1
|
Dhenadhayalan N, Veeranepolian Selvi AS, Chellappan S, Thiagarajan V. Synergistic dynamics of photoionization and photoinduced electron transfer probed by laser flash photolysis and ultrafast fluorescence spectroscopy. Photochem Photobiol Sci 2021; 20:1109-1124. [PMID: 34427902 DOI: 10.1007/s43630-021-00084-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Photoionization (PI) and photoinduced electron transfer (PET) dynamics of coumarin 450 (C450) in micelles were investigated in the time domains of micro to femtoseconds using steady-state and time-resolved absorption and fluorescence spectroscopy. The PI of C450 occurs inside the micelles leads to the formation of C450 cation radical (CR) and hydrated electron, which is characterized by the respective transient absorption. The PI of C450 is monophotonic in nature and the yield is dependent on the charge of the micelles. The observation of amine CR in the transient absorption confirms the PET from amine to the excited state of C450 in micelles, which results in the quenching of both fluorescence intensity and lifetime. The decrease in femtosecond fluorescent decay of C450 and the absence of transient C450 radical anion in the presence of amine implies that the concerted ultrafast PET promoted PI and PET to the C450 CR-electron pair. The decrease in the time constant for the formation of relaxed state in the presence of amines is due to the ultrafast PET to the C450 CR-electron pair, which prevents the formation of a relaxed state through recombination at a longer time scale. In the present investigation, the recombination dynamics of the CR-electron pair is justified as one of the origins of the slow solvation in micelles. The influence of amine concentration on the decay of C450 CR indicates ET reaction between C450 CR and amine, which is further confirmed by the bleach recovery of C450 ground state in the presence of amine.
Collapse
Affiliation(s)
| | | | - Selvaraju Chellappan
- National Centre for Ultrafast Processes, University of Madras, Chennai, 600 113, India.
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India. .,Faculty Recharge Programme, University Grants Commission, New Delhi, India.
| |
Collapse
|
2
|
Structure and electronic spectra of neutral and protonated forms of anticonvulsant drug lamotrigine. J Mol Model 2020; 26:53. [PMID: 32036441 DOI: 10.1007/s00894-019-4266-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023]
Abstract
In this work, the geometry, acid-base properties, pKa, electronic spectra, and fluorescence spectrum of anticonvulsant drug lamotrigine (LTG) are investigated with the DFT/TD-DFT method and PCM solvent model. Calculated transition with the B3LYP functional at 295 nm corresponds to experimental absorption transition at 306 nm in water. In acidic conditions, the computed maximum transition occurs at 249 nm, comparing with experimental one at 270 nm. The dependence of calculated transitions on density functional used and different solvents in PCM model was studied. The computed transition of fluorescence is at 435 nm, while experimental occurs at 370 nm. Maps of electrostatic potential (MEPs) for S0 and S1 reveal that the ground state of LTG is more polar than the first excited state. Structurally, in the excited state of LTG, the triazine ring is noticeably distorted. Graphical Abstract Molecular elecrostatic potentials for S0 and S1 states of the lamotrigine molecule.
Collapse
|
3
|
Yonar D, Horasan N, Paktaş DD, Abramović Z, Štrancar J, Sünnetçioğlu MM, Šentjurc M. Interaction of Antidepressant Drug, Clomipramine, with Model and Biological Stratum Corneum Membrane as Studied by Electron Paramagnetic Resonance. J Pharm Sci 2013; 102:3762-72. [DOI: 10.1002/jps.23687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/19/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
|
4
|
Pascu ML, Danko B, Martins A, Jedlinszki N, Alexandru T, Nastasa V, Boni M, Militaru A, Andrei IR, Staicu A, Hunyadi A, Fanning S, Amaral L. Exposure of chlorpromazine to 266 nm laser beam generates new species with antibacterial properties: contributions to development of a new process for drug discovery. PLoS One 2013; 8:e55767. [PMID: 23405212 PMCID: PMC3566004 DOI: 10.1371/journal.pone.0055767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Phenothiazines when exposed to white light or to UV radiation undergo a variety of reactions that result in degradation of parental compound and formation of new species. This process is slow and may be sped up with exposure to high energy light such as that produced by a laser. METHODS Varying concentrations of Chlorpromazine Hydrochloride (CPZ) (2-20 mg/mL in distilled water) were exposed to 266 nm laser beam (time intervals: 1-24 hrs). At distinct intervals the irradiation products were evaluated by spectrophotometry between 200-1500 nm, Thin Layer Chromatography, High Pressure Liquid Chromatography (HPLC)-Diode Array Detection, HPLC tandem mass spectrometry, and for activity against the CPZ sensitive test organism Staphylococcus aureus ATCC 25923. RESULTS CPZ exposure to 266 nm laser beam of given energy levels yielded species, whose number increased with duration of exposure. Although the major species produced were Promazine (PZ), hydroxypromazine or PZ sulfoxide, and CPZ sulfoxide, over 200 compounds were generated with exposure of 20 mg/mL of CPZ for 24 hrs. Evaluation of the irradiation products indicated that the bioactivity against the test organism increased despite the total disappearance of CPZ, that is due, most probably, to one or more new species that remain yet unidentified. CONCLUSIONS Exposure of CPZ to a high energy (6.5 mJ) 266 nm laser beam yields rapidly a large number of new and stable species. For biological grade phenothiazines (in other words knowing the impurities in the samples: solvent and solute) this process may be reproducible because one can control within reasonably low experimental errors: the concentration of the parent compound, the laser beam wavelength and average energy, as well as the duration of the exposure time. Because the process is "clean" and rapid, it may offer advantages over the pyrogenically based methods for the production of derivatives.
Collapse
Affiliation(s)
- Mihail Lucian Pascu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele/Ilfov, Romania.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical Profile of a Versatile Synthetic Building Block and its Impact on the Development of Therapeutics. Chem Rev 2012; 112:4642-86. [DOI: 10.1021/cr2004822] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| |
Collapse
|
6
|
Dhenadhayalan N, Selvaraju C, Ramamurthy P. Photoionization and Time-Dependent Stokes Shift of Coumarin 307 in Soft Matter: Solvation and Radical-Ion Pair Recombination Dynamics. J Phys Chem B 2011; 115:10892-902. [DOI: 10.1021/jp203092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Chellappan Selvaraju
- National Centre for Ultrafast Processes, University of Madras, Chennai- 600 113, India
| | - Perumal Ramamurthy
- National Centre for Ultrafast Processes, University of Madras, Chennai- 600 113, India
| |
Collapse
|
7
|
Arce R, Pino EF, Valle C, Negrón-Encarnación I, Morel M. A comparative photophysical and photochemical study of nitropyrene isomers occurring in the environment. J Phys Chem A 2011; 115:152-60. [PMID: 21162566 PMCID: PMC3020990 DOI: 10.1021/jp108652p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ground state absorption, first excited-singlet state, and properties of reactive intermediates of mononitropyrene isomers encountered in the atmospheric aerosol have been studied under different conditions that could mimic the environment. The nitro group can present different orientations relative to the pyrene ring depending on its geometric location and could induce differences in the photochemistry of the isomers. The 2-NO(2)Py isomer has the largest red shift and lowest oscillator strength in the UV-visible band associated with the nitro group. The isomers show very low fluorescence yields (10(-3)-10(-4)). Only 1-NO(2)Py and 4-NO(2)Py have phosphorescence emission (Φ(p) ≈ 10(-4)), indicating that the lowest triplet state decays mainly through effective radiationless channels. Laser photolysis produces a low-lying triplet state (τ(T) = 10(-5)-10(-6) s), a long-lived pyrenoxy radical, and a PyNO(2)H radical in solvents in which the triplet can abstract a hydrogen atom. Similar triplet yields were calculated (0.1-0.6) for the isomers, while significant differences in the relative yield of the long-lived species were determined. Differences in the quenching rate constants of the triplet by water and phenols suggest a strong hydrogen-bond interaction with the nitro group in the C-2 position, which provides for radiationless deactivation routes.
Collapse
Affiliation(s)
- Rafael Arce
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico.
| | | | | | | | | |
Collapse
|
8
|
Arce R, Pino EF, Valle C, Ágreda J. Photophysics and Photochemistry of 1-Nitropyrene. J Phys Chem A 2008; 112:10294-304. [DOI: 10.1021/jp803051x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael Arce
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931-3346
| | - Eduardo F. Pino
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931-3346
| | - Carlos Valle
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931-3346
| | - Jésus Ágreda
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931-3346
| |
Collapse
|
9
|
Piñero L, Calderón X, Rodríguez J, Nieves I, Arce R, García C, Oyola R. SPECTROSCOPIC AND ELECTROCHEMICAL PROPERTIES OF 2-AMINOPHENOTHIAZINE. J Photochem Photobiol A Chem 2008; 198:85-91. [PMID: 19582136 PMCID: PMC2581447 DOI: 10.1016/j.jphotochem.2008.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phenothiazines derivatives are versatile compounds that are used in many fields, depending on the type and position of the substitution on the parent molecule. The photochemical, photophysical and electrochemical properties of several phenothiazine derivatives have been previously reported in detail. However, no reports have been presented for 2-aminophenothiazine (APH), a candidate that provides for the further chemical modification and the introduction of specific substituents. In this work, the photophysical and electrochemical properties of APH were measured in acetonitrile. The APH ground state absorption and fluorescence spectrum (phi(f) < 0.01) are similar to the corresponding that of PH parent molecule. A mono exponential decay fluorescence lifetime of 0.65 ns was determined for APH in acetonitrile. Characterization of the 355 nm nanosecond laser flash photolysis transient species reveals the presence of the triplet-triplet transient intermediate with a high intersystem crossing quantum yield (phi(T) = 0.72 +/- 0.07), indicating that the APH main excited state deactivation channel is intersystem crossing. The oxidation potential of APH is lower than phenothiazine parent molecule ((0.38 V vs 0.69 V vs Ag/AgCl(sat)). Altogether, these results show that APH has photochemical and photophysical properties similar to the phenothiazine parent molecule, but with the possibility of providing an amino functionality at 2-position for further chemical modification.
Collapse
Affiliation(s)
- Luis Piñero
- University of Puerto Rico at Humacao; Department of Chemistry; Humacao, Puerto Rico 00791
| | - Xiomara Calderón
- University of Puerto Rico at Humacao; Department of Chemistry; Humacao, Puerto Rico 00791
| | - Juan Rodríguez
- University of Puerto Rico at Humacao; Department of Chemistry; Humacao, Puerto Rico 00791
| | - Ileana Nieves
- University of Puerto Rico at Humacao; Department of Chemistry; Humacao, Puerto Rico 00791
| | - Rafael Arce
- University of Puerto Rico at Río Piedras; Department of Chemistry; San Juan, Puerto Rico 00936
| | - Carmelo García
- University of Puerto Rico at Humacao; Department of Chemistry; Humacao, Puerto Rico 00791
| | - Rolando Oyola
- University of Puerto Rico at Humacao; Department of Chemistry; Humacao, Puerto Rico 00791
| |
Collapse
|
10
|
García C, Oyola R, Piñero L, Hernández D, Arce R. Photophysics and photochemistry of imipramine, desimipramine, and clomipramine in several solvents: a fluorescence, 266 nm laser flash, and theoretical study. J Phys Chem B 2008; 112:168-78. [PMID: 18085762 DOI: 10.1021/jp0710739] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imipramine (IPA) and its derivatives are used widely for the treatment of depression and other mental disorders. Although there are more than 20 FDA-approved antidepressant drugs, the search continues for better compounds with fewer deleterious side effects and higher efficacy. Over the past decade, several classes of antipsychotic drugs have been developed, which-in spite of their structural diversity-share an ability to modulate neurotransmission and to produce undesirable side effects. Phototoxicity is one of the most important side effects noted in treatment with tricyclic antidepressants (TCAs), but its mechanism has not yet been elucidated. To develop new knowledge regarding the relationship between the structure and the photophysics of these TCAs, we measured the photophysical properties of IPA, desimipramine (DIPA), and clomipramine (CIPA) in different solvents. The electronic configurations for the ground and the first excited singlet states were calculated using the AM1/RHF/CI and the AM1/RHF/HE semiempirical quantum theoretical methods, respectively. The ground-state properties are solvent-independent, while the emission maxima are red-shifted with increasing solvent polarity/polarizability. However, the fluorescence quantum yield is relatively low in all of the tested solvents (phif<0.02). The primary transient intermediates produced by 266 nm high-intensity laser photolysis are the solvated electron and the corresponding radical cation, with a negligible contribution of triplet-triplet absorption. The properties determined for the primary transients generated with a 266 nm laser flash are consistent with the photodamaging effects generated through a limited radical mechanism.
Collapse
Affiliation(s)
- Carmelo García
- University of Puerto Rico at Humacao, Department of Chemistry, Humacao, Puerto Rico.
| | | | | | | | | |
Collapse
|
11
|
Colón L, Crespo-Hernández CE, Oyola R, García C, Arce R. Role of Sequence and Conformation on the Photochemistry and the Photophysics of A−T DNA Dimers: An Experimental and Computational Approach. J Phys Chem B 2006; 110:15589-96. [PMID: 16884283 DOI: 10.1021/jp060236a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of base sequence and conformation on the photochemistry and photophysics of thymidylyl (3'-5')-2'-deoxyadenosine sodium salt (TpdA) and 2-deoxyadenylyl (3'-5')-thymidine ammonium salt (dApT) was studied. To this end, nanosecond transient absorption at 266 nm, steady-state irradiation at 254 nm, and quantum chemical calculations were used. The transient absorption spectra show the solvated electron broad band in the visible region for each dinucleotide. In addition, low-intensity absorption bands are observed in the UV region, which are attributed to the deprotonated and protonated neutral radicals of adenine and thymine bases. Photoionization (PI) occurs by one- and two-photon pathways; the latter accounting for approximately 70% of the net PI yield. A diffusion-limited rate constant of 2.0 x 10(10) M(-1) s(-1) was obtained for the reaction of the neutral molecule with the photoejected electron in both sequences. The photodestruction yield, measured from the chromophore loss at 260 nm, decreases in the presence of well-known electron scavengers. This suggests the participation of base radical anions as one of the photodegradation pathways, which is higher in TpdA than in dApT. The intermediacy of a radical ion pair (charge separated state) between the adjacent adenine and thymine bases is proposed in the formation of the [2 + 2] cycloadduct intermediate. The [2 + 2] cycloadduct intermediate is known to be the precursor of the thymine-adenine eight-member ring photoproduct (TA*). Conformational constrains in the radical ion pair are suggested to explain the absence of the TA* photoproduct in dApT. This hypothesis is supported by semiempirical calculations performed on all relevant reactive intermediates proposed to participate in the mechanism of formation of TA*. Altogether, the results show that sequence and conformation profoundly influence the photochemistry and the photophysics of these DNA model systems.
Collapse
Affiliation(s)
- Luis Colón
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00931
| | | | | | | | | |
Collapse
|
12
|
García C, Oyola R, Piñero LE, Arce R, Silva J, Sánchez V. Substitution and Solvent Effects on the Photophysical Properties of Several Series of 10-Alkylated Phenothiazine Derivatives. J Phys Chem A 2005; 109:3360-71. [PMID: 16833671 DOI: 10.1021/jp044530j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photophysical properties of several 2-substituted, 10-alkylated phenothiazines were measured in several solvents to investigate the relevance of the molecular structure in their photophysics and consequent photochemistry. Because the interaction modes of each drug and its corresponding species strongly depend on the variety of microenvironments in the cells, the properties of each one of these species must also be determined separately to understand fully the mechanism of action of the drug and the mechanism of its side effects. Information on the chemical interactions of the different species at the cellular level can be inferred from the corresponding electronic properties. In this work, we present absorption, steady-state, and time-resolved emission, laser flash photolysis, and quantum theoretical results for the ground state, the first excited singlet and triplet states, and the cation radical of promazine hydrochloride (PZ), 2-chlorpromazine hydrochloride (CPZ), 2-trifluoromethylpromazine hydrochloride (TFMPZ), 2-trifluoromethylperazine dihydrochloride (TFMP), 2-thiomethylpromazine (TMPZ), and thioridazine hydrochloride (TR). The corresponding nonalkylated phenothiazines are included as references. The photophysical properties of this drug family depend more on the solvent and the 2-substituents than on the dialkylaminopropyl chain. The largest effect was found for the triplet state of the 2-halogenated derivatives in phosphate buffer (PBS). Both the quantum yield and the lifetime of this intermediate drop to less than 5% of the corresponding value in organic solvents. The triplet state of halogenated promazines is efficiently quenched by a proton-transfer mechanism, and the rate of this quenching correlates very well with the phototoxicity of the promazine drugs. Therefore, we postulate that this species is directly related to the phototoxic side effect of neuroleptic drugs.
Collapse
Affiliation(s)
- Carmelo García
- Department of Chemistry, University of Puerto Rico-Humacao, Humacao, Puerto Rico.
| | | | | | | | | | | |
Collapse
|