1
|
Böszörményi A, Dobi A, Skribanek A, Pávai M, Solymosi K. The Effect of Light on Plastid Differentiation, Chlorophyll Biosynthesis, and Essential Oil Composition in Rosemary ( Rosmarinus officinalis) Leaves and Cotyledons. FRONTIERS IN PLANT SCIENCE 2020; 11:196. [PMID: 32194595 PMCID: PMC7063033 DOI: 10.3389/fpls.2020.00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/11/2020] [Indexed: 05/10/2023]
Abstract
It is unclear whether light affects the structure and activity of exogenous secretory tissues like glandular hairs. Therefore, transmission electron microscopy was first used to study plastid differentiation in glandular hairs and leaves of light-grown rosemary (Rosmarinus officinalis "Arp") plants kept for 2 weeks under ambient light conditions. During our detailed analyses, among others, we found leucoplasts with tubuloreticular membrane structures resembling prolamellar bodies in stalk cell plastids of peltate glandular hairs. To study the effect of darkness on plastid differentiation, we then dark-forced adult, light-grown rosemary plants for 2 weeks and observed occasionally the development of new shoots with elongated internodes and pale leaves on them. Absorption and fluorescence spectroscopic analyses of the chlorophyllous pigment contents, the native arrangement of the pigment-protein complexes and photosynthetic activity confirmed that the first and second pairs of leaf primordia of dark-forced shoots were partially etiolated (contained low amounts of protochlorophyll/ide and residual chlorophylls, had etio-chloroplasts with prolamellar bodies and low grana, and impaired photosynthesis). Darkness did not influence plastid structure in fifth leaves or secretory tissues (except for head cells of peltate glandular hairs in which rarely tubuloreticular membranes appeared). The mesophyll cells of cotyledons of 2-week-old dark-germinated rosemary seedlings contained etioplasts with highly regular prolamellar bodies similar to those in mesophyll etio-chloroplasts of leaves and clearly differing from tubuloreticular membranes of secretory cells. Analyses of the essential oil composition obtained after solid phase microextraction and gas chromatography-mass spectroscopy showed that in addition to light, the age of the studied organ (i.e., first leaf primordia and leaf tip vs. fifth, fully developed green leaves) and the type of the organ (cotyledon vs. leaves) also strongly influenced the essential oil composition. Therefore, light conditions and developmental stage are both important factors to be considered in case of potential therapeutic, culinary or aromatic uses of rosemary leaves and their essential oils.
Collapse
Affiliation(s)
| | - Adrienn Dobi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anna Skribanek
- Department of Biology, ELTE Savaria University Centre, Szombathely, Hungary
| | - Melinda Pávai
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
- *Correspondence: Katalin Solymosi, ;
| |
Collapse
|
2
|
Kósa A, Preininger É, Böddi B. Nitrogen deficiency hinders etioplast development in stems of dark-grown pea (Pisum sativum) shoot cultures. PHYSIOLOGIA PLANTARUM 2015; 155:330-7. [PMID: 25825156 DOI: 10.1111/ppl.12339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The effects of nitrogen (N) deprivation were studied in etiolated pea plants (Pisum sativum cv. Zsuzsi) grown in shoot cultures. The average shoot lengths decreased and the stems significantly altered considering their pigment contents, 77 K fluorescence spectra and ultrastructural properties. The protochlorophyllide (Pchlide) content and the relative contribution of the 654-655 nm emitting flash-photoactive Pchlide form significantly decreased. The etioplast inner membrane structure characteristically changed: N deprivation correlated with a decrease in the size and number of prolamellar bodies (PLBs). These results show that N deficiency directly hinders the pigment production, as well as the synthesis of other etioplast inner membrane components in etiolated pea stems.
Collapse
Affiliation(s)
- Annamária Kósa
- Department of Plant Anatomy, Eötvös University, Institute of Biology, Budapest, Hungary
| | - Éva Preininger
- Department of Plant Anatomy, Eötvös University, Institute of Biology, Budapest, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Eötvös University, Institute of Biology, Budapest, Hungary
| |
Collapse
|
3
|
Vitányi B, Kósa A, Solymosi K, Böddi B. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. PHYSIOLOGIA PLANTARUM 2013; 148:307-15. [PMID: 23067197 DOI: 10.1111/j.1399-3054.2012.01714.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
To study if etiolation symptoms exist in plants grown under natural illumination conditions, under-soil epicotyl segments of light-grown pea (Pisum sativum) plants were examined and compared to those of hydroponically dark-grown plants. Light-, fluorescence- and electron microscopy, 77 K fluorescence spectroscopy, pigment extraction and pigment content determination methods were used. Etioplasts with prolamellar bodies and/or prothylakoids, protochlorophyll (Pchl) and protochlorophyllide (Pchlide) forms (including the flash-photoactive 655 nm emitting form) were found in the (pro)chlorenchyma of epicotyl segments under 3 cm soil depth; their spectral properties were similar to those of hydroponically grown seedlings. However, differences were found in etioplast sizes and Pchlide:Pchl molar ratios, which indicate differences in the developmental rates of the under-soil and of hydroponically developed cells. Tissue regions closer to the soil surface showed gradual accumulation of chlorophyll, and in parallel, decrease of Pchl and Pchlide. These results proved that etioplasts and Pchlide exist in soil-covered parts of seedlings even if they have a 3-4-cm long photosynthetically active shoot above the soil surface. This underlines that etiolation symptoms do develop under natural growing conditions, so they are not merely artificial, laboratory phenomena. Consequently, dark-grown laboratory plants are good models to study the early stages of etioplast differentiation and the Pchlide-chlorophyllide phototransformation.
Collapse
Affiliation(s)
- Beáta Vitányi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Budapest, H-1117, Hungary
| | | | | | | |
Collapse
|
4
|
Solymosi K, Tuba Z, Böddi B. Desiccoplast-etioplast-chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:583-90. [PMID: 23415648 DOI: 10.1016/j.jplph.2012.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 05/17/2023]
Abstract
The transformation of desiccoplasts into etioplasts and the parallel appearance of protochlorophyllide (Pchlide) forms were observed with transmission electron microscopy and 77K fluorescence spectroscopy, when air-dried detached leaves of the poikilochlorophyllous desiccation tolerant plant Xerophyta humilis were floated in water in the dark. After 1 week of rehydration, pregranal plastids with newly synthesized prothylakoid (PT) lamellae and mainly non-photoactive Pchlide forms developed, while etioplasts with prolamellar bodies (PLBs) and photoactive, 655nm emitting Pchlide form accumulated primarily in the basal leaf regions after 2 weeks of regeneration. When these latter leaves were illuminated with continuous light for 3 days, the etioplasts transformed into regular chloroplasts and the fluorescence emission bands characteristic of green leaves appeared. These results show that, upon rehydration, the dehydrated chlorenchyma cells are able to regenerate pregranal plastids and etioplasts from desiccoplasts in the dark, which can transform into regular chloroplasts when they are illuminated. This means that the differentiation of pregranal plastids and etioplasts and their greening process is a basic property of fully differentiated cells of X. humilis. Consequently, these processes are not merely characteristic for seedlings with meristematic and differentiating young tissues.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Eötvös University, Pázmány P. s. 1/c., Budapest H-1117, Hungary
| | | | | |
Collapse
|
5
|
Solymosi K, Morandi D, Bóka K, Böddi B, Schoefs B. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds. PLANTA 2012; 235:1035-49. [PMID: 22160501 DOI: 10.1007/s00425-011-1559-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/07/2011] [Indexed: 05/08/2023]
Abstract
To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5-1 μg g(-1) fresh mass), chlorophyllides (0.2-27 μg g(-1) fresh mass) and chlorophylls (0.9-643 μg g(-1) fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast-chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, H-1117, Pázmány P. s. 1/C, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
6
|
Skribanek A, Solymosi K, Hideg E, Böddi B. Light and temperature regulation of greening in dark-grown ginkgo (Ginkgo biloba). PHYSIOLOGIA PLANTARUM 2008; 134:649-659. [PMID: 19000199 DOI: 10.1111/j.1399-3054.2008.01166.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The last steps of chlorophyll (Chl) biosynthesis were studied at different light intensities and temperatures in dark-germinated ginkgo (Ginkgo biloba L.) seedlings. Pigment contents and 77 K fluorescence emission spectra were measured and the plastid ultrastructure was analysed. All dark-grown organs contained protochlorophyllide (Pchlide) forms with similar spectral properties to those of dark-grown angiosperm seedlings, but the ratios of these forms to each other were different. The short-wavelength, monomeric Pchlide forms were always dominating. Etioplasts with small prolamellar bodies (PLBs) and few prothylakoids (PTs) differentiated in the dark-grown stems. Upon illumination with high light intensities (800 micromol m(-2) s(-1) photon flux density, PFD), photo-oxidation and bleaching occurred in the stems and the presence of (1)O(2) was detected. When Chl accumulated in plants illuminated with 15 micromol m(-2) s(-1) PFD it was significantly slower at 10 degrees C than at 20 degrees C. At room temperature, the transformation of etioplasts into young chloroplasts was observed at low light, while it was delayed at 10 degrees C. Grana did not appear in the plastids even after 48 h of greening at 20 degrees C. Reaccumulation of Pchlide forms and re-formation of PLBs occurred when etiolated samples were illuminated with 200 micromol m(-2) s(-1) PFD at room temperature for 24 h and were then re-etiolated for 5 days. The Pchlide forms appeared during re-etiolation had similar spectral properties to those of etiolated seedlings. These results show that ginkgo seedlings are very sensitive to temperature and light conditions during their greening, a fact that should be considered for ginkgo cultivation.
Collapse
Affiliation(s)
- Anna Skribanek
- Department of Botany, Institute of Biology, University of West Hungary, Szombathely, Károlyi G. tér 4, H-9700 Hungary
| | | | | | | |
Collapse
|
7
|
Szenzenstein A, Kósa A, Böddi B. Biological variability in the ratios of protochlorophyllide forms in leaves and epicotyls of dark-grown pea (Pisum sativum L.) seedlings (a statistical method to resolve complex spectra). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2008; 90:88-94. [PMID: 18178095 DOI: 10.1016/j.jphotobiol.2007.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/23/2007] [Accepted: 11/23/2007] [Indexed: 11/30/2022]
Abstract
Low-temperature (77K) fluorescence emission spectra of 100 dark-grown pea (Pisum sativum L.) seedlings of various ages were measured. The spectra of the 100 leaf samples were collected into a separate data group and those of epicotyls formed another one. This group was divided into three sub-groups as spectra of uppermost, middle and lowermost 3 cm sections. Further sub-groups were formed on the basis of the ages of the plants. The spectra were normalized to their total integral values (within the 580-780 nm region) then the AVERAGE (arithmetic mean function) and AVEDEV (average of the absolute deviations of data points of their mean function) spectra were calculated. Very sharp bands were found in the AVEDEV spectra. Even the strongly overlapped 629 and 636 nm emission bands appeared as separate peaks, due to the decrease of their half-bandwidth values in the AVEDEV function. Both types of spectra were resolved into Gaussian components. The results showed that the variabilities of the 633 and 655 nm protochlorophyllide forms were similar in the leaves. In epicotyls, the protochlorophyllide forms had different variabilities, especially in the middle sections. The most variable was the amplitude of the 636 nm band and the variabilities of the 629 and 655 nm bands were smaller but still remarkable. The calculation of AVEDEV spectra is an effective method to study the biological variability and spectral resolution of biological samples containing chromophores with multiple spectral properties.
Collapse
Affiliation(s)
- Andrea Szenzenstein
- Department of Plant Anatomy, Eötvös University, Pázmány P. s. 1/c, Budapest H-1117, Hungary
| | | | | |
Collapse
|
8
|
Seyedi M, Timko MP, Sundqvist C. The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of Pea. PLANT & CELL PHYSIOLOGY 2001; 42:931-41. [PMID: 11577187 DOI: 10.1093/pcp/pce118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The distribution of protochlorophyllide (Pchlide) and NADPH-Pchlide oxidoreductase (POR) was characterized in the epicotyls and roots of wild-type pea (Pisum sativum L. cv. Alaska) and lip1, a mutant with light-independent photomorphogenesis caused by a mutation in the COP1 locus. The upper part of the dark-grown lip1 mutant epicotyls had a high Pchlide content that decreased downward the organ. The elevated Pchlide level in lip1 seedlings was a result of the differentiation of more proplastids into Pchlide-containing plastids. The cortex cells in the lip1 epicotyl were filled with such plastids in contrast to the cortex cells of wild-type seedlings. The mutant also developed Pchlide-containing plastids in the roots, indicating the suppressing effect of the COP1 locus on development of plastids in the corresponding tissues in dark-grown wild-type plants. The distribution of Pchlide-containing plastids in dark-grown lip1 mutant stem and root was similar to the distribution of chloroplasts in irradiated wild-type plants. Both wild-type and lip1 epicotyls contained mostly short wavelength Pchlide fluorescing at 631 nm with only a small shoulder at 654 nm, which was transformed to a minute amount of chlorophyllide (Chlide) by flash irradiation. In contrast, with continuous irradiation a considerable amount of Chlide was formed especially in the lip1 epicotyls. Immunoblots indicated the presence of POR, as a 36 kDa band, in epicotyls of both dark-grown wild-type and lip1 mutant seedlings. However, lip1 stem tissue had a higher content of POR than the wild-type pea. The high content of POR was unexpected as lip1 lacked both the 654 nm fluorescing Pchlide form and the regular PLBs. In light, a significant amount of chlorophyll was formed also in the roots of the lip1 seedlings.
Collapse
Affiliation(s)
- M Seyedi
- Department of Plant Physiology, Botanical Institute, Göteborg University, Box 461, SE-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
9
|
Skribanek A, Apatini D, Inaoka M, Böddi B. Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 55:172-7. [PMID: 10942082 DOI: 10.1016/s1011-1344(00)00044-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protochlorophyllide contents and the spectral properties together with photoactivities of native protochlorophyllide forms have been studied in dark-forced stems of 26 and epicotyls or hypocotyls of 9 plant species. The 77 K fluorescence emission spectra show that a form emitting at 629-631 nm is general in these organs. Besides this short-wavelength form, other protochlorophyllide forms emitting at 636, 645 and around 650-655 nm are found with various relative amplitudes. The pigment contents show good correlation with the ratio of short- to long-wavelength forms, i.e., the higher this ratio is, the less protochlorophyllide is detected. In addition to protochlorophyllide, several dark-grown plants also contain chlorophylls. In some cases only one chlorophyll form appears with emission maximum at 678-680 nm; other plants have forms characteristic of the fully developed photosynthetic apparatus (with maxima at 685, 695 and 730-740 nm). Flash illumination can transform only the 645 and 650-655 nm protochlorophyllide forms, the shorter-wavelength-emitting forms being inactive. Plant species with dominating 629-636 nm protochlorophyllide forms cannot accumulate chlorophyll on continuous illumination of natural intensity, and they became photodamaged. The structural or molecular background of the appearance of the different protochlorophyllide and chlorophyll forms and the reasons for their photosensitivity are discussed.
Collapse
Affiliation(s)
- A Skribanek
- Department of Plant Physiology, Eötvös University, Budapest, Hungary
| | | | | | | |
Collapse
|