation and heavy metal resistance potential of the genus Brevibacillus through comparative genome analyses. Gene 2022; 846:146853. [PMID: 36070852 DOI: 10.1016/j.gene.2022.146853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
Abstract
Members of the genus Brevibacillus belonging to the familyPaenibacillaceae are Gram-positive/variable, endospore-forming, and rod-shaped bacteria that dwell in various environmental habitats. Brevibacillus spp. have a wide range of enzyme activities such as degradation of various carbohydrates, plastics, and they possess resistance against heavy metals. These characteristics make them encouraging contenders for biotechnological applications.In this work, we analyzed the reference genomes of 19Brevibacillusspecies, focusing on discovering the biodegradation and heavy metal resistance capabilities of this little studied genus from genomic data. The results indicate that several strain specific traits were identified. For example Brevibacillus halotolerans s-14, and Brevibacillus laterosporus DSM 25 have more glycoside hydrolases (GHs) compared to other carbohydrate-active enzymes, and therefore might be more suitable for biodegradation of carbohydrates. In contrast, strains such as Brevibacillus antibioticus TGS2-1, with a higher number of glycosyltransfereases (GTs) may aid in the biosynthesis of complex carbohydrates. Our results also suggest some correlation between heavy metal resistance and polyurethane degradation, thus indicating that heavy metal resistance strains (e.g. Brevibacillus reuszeri J31TS6) can be a promising source of enzymes for polyurethane degradation. These strain specific features make the members of this bacterial group potential candidates for further investigations with industrial implications. This work also represents the first exhaustive study of Brevibacillus at the genome scale.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Adeel Malik
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irfan Ahmad Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
2
|
Li X, Liu X, Cao N, Fang S, Yu C. Adaptation mechanisms of arsenic metabolism genes and their host microorganisms in soils with different arsenic contamination levels around abandoned gold tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:117994. [PMID: 34547657 DOI: 10.1016/j.envpol.2021.117994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Soil around the gold tailing due to the smelting process of wastewater and solid waste can lead to metal (loids) contamination, especially arsenic (As). Soil microorganisms have gradually evolved adaptive mechanisms in the process of long-term adaptation to As contamination. However, comprehensive investigations on As metabolism genes and their host microbial communities in soil profiles with different levels under long-term As contamination are lacking. There are selected three typical soil profiles (0-100 cm) with different metal (loids) contamination levels (L-low, M-moderate and H-high) around tailings in this research. It uses a Metagenomic approach to explore the adaptation mechanisms of arsenic metabolism genes and arsenic metabolism gene host microorganisms in both horizontal and vertical dimensions. The results showed that four categories of As metabolism genes were prevalent in soil profiles at different As contamination, with As reduction genes being the most abundant, followed by As oxidation genes, then respiration genes and methylation genes. The As metabolism genes arsBCR, aioE, arsPH, arrAB increased with the increase of metal (loid) contaminants concentration. Longitudinal arsA, arrA, aioA, arsM and acr3 increased in abundance in deep soil. Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi were the dominant phylum of As metabolism gene host microorganisms. Different concentrations of metal (loid) contamination significantly affected the distribution of host As metabolism genes. Random forest prediction identified As as the most critical driver of As metabolism genes and their host microorganisms. Overall, this study provides a reference for a comprehensive investigation of the detoxification mechanisms of As metabolism microorganisms in soil profiles with different As contamination conditions, and is important for the development of As metabolism gene host microbial strains and engineering applications of microbial technologies to manage As contamination.
Collapse
Affiliation(s)
- Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, Beijing, China
| | - Neng Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Songjun Fang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Pérez-Palacios P, Funes-Pinter I, Agostini E, Talano MA, Ibáñez SG, Humphry M, Edwards K, Rodríguez-Llorente ID, Caviedes MA, Pajuelo E. Targeting Acr3 from Ensifer medicae to the plasma membrane or to the tonoplast of tobacco hairy roots allows arsenic extrusion or improved accumulation. Effect of acr3 expression on the root transcriptome. Metallomics 2019; 11:1864-1886. [PMID: 31588944 DOI: 10.1039/c9mt00191c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transgenic tobacco hairy roots expressing the bacterial arsenite efflux pump Acr3 from Ensifer medicae were generated. The gene product was targeted either to the plasma membrane (ACR3 lines) or to the tonoplast by fusing the ACR3 protein to the tonoplast integral protein TIP1.1 (TIP-ACR3 lines). Roots expressing Acr3 at the tonoplast showed greater biomass than those expressing Acr3 at the plasma membrane. Furthermore, higher contents of malondialdehyde (MDA) and RNA degradation in ACR3 lines were indicative of higher oxidative stress. The determination of ROS-scavenging enzymes depicted the transient role of peroxidases in ROS detoxification, followed by the action of superoxide dismutase during both short- and medium-term exposure periods. Regarding As accumulation, ACR3 lines accumulated up to 20-30% less As, whereas TIP-ACR3 achieved a 2-fold increase in As accumulation in comparison to control hairy roots. Strategies that presumably induce As uptake, such as phosphate deprivation or dehydration followed by rehydration in the presence of As, fostered As accumulation up to 10 800 μg g-1. Finally, the effects of the heterologous expression of acr3 on the root transcriptome were assessed. Expression at the plasma membrane induced drastic changes in gene expression, with outstanding overexpression of genes related to electron transport, ATP synthesis and ATPases, suggesting that As efflux is the main detoxification mechanism in these lines. In addition, genes encoding heat shock proteins and those related to proline synthesis and drought tolerance were activated. On the other hand, TIP-ACR3 lines showed a similar gene expression profile to that of control roots, with overexpression of the glutathione and phytochelatin synthesis pathways, together with secondary metabolism pathways as the most important resistance mechanisms in TIP-ACR3, for which As allocation into the vacuole allowed better growth and stress management. Our results suggest that modulation of As accumulation can be achieved by subcellular targeting of Acr3: expression at the tonoplast enhances As accumulation in roots, whereas expression at the plasma membrane could promote As efflux. Thus, both approaches open the possibilities for developing safer crops when grown on As-polluted paddy soils, but expression at the tonoplast leads to better growth and less stressed roots, since the high energy cost of As efflux likely compromises growth in ACR3 lines.
Collapse
Affiliation(s)
- Patricia Pérez-Palacios
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain. and Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina and Plant Biotechnology Division, British American Tobacco, Cambridge, CB4 0WA, UK
| | - Iván Funes-Pinter
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain. and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza (CP 5507), Atte Brown 500, Chacras de Coria, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina
| | - Melina A Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina
| | - Sabrina G Ibáñez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Matt Humphry
- British American Tobacco (Investments) Ltd, Cambridge, CB4 0WA, UK
| | - Kieron Edwards
- Plant Biotechnology Division, British American Tobacco, Cambridge, CB4 0WA, UK
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| | - Miguel A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| |
Collapse
|
4
|
Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ. Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. CHEMOSPHERE 2019; 218:1061-1070. [PMID: 30609485 DOI: 10.1016/j.chemosphere.2018.11.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment.
Collapse
Affiliation(s)
- Meng-Ru Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ni Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yue Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, 362801, China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
5
|
Draft Genome Sequence of Bacillus sp. Strain CDB3, an Arsenic-Resistant Soil Bacterium Isolated from Cattle Dip Sites. GENOME ANNOUNCEMENTS 2017. [PMID: 28642376 PMCID: PMC5481582 DOI: 10.1128/genomea.00429-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacillus sp. strain CDB3, isolated from cattle dip sites in Australia, is highly resistant to arsenic. It contains 22 arsenic resistance (ars) genes, of which 17 are organized in 3 ars clusters. Here, we report the draft genome sequence of CDB3, which will assist us in understanding the overall ars mechanism.
Collapse
|
6
|
FARIAS JÚLIAG, BERNARDY KATIELI, SCHWALBERT RAÍSSA, DEL FRARI BIANCAK, MEHARG ANDREW, CAREY MANUS, MARQUES ANDERSONC, SIGNES-PASTOR ANTONIO, SAUSEN DARLENE, SCHORR MÁRCIOR, TAVARES MIRIANS, NICOLOSO FERNANDOT. Effect of phosphorus on arsenic uptake and metabolism in rice cultivars differing in phosphorus use efficiency and response. ACTA ACUST UNITED AC 2017; 89:163-174. [DOI: 10.1590/0001-3765201720160320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022]
Affiliation(s)
- JÚLIA G. FARIAS
- Universidade Federal de Santa Maria, Brazil; Queen's University Belfast, Northern Ireland
| | | | | | | | | | - MANUS CAREY
- Queen's University Belfast, Northern Ireland
| | | | | | | | | | | | | |
Collapse
|
7
|
Khowal S, Siddiqui MZ, Ali S, Khan MT, Khan MA, Naqvi SH, Wajid S. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR. Mol Phylogenet Evol 2016; 107:443-454. [PMID: 27956257 DOI: 10.1016/j.ympev.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Md Zulquarnain Siddiqui
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Shadab Ali
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Mohd Taha Khan
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Mather Ali Khan
- 247, Bond Life Sciences Centre, 1201 Rollins Street, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Saima Wajid
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India.
| |
Collapse
|
8
|
Yu X, Zheng W, Bhat S, Aquilina JA, Zhang R. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1. PeerJ 2015; 3:e1230. [PMID: 26355338 PMCID: PMC4562236 DOI: 10.7717/peerj.1230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/16/2015] [Indexed: 11/24/2022] Open
Abstract
Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons.
Collapse
Affiliation(s)
- Xuefei Yu
- School of Biological Sciences, University of Wollongong , Wollongong, NSW , Australia
| | - Wei Zheng
- Current affiliation: Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce , Harbin , China
| | - Somanath Bhat
- Current affiliation: National Measurement Institute of Australia , Lindfield, NSW , Australia
| | - J Andrew Aquilina
- School of Biological Sciences, University of Wollongong , Wollongong, NSW , Australia
| | - Ren Zhang
- School of Biological Sciences, University of Wollongong , Wollongong, NSW , Australia
| |
Collapse
|
9
|
Yang Y, Wu S, Lilley RM, Zhang R. The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 2015; 3:e943. [PMID: 26020003 PMCID: PMC4435449 DOI: 10.7717/peerj.943] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
Transporter-facilitated arsenite extrusion is the major pathway of arsenic resistance within bacteria. So far only two types of membrane-bound transporter proteins, ArsB and ArsY (ACR3), have been well studied, although the arsenic transporters in bacteria display considerable diversity. Utilizing accumulated genome sequence data, we searched arsenic resistance (ars) operons in about 2,500 bacterial strains and located over 700 membrane-bound transporters which are encoded in these operons. Sequence analysis revealed at least five distinct transporter families, with ArsY being the most dominant, followed by ArsB, ArsP (a recently reported permease family), Major Facilitator protein Superfamily (MFS) and Major Intrinsic Protein (MIP). In addition, other types of transporters encoded in the ars operons were found, but in much lower frequencies. The diversity and evolutionary relationships of these transporters with regard to arsenic resistance will be discussed.
Collapse
Affiliation(s)
- Yiren Yang
- School of Biological Sciences, University of Wollongong , NSW , Australia
| | - Shiyang Wu
- School of Biological Sciences, University of Wollongong , NSW , Australia
| | | | - Ren Zhang
- School of Biological Sciences, University of Wollongong , NSW , Australia
| |
Collapse
|