1
|
Sánchez-Hernández A, Polleys CM, Georgakoudi I. Formalin fixation and paraffin embedding interfere with the preservation of optical metabolic assessments based on endogenous NAD(P)H and FAD two-photon excited fluorescence. BIOMEDICAL OPTICS EXPRESS 2023; 14:5238-5253. [PMID: 37854574 PMCID: PMC10581792 DOI: 10.1364/boe.498297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023]
Abstract
Endogenous NAD(P)H and FAD two-photon excited fluorescence (TPEF) images provide functional metabolic information with high spatial resolution for a wide range of living specimens. Preservation of metabolic function optical metrics upon fixation would facilitate studies which assess the impact of metabolic changes in the context of numerous diseases. However, robust assessments of the impact of formalin fixation, paraffin embedding, and sectioning on the preservation of optical metabolic readouts are lacking. Here, we evaluate intensity and lifetime images at excitation/emission settings optimized for NAD(P)H and FAD TPEF detection from freshly excised murine oral epithelia and corresponding bulk and sectioned fixed tissues. We find that fixation impacts the overall intensity as well as the intensity fluctuations of the images acquired. Accordingly, the depth-dependent variations of the optical redox ratio (defined as FAD/(NAD(P)H + FAD)) across squamous epithelia are not preserved following fixation. This is consistent with significant changes in the 755 nm excited spectra, which reveal broadening upon fixation and additional distortions upon paraffin embedding and sectioning. Analysis of fluorescence lifetime images acquired for excitation/emission settings optimized for NAD(P)H TPEF detection indicate that fixation alters the long lifetime of the observed fluorescence and the long lifetime intensity fraction. These parameters as well as the short TPEF lifetime are significantly modified upon embedding and sectioning. Thus, our studies highlight that the autofluorescence products formed during formalin fixation, paraffin embedding and sectioning overlap highly with NAD(P)H and FAD emission and limit the potential to utilize such tissues to assess metabolic activity.
Collapse
Affiliation(s)
| | | | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
2
|
Sánchez-Hernández A, Polleys CM, Georgakoudi I. Formalin fixation and paraffin embedding interfere with preservation of optical metabolic assessments based on endogenous NAD(P)H and FAD two photon excited fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545363. [PMID: 37398103 PMCID: PMC10312786 DOI: 10.1101/2023.06.16.545363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Endogenous NAD(P)H and FAD two-photon excited fluorescence (TPEF) images provide functional metabolic information with high spatial resolution for a wide range of living specimens. Preservation of metabolic function optical metrics upon fixation would facilitate studies which assess the impact of metabolic changes in the context of numerous diseases. However, robust assessments of the impact of formalin fixation, paraffin embedding, and sectioning on the preservation of optical metabolic readouts are lacking. Here, we evaluate intensity and lifetime images at excitation/emission settings optimized for NAD(P)H and FAD TPEF detection from freshly excised murine oral epithelia and corresponding bulk and sectioned fixed tissues. We find that fixation impacts the overall intensity as well as the intensity fluctuations of the images acquired. Accordingly, the depth-dependent variations of the optical redox ratio (defined as FAD/(NAD(P)H + FAD)) across squamous epithelia are not preserved following fixation. This is consistent with significant changes in the 755 nm excited spectra, which reveal broadening upon fixation and additional distortions upon paraffin embedding and sectioning. Analysis of fluorescence lifetime images acquired for excitation/emission settings optimized for NAD(P)H TPEF detection indicate that fixation alters the long lifetime of the observed fluorescence and the long lifetime intensity fraction. These parameters as well as the short TPEF lifetime are significantly modified upon embedding and sectioning. Thus, our studies highlight that the autofluorescence products formed during formalin fixation, paraffin embedding and sectioning overlap highly with NAD(P)H and FAD emission and limit the potential to utilize such tissues to assess metabolic activity.
Collapse
Affiliation(s)
| | | | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, US
| |
Collapse
|
3
|
Xu HN, Zhao H, Chellappa K, Davis JG, Nioka S, Baur JA, Li LZ. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information. Mol Imaging Biol 2019; 21:417-425. [PMID: 30977079 PMCID: PMC6581512 DOI: 10.1007/s11307-019-01348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Optical redox imaging (ORI) technique images cellular autofluorescence of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp containing FAD, i.e., flavin adenine dinucleotide). ORI has found wide applications in the study of cellular energetics and metabolism and may potentially assist in disease diagnosis and prognosis. Fixed tissues have been reported to exhibit autofluorescence with similar spectral characteristics to those of NADH and Fp. However, few studies report on quantitative ORI of formalin-fixed paraffin-embedded (FFPE) unstained tissue slides for disease biomarkers. We investigate whether ORI of FFPE unstained skeletal muscle slides may provide relevant quantitative biological information. PROCEDURES Living mouse muscle fibers and frozen and FFPE mouse muscle slides were subjected to ORI. Living mouse muscle fibers were imaged ex vivo before and after paraformaldehyde fixation. FFPE muscle slides of three mouse groups (young, mid-age, and muscle-specific overexpression of nicotinamide phosphoribosyltransferase (Nampt) transgenic mid-age) were imaged and compared to detect age-related redox differences. RESULTS We observed that living muscle fiber and frozen and FFPE slides all had strong autofluorescence signals in the NADH and Fp channels. Paraformaldehyde fixation resulted in a significant increase in the redox ratio Fp/(NADH + Fp) of muscle fibers. Quantitative image analysis on FFPE unstained slides showed that mid-age gastrocnemius muscles had stronger NADH and Fp signals than young muscles. Gastrocnemius muscles from mid-age Nampt mice had lower NADH compared to age-matched controls, but had higher Fp than young controls. Soleus muscles had the same trend of change and appeared to be more oxidative than gastrocnemius muscles. Differential NADH and Fp signals were found between gastrocnemius and soleus muscles within both mid-aged control and Nampt groups. CONCLUSION Aging effect on redox status quantified by ORI of FFPE unstained muscle slides was reported for the first time. Quantitative information from ORI of FFPE unstained slides may be useful for biomedical applications.
Collapse
Affiliation(s)
- He N Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James G Davis
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shoko Nioka
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Gabrecht T, Andrejevic-Blant S, Wagnières G. Blue-Violet Excited Autofluorescence Spectroscopy and Imaging of Normal and Cancerous Human Bronchial Tissue after Formalin Fixation. Photochem Photobiol 2007; 83:450-8. [PMID: 17094717 DOI: 10.1562/2006-03-20-ra-852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autofluorescence (AF) imaging is a powerful tool for the detection of (pre-)neoplastic lesions in the bronchi. Several endoscopic imaging systems exploit the spectral and intensity contrast of AF between healthy and (pre-)neoplastic bronchial tissues, yet, the mechanisms underlying these contrasts are poorly understood. In this report, the effect of formalin fixation on the human bronchi AF, hence on the contrast, was studied by spectrofluorometric point measurements and DAFE (Diagnostic AutoFluorescence Endoscopy) broad field imaging. Generally, formalin-fixed samples have higher AF intensity than in vivo, whereas the emission spectral shape is similar. Additionally, the spectrofluorometric data showed a moderate decrease of the AF intensity on (pre-)neoplastic lesions relative to the healthy bronchial samples. However, this decrease was lower than that reported from in vivo measurements. Neither spectral measurements nor imaging revealed spectral contrast between healthy bronchial tissue and (pre-)neoplastic lesions in formalin. These results indicate that epithelial thickening and blood supply in the adjacent lamina propria are likely to play a key role in the generation of the AF contrast in bronchial tissues. Our results show that the AF contrast in bronchial tissues was significantly affected by standard, 10% buffered, formalin fixation. Therefore, these samples are not suited to AF contrast studies.
Collapse
Affiliation(s)
- Tanja Gabrecht
- Swiss Federal Institute of Technology (EPFL), Laboratory for Air and Soil Pollution, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
Majumder SK, Ghosh N, Gupta PK. N2 laser excited autofluorescence spectroscopy of formalin-fixed human breast tissue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:33-42. [PMID: 16107317 DOI: 10.1016/j.jphotobiol.2005.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/24/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
The paper reports results of an in vitro study on autofluorescence spectroscopy of fresh and formalin-fixed human breast tissue samples to investigate the effect of formalin fixation on the measured autofluorescence spectra. It also explores the applicability of the approach in discriminating cancerous from the uninvolved sites of the formalin-fixed breast tissues based on their autofluorescence spectra. A probability-based diagnostic algorithm, making use of the theory of relevance vector machine (RVM), a powerful recent approach for statistical pattern recognition, was developed for that purpose. The algorithm provided sensitivity values of up to 97% and specificity values of up to 100% towards cancer for both the independent validation data set as well as for the training data set based on leave-one-out cross-validation. These results suggest that autofluorescence spectroscopy may prove to be a valuable additional in vitro diagnostic modality in clinical pathology setting for discriminating cancerous tissue sites from normal sites.
Collapse
Affiliation(s)
- S K Majumder
- Biomedical Applications Section, R&D Block-D, Centre for Advanced Technology, Indore 452013, India.
| | | | | |
Collapse
|