1
|
Sahu K, Krishna H, Shrivastava R, Majumdar A, Chowdhury A, Chakraborty S, Majumder SK. Evaluation of the potential of Delta-aminolevulinic acid for simultaneous detection of bioburden and anti-microbial photodynamic therapy of MRSA infected wounds in Swiss albino mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112892. [PMID: 38513542 DOI: 10.1016/j.jphotobiol.2024.112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND The dramatic increase of drug-resistant bacteria necessitates urgent development of platforms to simultaneously detect and inactivate bacteria causing wound infections, but are confronted with various challenges. Delta amino levulinic acid (ALA) induced protoporphyrin IX (PpIX) can be a promising modality for simultaneous bioburden diagnostics and therapeutics. Herein, we report utility of ALA induced protoporphyrin (PpIX) based simultaneous bioburden detection, photoinactivation and therapeutic outcome assessment in methicillin resistant Staphylococcus aureus (MRSA) infected wounds of mice. METHODS MRSA infected wounds treated with 10% ALA were imaged with help of a blue LED (∼405 nm) based, USB powered, hand held device integrated with a modular graphic user interface (GUI). Effect of ALA application time, bacteria load, post bacteria application time points on wound fluorescence studied. PpIX fluorescence observed after excitation with blue LEDs was used to detect bioburden, start red light mediated antimicrobial photodynamic therapy (aPDT), determine aPDT effectiveness and assess selectivity of the approach. RESULTS ALA-PpIX fluorescence of wound bed discriminates infected from uninfected wounds and detects clinically relevant load. While wound fluorescence pattern changes as a function of ALA incubation and post infection time, intra-wound inhomogeneity in fluorescence correlates with the Gram staining data on presence of biofilms foci. Lack of red fluorescence from wound granulation tissue treated with ALA suggests selectivity of the approach. Further, significant reduction (∼50%) in red fluorescence, quantified using the GUI, relates well with bacteria load reduction observed post topical aPDT. CONCLUSION The potential of ALA induced PpIX for simultaneous detection of bioburden, photodynamic inactivation and "florescence-guided aPDT assessment" is demonstrated in MRSA infected wounds of mice.
Collapse
Affiliation(s)
- Khageswar Sahu
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India; Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.
| | - Hemant Krishna
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - Rashmi Shrivastava
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India; Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Anamitra Majumdar
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - Anupam Chowdhury
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - Sourabrata Chakraborty
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India; Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|
2
|
Teranishi R, Ozawa T, Katayama B, Shimojo Y, Ito N, Awazu K, Tsuruta D. Effect of photodynamic therapy with 5-aminolevulinic acid and EDTA-2Na against mixed infection of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12959. [PMID: 38528712 DOI: 10.1111/phpp.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The increasing abundance of drug-resistant bacteria is a global threat. Photodynamic therapy is an entirely new, non-invasive method for treating infections caused by antibiotic-resistant strains. We previously described the bactericidal effect of photodynamic therapy on infections caused by a single type of bacterium. We showed that gram-positive and gram-negative bacteria could be killed with 5-aminolevulic acid and 410 nm light, respectively. However, clinically, mixed infections are common and difficult to treat. OBJECTIVE We investigated the bactericidal effects of photodynamic therapy on mixed infections of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. METHODS We compared bacterial growth with and without photodynamic therapy in vitro. Then, in vivo, we studied mixed infections in a mouse skin ulcer model. We evaluated the rates of ulcer area reduction and transitions to healing in treated and untreated mice. In addition, a comparison was made between PDT and existing topical drugs. RESULTS We found that photodynamic therapy markedly reduced the growth of both methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, in culture, and it reduced the skin ulcer areas in mice. PDT was also more effective than existing topical medicines. CONCLUSION This study showed that photodynamic therapy had antibacterial effects against a mixed infection of gram-positive and gram-negative bacteria, and it promoted skin ulcer healing. These results suggested that photodynamic therapy could be effective in both single- and mixed-bacterial infections.
Collapse
Affiliation(s)
- Rie Teranishi
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Bunpei Katayama
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yu Shimojo
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nobuhisa Ito
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Kunio Awazu
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Giannakis S, Gupta A, Pulgarin C, Imlay J. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. WATER RESEARCH 2022; 221:118740. [PMID: 35717710 PMCID: PMC11136163 DOI: 10.1016/j.watres.2022.118740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Solar disinfection (SODIS) was probed for its underlying mechanism. When Escherichia coli was exposed to UVA irradiation, the dominant solar fraction acting in SODIS process, cells exhibited a shoulder before death ensued. This profile resembles cell killing by hydrogen peroxide (H2O2). Indeed, the use of specialized strains revealed that UVA exposure triggers intracellular H2O2 formation. The resultant H2O2 stress was especially impactful because UVA also inactivated the processes that degrade H2O2-peroxidases through the suppression of metabolism, and catalases through direct enzyme damage. Cell killing was enhanced when water was replaced with D2O, suggesting that singlet oxygen plays a role, possibly as a precursor to H2O2 and/or as the mediator of catalase damage. UVA was especially toxic to mutants lacking miniferritin (dps) or recombinational DNA repair (recA) enzymes, indicating that reactions between ferrous iron and UVA-generated H2O2 lead to lethal DNA damage. Importantly, experiments showed that the intracellular accumulation of H2O2 alone is insufficient to kill cells; therefore, UVA must do something more to enable death. A possibility is that UVA stimulates the reduction of intracellular ferric iron to its ferrous form, either by stimulating O2•- formation or by generating photoexcited electron donors. These observations and methods open the door to follow-up experiments that can probe the mechanisms of H2O2 formation, catalase inactivation, and iron reduction. Of immediate utility, the data highlight the intracellular pathways formed under UVA light during SODIS, and that the presence of micromolar iron accelerates the rate at which radiation disinfects water.
Collapse
Affiliation(s)
- Stefanos Giannakis
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA; School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, Universidad Politécnica de Madrid (UPM), c/ Profesor Aranguren, s/n, Madrid ES-28040, Spain.
| | - Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - James Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Polmickaitė-Smirnova E, Buchovec I, Bagdonas S, Sužiedėlienė E, Ramanavičius A, Anusevičius Ž. Photoinactivation of Salmonella enterica exposed to 5-aminolevulinic acid: Impact of sensitization conditions and irradiation time. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112446. [PMID: 35487120 DOI: 10.1016/j.jphotobiol.2022.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The photodynamic inactivation (PDI) represents the potential alternative to traditional antibiotic therapy, and can be applied to treat various bacterial infections, including those caused by Gram-negative bacterial strains. One of the treatment modalities is based on the capacity of bacterial cells to synthesize the excess amounts of porphyrins after exposure to an externally applied 5-aminolevulinic acid (5-ALA), which makes them photosensitive and leads to reduced survival after irradiation with an appropriately selected light source. This study focuses on the sensitization and the photoinduced inactivation of Salmonella enterica cells in PBS containing 0.5 mM 5-ALA, incubated at 37 °C for 4 h or for 20 h and afterwards irradiated with violet LED light (11.1 mW/cm2, a peak at 400 nm). It has been found that both amounts and composition of endogenous porphyrins not only depended on the incubation duration, but also were affected by externally induced photo- and chemo-oxidation reactions. The application of different sensitization conditions has revealed that the increasing amounts of endogenously produced porphyrins do not ensure the proportional reduction of bacterial cell survival numbers. The comparative investigations also demonstrated that the presence of endogenously produced porphyrins in the medium results in secondary sensitization of bacterial cells and causes a notably stronger photoinactivation effect in comparison to their externally applied standards.
Collapse
Affiliation(s)
- Evelina Polmickaitė-Smirnova
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Irina Buchovec
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Faculty of Physics, Vilnius University, Saulėtekio av. 9, LT-10222 Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Žilvinas Anusevičius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
McSharry S, Koolman L, Whyte P, Bolton D. Inactivation of Listeria monocytogenes and Salmonella Typhimurium in beef broth and on diced beef using an ultraviolet light emitting diode (UV-LED) system. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Shiratori M, Ozawa T, Ito N, Awazu K, Tsuruta D. Open study of photodynamic therapy for skin ulcers infected with MRSA and Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2021; 36:102484. [PMID: 34403825 DOI: 10.1016/j.pdpdt.2021.102484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Drug-resistant bacterial infections are a global problem. Novel treatment methods that simultaneously control infection and promote wound healing without leading to new resistant bacteria are needed. Photodynamic therapy (PDT) is a useful antibiotic-free treatment approach. Our previous studies have shown that PDT for skin ulcers infected with methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA) can achieve infection control and promoting wound healing in vitro and in vivo murine model. Here, we investigated the safety and effectiveness of PDT with 5-aminolevulinic acid (ALA-PDT) for human skin ulcers infected with MRSA and PA. METHODS ALA-PDT with macrogol ointment containing 0.5% ALA-HCl and 0.005% EDTA-2Na (wavelength 410 nm, 10 J/cm2) was performed on consecutive days in patients aged ≥20 years who had skin ulcers infected with MRSA and PA. RESULTS Six of our seven patients showed a clear tendency for ulcer area reduction to ≤60% of that measured at baseline. ALA-PDT was judged to be completely safe in all patients; only one patient had an increase in bacterial count. CONCLUSIONS ALA-PDT is safe and effective for MRSA and PA infected skin ulcers to control and heal wound.
Collapse
Affiliation(s)
- Miyu Shiratori
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan.
| | - Nobuhisa Ito
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan: 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Kunio Awazu
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan: 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan: 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan
| |
Collapse
|
7
|
Ahmed Y, Zhong J, Yuan Z, Guo J. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. WATER RESEARCH 2021; 197:117075. [PMID: 33819660 DOI: 10.1016/j.watres.2021.117075] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Although photo-driven advanced oxidation processes (AOPs) have been developed to treat wastewater, few studies have investigated the feasibility of AOPs to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and micropollutants (MPs). This study employed a modified photo-Fenton process using ethylenediamine-N,N'-disuccinic acid (EDDS) to chelate iron(III), thus maintaining the reaction pH in a neutral range. Simultaneous removal of ARB and associated extracellular (e-ARGs) and intracellular ARGs (i-ARGs), was assessed by bacterial cell culture, qPCR and atomic force microscopy. The removal of five MPs was also evaluated by liquid chromatography coupled with mass spectrometry. A low dose comprising 0.1 mM Fe(III), 0.2 mM EDDS, and 0.3 mM hydrogen peroxide (H2O2) was found to be effective for decreasing ARB by 6-log within 30 min, and e-ARGs by 6-log within 10 min. No ARB regrowth occurred after 48-h, suggesting that the proposed process is an effective disinfectant against ARB. Moreover, five recalcitrant MPs (carbamazepine, diclofenac, sulfamethoxazole, mecoprop and benzotriazole at an initial concentration of 10 μg/L each) were >99% removed after 30 min treatment in ultrapure water. The modified photo-Fenton process was also validated using synthetic wastewater and real secondary wastewater effluent as matrices, and results suggest the dosage should be doubled to ensure equivalent removal performance. Collectively, this study demonstrated that the modified process is an optimistic 'one-stop' solution to simultaneously mitigate both chemical and biological hazards.
Collapse
Affiliation(s)
- Yunus Ahmed
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jiexi Zhong
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Sajjad F, Sun NN, Chen T, Yan YJ, Margetić D, Chen ZL. Evaluation of antimicrobial photodynamic activities of 5-aminolevulinic acid derivatives. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:296-305. [PMID: 33404073 DOI: 10.1111/phpp.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Antibiotic resistance is increasing day by day, thereby increase the chances of more infections by resistant bacteria. In this situation, antimicrobial photodynamic therapy (aPDT) is gaining more attraction. OBJECTIVE To evaluate the antimicrobial effect of ALA derivatives using photodynamic therapy. MATERIALS AND METHODS In this study, we evaluated the aPDT effect of different derivatives of 5-ALA. In vivo and in vitro studies were performed to measure the antimicrobial activity. Different light doses and different concentrations of drugs were used to test anti-bacterial effect of drugs as well as to detect any physiological changes in animal model after the treatment. RESULTS In vivo studies revealed that ALA-methyl ester, ALA-hexyl ester, and ALA-13A are potent photosensitizers. In vitro studies involved wound healing rate, body weight, and dietary intake were evaluated, and results showed that ALA, ALA-methyl ester, ALA-hexyl ester, and ALA-13A had good anti-bacterial effects, fast healing rate, and no effect on other physical parameters. CONCLUSION Photodynamic therapy is increasingly used to treat different types of skin infections caused by bacterial strains. Our studies revealed that ALA-methyl ester, ALA-hexyl ester, and ALA-13A are promising photosensitizers for photodynamic therapy to inhibit the growth of resistant bacterial strains.
Collapse
Affiliation(s)
- Faiza Sajjad
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| | - Ning-Ning Sun
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| | - Ting Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| | - Yi-Jia Yan
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, China
| | - Davor Margetić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Chemistry and Biology, DongHua University, Shanghai, China
| |
Collapse
|
9
|
Martínez SR, Ibarra LE, Ponzio RA, Forcone MV, Wendel AB, Chesta CA, Spesia MB, Palacios RE. Photodynamic Inactivation of ESKAPE Group Bacterial Pathogens in Planktonic and Biofilm Cultures Using Metallated Porphyrin-Doped Conjugated Polymer Nanoparticles. ACS Infect Dis 2020; 6:2202-2213. [PMID: 32538610 DOI: 10.1021/acsinfecdis.0c00268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic inactivation (PDI) protocols using photoactive metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) and blue light were developed to eliminate multidrug-resistant pathogens. CPNs-PDI protocols using varying particle concentrations and irradiation doses were tested against nine pathogenic bacterial strains including antibiotic-resistant bacteria of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens group. The bactericidal effect was achieved in methicillin-resistant Staphylococus aureus (S. aureus) strains using low light doses (9.6-14.4 J/cm2), while Gram-negative bacteria required a higher light dose (28.8 J/cm2). The bacteria-CPN interaction was studied through flow cytometry, taking advantage of the intrinsic CPN fluorescence, demonstrating that CPNs efficiently bind to the bacterial envelope. Finally, the performance of CPNs-PDI was explored in biofilms; good antibiofilm ability and almost complete eradication were observed for S. aureus and Escherichia coli biofilms, respectively, using confocal microscopy. Overall, we demonstrated that CPNs-PDI is an efficient tool not only to kill superbugs as sessile cells but also to disrupt and eradicate biofilms of highly relevant pathogenic bacterial species.
Collapse
Affiliation(s)
- Sol R. Martínez
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Luis E. Ibarra
- Instituto de Biotecnologı́a Ambiental y Salud (INBIAS), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Rodrigo A. Ponzio
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | | | | | - Carlos A. Chesta
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Mariana B. Spesia
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| | - Rodrigo E. Palacios
- Instituto de Investigaciones en Tecnologı́as Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rı́o Cuarto, Consejo Nacional de Investigaciones Cientı́ficas y Tecnológicas (CONICET), Rı́o Cuarto, Córdoba X5804BYA, Argentina
| |
Collapse
|
10
|
Bohm GC, Gándara L, Di Venosa G, Mamone L, Buzzola F, Casas A. Photodynamic inactivation mediated by 5-aminolevulinic acid of bacteria in planktonic and biofilm forms. Biochem Pharmacol 2020; 177:114016. [PMID: 32387459 DOI: 10.1016/j.bcp.2020.114016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022]
Abstract
Bacterial photodynamic inactivation (PDI) employing endogenous production of porphyrins from 5-aminolevulinic acid (ALA) - named ALA-PDI-, is a new promising tool to achieve bacteria control in non-spread infections. The technique combines the action of the porphyrins acting as photosensitisers with light, to produce reactive oxygen species to target the pathogen. To date, some clinical applications of ALA-PDI have been reported although variable responses ranging from total eradication to absence of photokilling were found. ALA-PDI conducted at suboptimal conditions may lead to misleading results and the complexity of haem synthesis in bacteria hinders the optimization of the treatment. The present work aimed to gain insight on the variables affecting ALA-PDI in Gram-positives and Gram-negatives bacteria growing on planktonic and biofilm cultures and to correlate the degree of the response with the amount and type of porphyrin synthesised. Staphylococcus epidermidis and Escherichia coli clinical isolates and Pseudomonas aeruginosa ATCC27853 and Staphylococcus aureus ATCC25923 strains were utilised, and the optimal conditions of concentration and time exposure of ALA, and light dose were set. In both Gram-positive species analysed, a peak of porphyrin synthesis was observed at 1-2 mM ALA in biofilm and planktonic cultures, which fairly correlated with the decrease in the number of CFU after PDI (5 to 7 logs) and porphyrin content was in the same order of magnitude. In addition, ALA-PDI was similarly effective for planktonic and biofilm S. aureus cultures, and more effective in S. epidermidis planktonic cultures at low light doses. Beyond a certain light dose, it was not possible to achieve further photosensitization. Similarly, a plateau of cell death was attained at a certain ALA incubation time. Accumulation of hydrophilic porphyrins at longer incubation periods was observed. The proportion of porphyrins changed as a function of ALA concentration and incubation time in the Gram-positive bacteria, though we did not find a clear correlation between the porphyrin type and PDI response. As a salient feature was the presence of isococroporphyrin isoforms in both Gram-positive and Gram-negative bacteria. Gram-negative bacteria were quite refractory to the treatment: P. aeruginosa was slightly inactivated (4-logs reduction) at 40 mM ALA, whereas E. coli was not inactivated at all. These species accumulated high ALA quantities and the amount of porphyrins did not correlate with the degree of photoinactivation. Our microscopy studies show that porphyrins are not located in the envelopes of Gram-negative bacteria, reinforcing the hypothesis that endogenous porphyrins fail to attack these structures.
Collapse
Affiliation(s)
- Gabriela Cervini Bohm
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Lautaro Gándara
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Leandro Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Fernanda Buzzola
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Buenos Aires, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina.
| |
Collapse
|
11
|
Mosteo R, Varon Lopez A, Muzard D, Benitez N, Giannakis S, Pulgarin C. Visible light plays a significant role during bacterial inactivation by the photo-fenton process, even at sub-critical light intensities. WATER RESEARCH 2020; 174:115636. [PMID: 32109753 DOI: 10.1016/j.watres.2020.115636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The aim of this research is to clarify the contribution of sunlight wavelengths, irradiance and Fe2+/H2O2 during bacterial disinfection by the photo-Fenton process in clear surface waters. We considered different solar spectrum distributions (visible, UVA-Visible), sub-critical irradiances (0-400 W/m2), focusing on the action modes of E. coli inactivation by the constituents involved in the composite process, at low μM reactants concentration (Fe2+/H2O2) in in ultrapure (MQ) water. We report that solar disinfection improved with Fenton reagents (photo-Fenton process) is a reality from very low light irradiance values (200 W/m2), and made possible even without the presence of UVA radiation, even when using low quantities of the Fenton reagents (0.5 mg/L Fe2+, 5 mg/L H2O2). Under light exposure, H2O2 was found to augment the intracellular Fenton process and Fe2+ to initiate further, distinct oxidative actions. Finally, validation was performed in Lake Geneva water over a wider irradiance range, where the photo-Fenton process was found to be reagent-dependent in low irradiance, shifting to light-driven in the higher values.
Collapse
Affiliation(s)
- Rosa Mosteo
- Department of Chemical Engineering and Environmental Technology, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain; School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Angelica Varon Lopez
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland; Universidad del Valle, Departamento de Química, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A.A. 25360 Cali, Colombia
| | - David Muzard
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Norberto Benitez
- Universidad del Valle, Departamento de Química, Grupo de Investigación en Procesos Avanzados de Oxidación (GAOX), A.A. 25360 Cali, Colombia
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Saeed HMM, Faraj BM, Mirdan BM. Evaluation of antibacterial effects of 5-aminolevulinic acid in combination with light emitting diode (LED: 635nm) with different disinfection methods. Photodiagnosis Photodyn Ther 2019; 29:101615. [PMID: 31811947 DOI: 10.1016/j.pdpdt.2019.101615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
This study evaluates the in vitro antibacterial effects of 5-ALA (photoactive dye) in regard to different disinfection methods (2% Chlorhexidine gluconate, 1% Sodium Hypochlorite) on cariogenic bacteria (Streptococcus mutans and Streptococcus sobrinus). After inoculation of dentin specimens with S. mutans and S. sobrinus separately, the reduction in bacterial count was evaluated by the colony counting method. A total of sixty specimens were assigned to six groups (Ten per each group, with five in each group inoculated with S. mutans and the other five inoculated with S.sobrinus); group one: positive control where no treatment was performed, group two: 1% NaOCl was applied, group three: 2% CHX was used, group four: 5-ALA with LED light (635 nm) was applied, group five: 5-ALA was used without LED light activation, group six: LED light was used without dye application. There was a significant reduction in the number of S. mutans in the group treated with 5-ALA with LED light, followed by CHX and then NaOCl, whilst minimum bacterial reduction was detected in the groups that were treated with LED light alone and 5-ALA without LED. However, NaOCl exhibited a better effect regarding reduction of S. sobrinus, followed by 5-ALA and LED light and then CHX. All the disinfected groups showed a significant relation with the positive control non-treated group(p < 0.05).
Collapse
|
13
|
Letuta SN, Letuta UG, Pashkevich SN. Inactivation of Bacteria during Stimulation of Sensitizers with High-Power Nanosecond Laser Pulses. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Ghate VS, Zhou W, Yuk HG. Perspectives and Trends in the Application of Photodynamic Inactivation for Microbiological Food Safety. Compr Rev Food Sci Food Saf 2019; 18:402-424. [DOI: 10.1111/1541-4337.12418] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Vinayak S. Ghate
- Food Science & Technology Programme, Dept. of Chemistry; Natl. Univ. of Singapore; Science Drive 2 117543 Singapore
| | - Weibiao Zhou
- Food Science & Technology Programme, Dept. of Chemistry; Natl. Univ. of Singapore; Science Drive 2 117543 Singapore
| | - Hyun-Gyun Yuk
- Dept. of Food Science and Technology; Korea National Univ. of Transportation; 61 Daehak-ro Jeungpyeong-gun Chungbuk 27909 Republic of Korea
| |
Collapse
|
15
|
Katayama B, Ozawa T, Morimoto K, Awazu K, Ito N, Honda N, Oiso N, Tsuruta D. Enhanced sterilization and healing of cutaneous pseudomonas infection using 5-aminolevulinic acid as a photosensitizer with 410-nm LED light. J Dermatol Sci 2018; 90:323-331. [PMID: 29534858 DOI: 10.1016/j.jdermsci.2018.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) frequently develops antibiotic-resistant characteristics, which is clinically problematic. The main reason behind the rise of antibiotic-resistant PA is the extensive use of antibiotics. Therefore, a novel technique is needed to treat PA infections. Photodynamic therapy (PDT) is thought to have the potential to be a non-antibiotic treatment for infections. 5-Aminolevulinic acid (ALA), which works as a photosensitizer after being metabolized into protoporphyrin IX (PpIX) in the heme synthetic pathway, is used for PDT. Thus far, the in vivo effectiveness of PDT using ALA against PA is unknown. OBJECTIVE In this study, we investigated PDT using ALA both in vitro and in vivo. METHODS AND RESULTS Although PDT with ALA alone did not show a bactericidal effect on PA, PDT with both ALA and EDTA-2Na had a bactericidal effect in vitro. In in vivo experiments, wounds healed faster in PA-infected mice treated with PDT using both EDTA-2Na and ALA compared to non-PDT. CONCLUSION These results suggest that PDT with EDTA-2Na and ALA is a potential novel treatment option for PA-infected wounds.
Collapse
Affiliation(s)
- Bunpei Katayama
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kuniyuki Morimoto
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kunio Awazu
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Nobuhisa Ito
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Norihiro Honda
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan; Institute for Academic Initiatives, Osaka University, Osaka, Japan
| | - Naoki Oiso
- Department of Dermatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Abstract
The emergence of microbial resistance is becoming a global problem in clinical and environmental areas. As such, the development of drugs with novel modes of action will be vital to meet the threats created by the rise in microbial resistance. Microbial photodynamic inactivation is receiving considerable attention for its potentialities as a new antimicrobial treatment. This review addresses the interactions between photosensitizers and bacterial cells (binding site and cellular localization), the ultrastructural, morphological and functional changes observed at initial stages and during the course of photodynamic inactivation, the oxidative alterations in specific molecular targets, and a possible development of resistance.
Collapse
|
17
|
Hsieh CM, Huang YH, Chen CP, Hsieh BC, Tsai T. 5-Aminolevulinic acid induced photodynamic inactivation on Staphylococcus aureus and Pseudomonas aeruginosa. J Food Drug Anal 2014; 22:350-355. [PMID: 28911425 PMCID: PMC9354871 DOI: 10.1016/j.jfda.2013.09.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to develop a simple and fast screening technique to directly evaluate the bactericidal effects of 5-aminolevulinic acid (ALA)-mediated photodynamic inactivation (PDI) and to determine the optimal antibacterial conditions of ALA concentrations and the total dosage of light in vitro. The effects of PDI on Staphylococcus aureus and Pseudomonas aeruginosa in the presence of various concentrations of ALA (1.0 mM, 2.5 mM, 5.0 mM, 10.0 mM) were examined. All bacterial strains were exponentially grown in the culture medium at room temperature in the dark for 60 minutes and subsequently irradiated with 630 ± 5 nm using a light-emitting diode (LED) red light device for accumulating the light doses up to 216 J/cm2. Both bacterial species were susceptible to the ALA-induced PDI. Photosensitization using 1.0 mM ALA with 162 J/cm2 light dose was able to completely reduce the viable counts of S. aureus. A significant decrease in the bacterial viabilities was observed for P. aeruginosa, where 5.0 mM ALA was photosensitized by accumulating the light dose of 162 J/cm2. We demonstrated that the use of microplate-based assays—by measuring the apparent optical density of bacterial colonies at 595 nm—was able to provide a simple and reliable approach for quickly choosing the parameters of ALA-mediated PDI in the cell suspensions.
Collapse
Affiliation(s)
- Chien-Ming Hsieh
- Department of Health Development and Health Marketing, School of Healthcare Management, Kainan University, Taoyuan, Taiwan
| | - Yen-Hao Huang
- Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taipei, Taiwan
| | - Chueh-Pin Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bo-Chuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsuimin Tsai
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Li X, Guo H, Tian Q, Zheng G, Hu Y, Fu Y, Tan H. Effects of 5-aminolevulinic acid–mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an in vitro study. J Surg Res 2013; 184:1013-21. [DOI: 10.1016/j.jss.2013.03.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
|
19
|
The use of photosensitisers in acne treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:1-5. [PMID: 21723142 DOI: 10.1016/j.jphotobiol.2011.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 11/24/2022]
Abstract
Whereas the standard approach to the treatment of acne vulgaris has involved both systemic and topical antibiotics and topical agents such as benzoyl peroxide, problems exist due to side effects, drug resistance and lack of compliance. The photoantimicrobial approach offers a rapid treatment for large areas of afflicted dermis, based on the generation of reactive oxygen species in situ. Various chemical types are available as a topical modality, both in respect of the photosensitising agent and the activating light source, the suggested therapeutic approach requiring medical supervision. Due to a novel mode of action, the use of photosensitisers constitutes a convenient option against drug-resistant bacteria.
Collapse
|
20
|
Pudziuvyte B, Bakiene E, Bonnett R, Shatunov PA, Magaraggia M, Jori G. Alterations of Escherichia coli envelope as a consequence of photosensitization with tetrakis(N-ethylpyridinium-4-yl)porphyrin tetratosylate. Photochem Photobiol Sci 2011; 10:1046-55. [DOI: 10.1039/c1pp05028a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Buchovec I, Paskeviciute E, Luksiene Z. Photosensitization-based inactivation of food pathogen Listeria monocytogenes in vitro and on the surface of packaging material. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 99:9-14. [DOI: 10.1016/j.jphotobiol.2010.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 11/15/2022]
|
22
|
Luksiene Z, Buchovec I, Paskeviciute E. Inactivation of food pathogenBacillus cereusby photosensitizationin vitroand on the surface of packaging material. J Appl Microbiol 2009; 107:2037-46. [DOI: 10.1111/j.1365-2672.2009.04383.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Luksienė Z, Zukauskas A. Prospects of photosensitization in control of pathogenic and harmful micro-organisms. J Appl Microbiol 2009; 107:1415-24. [DOI: 10.1111/j.1365-2672.2009.04341.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 2009; 75:1932-7. [PMID: 19201962 DOI: 10.1128/aem.01892-08] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study demonstrates the susceptibility of a variety of medically important bacteria to inactivation by 405-nm light from an array of light-emitting diodes (LEDs), without the application of exogenous photosensitizer molecules. Selected bacterial pathogens, all commonly associated with hospital-acquired infections, were exposed to the 405-nm LED array, and the results show that both gram-positive and gram-negative species were successfully inactivated, with the general trend showing gram-positive species to be more susceptible than gram-negative bacteria. Detailed investigation of the bactericidal effect of the blue-light treatment on Staphylococcus aureus suspensions, for a range of different population densities, demonstrated that 405-nm LED array illumination can cause complete inactivation at high population densities: inactivation levels corresponding to a 9-log(10) reduction were achieved. The results, which show the inactivation of a wide range of medically important bacteria including methicillin-resistant Staphylococcus aureus, demonstrate that, with further development, narrow-spectrum 405-nm visible-light illumination from an LED source has the potential to provide a novel decontamination method with a wide range of potential applications.
Collapse
|
25
|
Abstract
We found that Escherichia coli tolC mutants showed increased sensitivity to 5-aminolevulinic acid (ALA), a precursor of porphyrins. The tolC mutant cells grown in the presence of ALA showed a reddish brown color under visible light and a strong red fluorescence under near-UV irradiation. Fluorescence spectrometry and high-performance liquid chromatography analysis showed that the tolC mutant cells grown in the presence of ALA accumulated a large amount of coproporphyrin(ogen) intracellularly. In contrast, the wild-type cells produced coproporphyrin extracellularly. The tolC mutant cells grown in the presence of ALA, which were capable of surviving in the dark, were killed by near-UV irradiation, suggesting that the intracellular coproporphyrin(ogen) renders these cells photosensitive. These results suggest that the TolC-dependent efflux system is involved in the exclusion of porphyrin(ogen)s in E. coli.
Collapse
|
26
|
Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic Acid and 5-aminolevulinic acid derivatives. Antimicrob Agents Chemother 2008; 52:1366-73. [PMID: 18195063 DOI: 10.1128/aac.01372-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due mainly to the extensive use of antibiotics, the spread of multiresistant bacterial strains is one of the most worrying threats to public health. One strategy that can be used to overcome potential shortcomings might be the inactivation of these microorganisms by 5-aminolevulinic acid (5-ALA) or 5-ALA derivative-mediated photodynamic therapy (PDT). 5-ALA has no photoactive properties, but when it is given exogenously, it acts as a precursor of photosensitive porphyrins predominantly in tissues or organisms that are characterized by a high metabolic turnover, such as tumors, macrophages, and bacteria. However, the weak ability of 5-ALA to cross biological barriers has led to the introduction of more lipophilic derivatives, such as methyl aminolevulinate or hexyl aminolevulinate, which display improved capacities to reach the cytoplasm. Starting from the hypothesis that more lipophilic compounds carrying only a permanent positive charge under physiological conditions may more easily cross the bacterial multilayer barrier, we have tested the efficacies of some 5-ALA n-alkyl esters for the inactivation of bacteria. For this purpose, different bacterial strains were incubated with 5-ALA or its corresponding esters of different lipophilicities. Then, the bacteria were irradiated with light and the numbers of CFU post-PDT were counted and compared to those for the controls, which were kept in the dark. Furthermore, the total amount of accumulated porphyrins was quantified by high-pressure liquid chromatography analysis. In our studies, analysis of the bacterial extracts revealed the presence of all the porphyrins involved in heme biosynthesis, from uroporphyrin to protoporphyin IX. The efficacy of bacterial inactivation was a function of the total amount of porphyrins produced, independently of their nature. The 5-ALA methyl and butyl esters were the most effective compounds with respect to the photodynamic inactivation of bacteria. We observed significant differences in terms of the optimal drug concentration, bactericidal activities, and porphyrin production.
Collapse
|
27
|
Ulatowska-Jarża A, Zychowicz J, Hołowacz I, Bauer J, Razik J, Wieliczko A, Podbielska H, Müller G, Stręk W, Bindig U. Antimicrobial PDT with chlorophyll-derived photosensitizer and semiconductor laser. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.mla.2006.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Tauber S, Stepp H, Meier R, Bone A, Hofstetter A, Stief C. Integral spectrophotometric analysis of 5-aminolaevulinic acid-induced fluorescence cytology of the urinary bladder. BJU Int 2006; 97:992-6. [PMID: 16643481 DOI: 10.1111/j.1464-410x.2006.06094.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To evaluate whether tumour cells can be detected in bladder lavage fluid samples by an objective spectrofluorometric method, as 5-aminolaevulinic acid (ALA)-induced fluorescence endoscopy (AFE) and cytology are promising valuable tools for detecting transitional cell carcinoma of the urinary bladder (TCCB). MATERIALS AND METHODS After instilling ALA into the urinary bladder, lavage samples were collected and their sediments analysed spectroscopically under blue excitation at approximately 400 nm wavelength. During AFE, biopsies were taken. From 62 cases, 24 patients had a histologically confirmed TCCB (group A), 28 had a history of TCCB but no evidence of disease (group B) and 10 were negative for TCCB (group C). RESULTS Lavage sediments of all patients fluoresced in the green spectral range, typical of cellular autofluorescence. Sediments of all patients of group A caused red fluorescence peaking at 635 nm, indicating protoporphyrin IX (PPIX). The PPIX signals derived from bleaching spectra were significantly different between benign and malignant findings (P = 0.001). There was another red fluorescence peak at approximately 620 nm; in 19 cases its intensity exceeded the intensity of the PPIX signal. CONCLUSIONS Spectrofluorometric analysis of lavage sample sediments can be used to detect tumour-associated red fluorescence of PPIX in TCCB. Immediate significant and objective measurements are possible, which could be further automated for the rapid diagnosis of TCCB.
Collapse
Affiliation(s)
- Stephan Tauber
- Urologische Klinik und Poliklinik, and Laser-Forschungslabor, Klinikum Grosshadern der Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Ramstad S, Le Anh-Vu N, Johnsson A. The temperature dependence of porphyrin production in Propionibacterium acnes after incubation with 5-aminolevulinic acid (ALA) and its methyl ester (m-ALA). Photochem Photobiol Sci 2005; 5:66-72. [PMID: 16395429 DOI: 10.1039/b512837d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Topical PDT treatment of the common skin disease acne vulgaris is now in clinical use. Propionibacterium acnes (P. acnes) is known to play an important role in acne. 5-Aminolevulinic acid (ALA) supplementation leads to an enhanced porphyrin production in the bacteria. Subsequent illumination with light of the proper wavelengths can reduce the number of bacteria and this might at least partly explain the PDT effect on acne. We have assessed the effects of temperature on P. acnes washed cell suspensions incubated for 4 h with ALA or ALA methyl ester (m-ALA). The effect on porphyrin production of both the cell suspension incubation temperature as well as the initial growth temperature of the cultivated cells prior to harvesting and use in suspension experiments was investigated. The bacterial porphyrin content was estimated from fluorescence emission spectra. It was found that incubation with ALA or m-ALA at a temperature 42 degrees C resulted in an approx. 100% and 33% increase in the total amount of PDT-relevant porphyrins produced as compared to incubation at 37 degrees C. These results support increasing the skin temperature during incubation with ALA or m-ALA in the clinic. The initial growth temperature, prior to the incubation, had no apparent effect on the ALA or m-ALA induced porphyrins. Activation energy studies indicate slightly higher temperature dependence in the case of ALA produced porphyrins as compared to m-ALA produced porphyrins (77 and 65 kJ mol(-1), respectively).
Collapse
Affiliation(s)
- Ståle Ramstad
- Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | |
Collapse
|
30
|
Lin HY, Chen CT, Huang CT. Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Appl Environ Microbiol 2005; 70:6453-8. [PMID: 15528505 PMCID: PMC525131 DOI: 10.1128/aem.70.11.6453-6458.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells by a phtotosensitizer, merocyanine 540 (MC 540), was investigated. For the planktonic experiments, MC 540 binding efficiency to bacterial cells was found to increase with both increasing MC 540 concentration and increasing incubation time, but the binding became saturated following 10 min of incubation. The antimicrobial activity was enhanced with an increasing light dose, but an increase in the light dose could not further improve the antimicrobial activity if the maximum excitation level attainable was less than the necessary minimum threshold level. Complete inactivation was achieved when the excitation level of MC 540 was somewhere above the threshold level. The relationship between antimicrobial activity and the excitation level of MC 540 revealed that the more MC 540 was excited, the more S. aureus cells were killed. For the biofilm experiments, the antimicrobial activity was enhanced with an increase in the light dose. No viable cells were detected when organisms were exposed to 15 mug of MC 540 per ml and a light dose of 600 J/cm2 or to 20 mug of MC 540 per ml and a light dose of 450 J/cm2. A quantitative analysis of MC 540 bound to biofilms was also performed, and the images from confocal laser scanning microscopy provided direct evidence that revealed the difference between the MC 540 remaining in the biofilms prior to irradiation and the MC 540 remaining in the biofilms after irradiation. The results of both the planktonic and biofilm experiments suggest that the antimicrobial activity of photodynamic inactivation of S. aureus is closely related to the excitation level of MC 540.
Collapse
Affiliation(s)
- Hsiao-Yin Lin
- Institute for Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
31
|
Tissue detection of diphenylchlorin sensitizer (SIM01) by fluorescence and high-performance liquid chromatography. Photodiagnosis Photodyn Ther 2004; 1:181-90. [DOI: 10.1016/s1572-1000(04)00043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Lee CF, Lee CJ, Chen CT, Huang CT. δ-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 75:21-5. [PMID: 15246346 DOI: 10.1016/j.jphotobiol.2004.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/16/2004] [Accepted: 04/18/2004] [Indexed: 10/26/2022]
Abstract
To demonstrate photodynamic antimicrobial chemotherapy (PACT) against planktonic and biofilm cultures of Pseudomonas aeruginosa, using photoporphyrin IX which could be endogenously synthesized by administrating delta-aminolaevulinic acid (delta-ALA), and a light emitted diode (LED) array to photoactivate the photosensitizer. P. aeruginosa suspended cells or biofilms, grown on a rotating disk reactor, were treated by different concentrations of delta-ALA in the dark for 1 h, followed by LED irradiation for various time. Regrowth experiments were conducted by placed PACT-treated disks back to a sterile reactor. Viable cells were determined by serial dilution and plate counts. Both P. aeruginosa planktonic and biofilm cells were inhibited by PACT with light doses or photosensitizer concentrations increasing. Treatments of planktonic cells with 10 mM delta-ALA and incident dose 240 J cm(-2) or 7.5 mM ALA and incident dose 360 J cm(-2) led to completely photoinactivation. No viable biofilm cells were found after treatment of 20 mM delta-ALA and incident dose 240 J cm(-2). However, regrowth was observed once PACT-treated biofilms were put back to a sterile reactor. Regrowth could be prevented only if biofilm samples were treated PACT twice. delta-ALA-mediated PACT on P. aeruginosa planktonic and biofilm cells was effective, though the detailed mechanism still required further investigation.
Collapse
Affiliation(s)
- Chia-Fen Lee
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | |
Collapse
|
33
|
Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 2004; 3:436-50. [PMID: 15122361 PMCID: PMC3071049 DOI: 10.1039/b311900a] [Citation(s) in RCA: 1346] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) employs a non-toxic dye, termed a photosensitizer (PS), and low intensity visible light which, in the presence of oxygen, combine to produce cytotoxic species. PDT has the advantage of dual selectivity, in that the PS can be targeted to its destination cell or tissue and, in addition, the illumination can be spatially directed to the lesion. PDT has previously been used to kill pathogenic microorganisms in vitro, but its use to treat infections in animal models or patients has not, as yet, been much developed. It is known that Gram-(-) bacteria are resistant to PDT with many commonly used PS that will readily lead to phototoxicity in Gram-(+) species, and that PS bearing a cationic charge or the use of agents that increase the permeability of the outer membrane will increase the efficacy of killing Gram-(-) organisms. All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naive strains, and that bacteria will not readily develop resistance to PDT. Treatment of localized infections with PDT requires selectivity of the PS for microbes over host cells, delivery of the PS into the infected area and the ability to effectively illuminate the lesion. Recently, there have been reports of PDT used to treat infections in selected animal models and some clinical trials: mainly for viral lesions, but also for acne, gastric infection by Helicobacter pylori and brain abcesses. Possible future clinical applications include infections in wounds and burns, rapidly spreading and intractable soft-tissue infections and abscesses, infections in body cavities such as the mouth, ear, nasal sinus, bladder and stomach, and surface infections of the cornea and skin.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
34
|
Phoenix DA, Sayed Z, Hussain S, Harris F, Wainwright M. The phototoxicity of phenothiazinium derivatives against Escherichia coli and Staphylococcus aureus. ACTA ACUST UNITED AC 2004; 39:17-22. [PMID: 14556991 DOI: 10.1016/s0928-8244(03)00173-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phenothiazinium dyes, and derivatives, were tested for toxicity to Escherichia coli and Staphylococcus aureus. The dyes were generally lipophilic (log P>1) and showed inherent dark toxicity (minimum lethal concentrations: 3.1-1000 microM). Dye illumination (total light dose of 3.15 J cm(-1) over 30 min) led to up to eight-fold reductions in minimum lethal concentrations. Most of the illuminated dyes showed significant relative singlet oxygen yields (phi'delta: 0.18-1.35) suggesting a type II mechanism of generating a phototoxic response. Although generally up to six-fold more effective against S. aureus, the dyes tested efficiently killed E. coli and may be of particular use in combating Gram-negative pathogens.
Collapse
Affiliation(s)
- D A Phoenix
- Department of Forensic and Investigative Science, University of Central Lancashire, Preston PR1 2HE, UK.
| | | | | | | | | |
Collapse
|
35
|
Scruggs AW, Woodbury NW. Optical processing of bacterial libraries for directed evolution. Biotechnol Bioeng 2003; 84:445-51. [PMID: 14574702 DOI: 10.1002/bit.10794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Selection of phenotypically distinct bacterial colonies on a Petri dish is typically performed by one of two methods: chemical or mechanical. Chemical methods (e.g., antibiotic selection) rely on inherent growth advantages of the unique phenotypes desired and thus have limited applicability. Mechanical methods are generally slow and require relatively large colonies (typically hundreds of colonies per plate). Here the use of imaged light to select bacterial colonies is explored, employing either photodynamic therapy agents or a ferrochelatase mutation in combination with porphyrin precursors to sensitize the bacteria to light and a computer-controlled light projection system to illuminate some bacterial colonies while leaving others in the dark. A CCD camera was used to distinguish between bacteria expressing green fluorescent protein (GFP) from nonfluorescent colonies. The fluorescence image from the camera was then used to create a virtual masking image for photoselection. Using a simple commercial projector it was possible to confer a 56-fold selective advantage to colonies expressing GFP. This represents a potentially powerful tool in directed evolution experiments using large libraries.
Collapse
Affiliation(s)
- Allan Wallace Scruggs
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
36
|
Gardlo K, Horska Z, Enk CD, Rauch L, Megahed M, Ruzicka T, Fritsch C. Treatment of cutaneous leishmaniasis by photodynamic therapy. J Am Acad Dermatol 2003; 48:893-6. [PMID: 12789181 DOI: 10.1067/mjd.2003.218] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis represents a common health problem and standard treatments are often ineffective or yield poor cosmetic results. OBJECTIVE We compared the efficacy of photodynamic therapy (PDT) with paromomycin sulfate in 10 lesions of cutaneous leishmaniasis. METHODS Five lesions were treated by PDT with Metvix (Photocure, Oslo, Norway) and 75 J/cm(2) red light. PDT was performed twice weekly and, after 12 weeks, once weekly. The other 5 lesions were treated with paromomycin sulfate once daily. All nonresponding lesions of the paromomycin-treated plaques finally also underwent PDT. RESULTS All 5 lesions treated by PDT and 2 of the paromomycin sulfate-treated plaques were clinically and histologically Leishmania free. Three lesions with poor response to paromomycin sulfate finally responded to subsequent PDT. Ten months after therapy there was no recurrence, and cosmetic outcome after PDT was excellent. CONCLUSION PDT may be an effective therapeutic alternative in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Kerstin Gardlo
- Department of Dermatology at Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ashkenazi H, Malik Z, Harth Y, Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 35:17-24. [PMID: 12589953 DOI: 10.1111/j.1574-695x.2003.tb00644.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Propionibacterium acnes is a Gram-positive, microaerophilic bacterium that causes skin wounds. It is known to naturally produce high amounts of intracellular porphyrins. The results of the present study confirm that the investigated strain of P. acnes is capable of producing endogenic porphyrins with no need for any trigger molecules. Extracts from growing cultures have demonstrated emission peaks around 612 nm when excited at 405 nm, which are characteristic for porphyrins. Endogenic porphyrins were determined and quantified after their extraction from the bacterial cells by fluorescence intensity and by elution retention time on high-performance liquid chromatography (HPLC). The porphyrins produced by P. acnes are mostly coproporphyrin, as shown by the HPLC elution patterns. Addition of delta-aminolevulinic acid (ALA) enhanced intracellular porphyrin synthesis and higher amounts of coproporphyrin have been found. Eradication of P. acnes by its endogenic porphyrins was examined after illumination with intense blue light at 407-420 nm. The viability of 24 h cultures grown anaerobically in liquid medium was reduced by less than two orders of magnitude when illuminated once with a light dose of 75 J cm(-2). Better photodynamic effects were obtained when cultures were illuminated twice or three times consecutively with a light dose of 75 J cm(-2) and an interval of 24 h between illuminations. The viability of the culture under these conditions decreased by four orders of magnitude after two illuminations and by five orders of magnitude after three illuminations. When ALA-triggered cultures were illuminated with intense blue light at a light dose of 75 J cm(-2) the viability of the treated cultures decreased by seven orders of magnitude. This decrease in viability can occur even after a single exposure of illumination for the indicated light intensity. X-ray microanalysis and transmission electron microscopy revealed structural damages to membranes in the illuminated P. acnes. Illumination of the endogenous coproporphyrin with blue light (407-420 nm) apparently plays a major role in P. acnes photoinactivation. A treatment protocol with a series of several illuminations or illumination after application of ALA may be suitable for curing acne. Treatment by both pathways may overcome the resistance of P. acnes to antibiotic treatment.
Collapse
Affiliation(s)
- Helena Ashkenazi
- Health Sciences Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
38
|
Szocs K, Csík G, Kaposi AD, Fidy J. In situ detection of ALA-stimulated porphyrin metabolic products in Escherichia coli B by fluorescence line narrowing spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:170-8. [PMID: 11755211 DOI: 10.1016/s0167-4889(01)00140-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a recent work [Photochem. Photobiol. B: Biol. 50 (1999) 8] the successful photodynamic inactivation of Escherichia coli bacteria by visible light was reported based on delta-aminolevulinic acid (ALA)-induced endogenous porphyrin accumulation. In this work, the identification of these porphyrin derivatives in intact bacteria was performed by low-temperature conventional fluorescence and fluorescence line narrowing (FLN) techniques. Conventional fluorescence emission spectroscopy at cryogenic temperatures revealed the presence of the free-base porphyrins, identified earlier by high-performance liquid chromatography analysis of disintegrated bacterial cells after ALA induction; however, emission maxima characteristic for metal porphyrins were also observed. We demonstrated that the primary reason for this signal is that metal porphyrins are formed from free-base porphyrins by Mg2+ ions present in the culturing medium. Incorporation of Zn ions originating from the glassware could also be supposed. In the FLN experiment, the energy selection effect could be clearly demonstrated for (0,0) emissions of both the free-base and the metal porphyrins. The comparison of the conventional emission spectra and the bands revealed by the FLN experiment show that the dominant monomeric structural population is that of metal porphyrins. The intensity and the shape of the FLN lines indicate an aggregated population of the free-base porphyrins, beside a small monomeric population.
Collapse
Affiliation(s)
- K Szocs
- Laser Application Department, Research Institute for Solid State Physics and Optics, Budapest, Hungary.
| | | | | | | |
Collapse
|
39
|
Abstract
A large number of natural and synthetic porphyrins of diverse chemical compositions and characteristics can be isolated from nature or synthesised in the laboratory. Antimicrobial and antiviral activities of porphyrins are based on their ability to catalyse peroxidase and oxidase reactions, absorb photons and generate reactive oxygen species (ROS) and partition into lipids of bacterial membranes. Light-dependent, photodynamic activity of natural and synthetic porphyrins and pthalocyanines against Gram-positive and Gram-negative bacteria has been well demonstrated. Some non-iron metalloporphyrins (MPs) possess a powerful light-independent antimicrobial activity that is based on the ability of these compounds to increase the sensitivity of bacteria to ROS or directly produce ROS. MPs mimic haem in their molecular structure and are actively accumulated by bacteria via high affinity haem-uptake systems. The same uptake systems can be used to deliver antibiotic-porphyrin and antibacterial peptide-porphyrin conjugates. Haemin, the most well known natural porphyrin, possesses a significant antibacterial activity that is augmented by the presence of physiological concentrations of hydrogen peroxide or a reducing agent. Natural and synthetic porphyrins have relatively low toxicity in vitro and in vivo. The ability for numerous chemical modifications and the large number of different mechanisms by which porphyrins affect microbial and viral pathogens place porphyrins into a group of compounds with an outstanding potential for discovery of novel agents, procedures and materials active against pathogenic microorganisms.
Collapse
Affiliation(s)
- I Stojiljkovic
- Department of Microbiology and Immunology, Emory School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
40
|
Galántai R, Bárdos-Nagy I, Módos K, Kardos J, Závodszky P, Fidy J. Serum albumin-lipid membrane interaction influencing the uptake of porphyrins. Arch Biochem Biophys 2000; 373:261-70. [PMID: 10620347 DOI: 10.1006/abbi.1999.1522] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is frequently observed in pharmaceutical practice that entrapped substances are lost rapidly when liposomes are used as carriers to introduce substances into cells. The reason for the loss is the interaction of serum components with liposomes. To elucidate the mechanism of this phenomenon the partition of mesoporphyrin (MP) was systematically studied in model systems composed of various lipids and human serum albumin (HSA). As surface charge is an important factor in the interaction, neutral (1, 2-dimyristoyl-sn-glycero-3-phosphatidylcoline, DMPC) and negatively charged (1,2-dimyristoyl-sn-glycero-3-phosphatidylcoline/1, 2-dimyristoyl-sn-glycero-3-phosphatidylglycerol, DMPC/DMPG = 19/1 w/w) lipids were compared. The liposome/apomyoglobin system was the negative control. The size distribution of sonicated samples was carefully analyzed by dynamic light scattering. Constants of association of MP to the proteins and to the liposomes were determined: K(p,1) = (2.5 +/- 0.7) x 10(7) M(-1), K(p,2) = (1.0 +/- 0.7) x 10(8) M(-1), K(L,1) = (1.3 +/- 0.3) x 10(5) M(-1), and K(L,2) = (3.2 +/- 0.6) x 10(4) M(-1) for HSA, apomyoglobin, DMPC, and DMPC/DMPG liposomes, respectively. These data were used to evaluate the partition experiments. The transfer of MP from the liposomes to the proteins was followed by fluorescence spectroscopy. In the case of apomyoglobin, the experimental points could be interpreted by ruling out the protein-liposome interaction. In the case of HSA, the efflux of MP from the liposomes was strongly inhibited above a critical HSA concentration range for negatively charged vesicles. This effect was interpreted as the result of HSA coat formation on the liposome surface. This direct interaction is significant for small liposomes. The interpretation is fully supported by differential scanning calorimetry experiments.
Collapse
Affiliation(s)
- R Galántai
- Institute of Biophysics and Radiation Biology, Semmelweis University of Medicine, Budapest, H-1444, Hungary
| | | | | | | | | | | |
Collapse
|