Ghannam MM, El Gebaly R, Fadel M. Targeting doxorubicin encapsulated in stealth liposomes to solid tumors by non thermal diode laser.
Lipids Health Dis 2016;
15:68. [PMID:
27044538 PMCID:
PMC4820905 DOI:
10.1186/s12944-016-0235-2]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
The use of liposomes as drug delivery systems is the most promising technique for targeting drug especially for anticancer therapy.
METHODS
In this study sterically stabilized liposomes was prepared from DPPC/Cholesterol/PEG-PE encapsulated doxorubicin. The effect of lyophilization on liposomal stability and hence expiration date were studied. Moreover, the effect of diode laser on the drug released from liposomesin vitro and in vivo in mice carrying implanted solid tumor were also studied.
RESULTS
The results indicated that lyophilization of the prepared liposomes encapsulating doxorubicin led to marked stability when stored at 5 °C and it is possible to use the re-hydrated lyophilized liposomes within 12 days post reconstitution. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells is a promising method in cancer therapy.
CONCLUSION
We can conclude that lyophilization of the liposomes encapsulating doxorubicin lead to marked stability for the liposomes when stored at 5 °C. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells through the use of photosensitive sterically stabilized liposomes loaded with doxorubicin is a promising method. It proved to be applicable and successful for treatment of Ehrlich solid tumors implanted in mice and eliminated toxic side effects of doxorubicin.
Collapse