1
|
Derbali I, Thissen R, Alcaraz C, Romanzin C, Zins EL. Study of the Reactivity of CH 3COOH +• and COOH + Ions with CH 3NH 2: Evidence of the Formation of New Peptide-like C(O)-N Bonds. J Phys Chem A 2021; 125:10006-10020. [PMID: 34761946 DOI: 10.1021/acs.jpca.1c06630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetamide, a small organic compound containing a peptide bond, was observed in the interstellar medium, but reaction pathways leading to the formation of this prebiotic molecule remain uncertain. We investigated the possible formation of a peptide-like bond from the reaction between acetic acid (CH3-COOH) and methylamine (CH3-NH2) that were identified in the interstellar medium. From an experimental point of view, a quadrupole/octopole/quadrupole mass spectrometer was used in combination with synchrotron radiation as a tunable source of VUV photons for monitoring the reactivity of selected ions. Acetic acid was photoionized, and the reactivity of CH3COOH+• as well as COOH+ (produced from either acetic acid or formic acid) ions with neutral CH3NH2 was further studied. With no surprise, charge transfer, proton transfer, and concomitant dissociation processes were found to largely dominate the reactivity. However, a C(O)-N bond formation process between the two reactants was also evidenced, with a weak cross section reaction. From a theoretical point of view, results concerning reactivity and barrier heights were obtained using density functional theory, with the LC-ωPBE range-separated functional in combination with the 6-311++G(d,p) Pople basis set and are in perfect agreement with the experimental data.
Collapse
Affiliation(s)
- Imene Derbali
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Roland Thissen
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Christian Alcaraz
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Claire Romanzin
- Institut de Chimie Physique, UMR 8000, Université Paris-Saclay, CNRS, Bât. 350, 91405 Orsay, France.,SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Emilie-Laure Zins
- De la Molécule aux Nano-Objets: Réactivité, Interactions Spectroscopies, MONARIS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Iwamoto K, Fujimoto Y, Nakanishi T. Development of an ion mobility spectrometer using radio-frequency electric field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:115101. [PMID: 30501352 DOI: 10.1063/1.5050440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
This paper describes the development of a new ion mobility spectrometer (IMS) using the radio-frequency (RF) electric field. The proposed IMS has high ion transmission efficiency. Seven connected IMS devices, in which the RF and DC electric fields are created by separate electrodes, are constructed. The ions are confined by the RF electric field and drifted by the DC electric field. The electrodes in each IMS device include short quadrupole electrodes and segmented vane electrodes. The uniform electric field in the IMS is verified by simulated results obtained using SIMION. To measure the exact value of reduced mobility K 0 at low Td (1 Td = 10-17 V cm2), two ion gates are installed in the IMS. By installing the ion gates at suitable positions for eliminating the effect of gas flow, the exact ion velocity through the IMS can be measured. The K 0 values of O2 + and C6H6 + ions are measured as a function of Td. In addition, the K 0 of CH3OCH2 + fragment ions is measured. These K 0 measurement results are consistent with previous results obtained using electrostatic drift tube apparatus. In summary, as our IMS can measure K 0 under low Td conditions, it can be used to better understand the structure of small molecular or fragment ions.
Collapse
Affiliation(s)
- Kenichi Iwamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yusuke Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| | - Toshiki Nakanishi
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Fileti EE, Moraes PRP, Domingues L, Riveros JM. Gas-phase electrophilic addition promoted by CH(3)S(+)=CH(2) ions on aromatic systems. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1310-8. [PMID: 17902105 DOI: 10.1002/jms.1202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The gas-phase methylenation reaction between CH(3)S(+)=CH(2) and alkylbenzenes, aniline, phenol and alkyl phenyl ethers, which yields [M + CH](+) and CH(3)SH, has been studied by Fourier transform ion cyclotron resonance (FT-ICR) techniques and computational chemistry at the DFT level. The methylthiomethyl cation is less reactive than methoxymethyl and, unlike the latter, is unreactive toward benzene. The calculations suggest that reaction with toluene should proceed primarily by addition at the para and ortho positions resulting in a benzyl-type ion. Reaction with aniline-2,3,4,5,6-d(5) reveals that elimination of CH(3)SD is kinetically favored by a factor of 5 over elimination of CH(3)SH. Experiments with C(6)H(6)ND(2) and theoretical calculations suggest that methylenation at the nitrogen atom is energetically favorable and likely, but the observed results may reflect some H/D scrambling, which occurs after attack at a ring position. By comparison, reaction with phenol-2,3,4,5,6-d(5) reveals that methylenation followed by elimination of CH(3)SD is kinetically favored by a factor of 3.8 over elimination of CH(3)SH. For phenol, the theoretical calculations suggest that attack by CH(3)S(+)=CH(2) at the para or ortho position is the only low-energy pathway for methylenation. However, a low-energy pathway for hydrogen scrambling is predicted by the calculations originating from the exit complex, [CH(3)SH(...) CH(2)=C(6)H(4)=OH](+), of reaction at a ring position.
Collapse
Affiliation(s)
- Eudes E Fileti
- Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, Cidade Universitária, São Paulo, Brazil, CEP 05508-900, Brazil
| | | | | | | |
Collapse
|