1
|
Chillón I, Marcia M, Legiewicz M, Liu F, Somarowthu S, Pyle AM. Native Purification and Analysis of Long RNAs. Methods Enzymol 2015; 558:3-37. [PMID: 26068736 PMCID: PMC4477701 DOI: 10.1016/bs.mie.2015.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purification and analysis of long noncoding RNAs (lncRNAs) in vitro is a challenge, particularly if one wants to preserve elements of functional structure. Here, we describe a method for purifying lncRNAs that preserves the cotranscriptionally derived structure. The protocol avoids the misfolding that can occur during denaturation-renaturation protocols, thus facilitating the folding of long RNAs to a native-like state. This method is simple and does not require addition of tags to the RNA or the use of affinity columns. LncRNAs purified using this type of native purification protocol are amenable to biochemical and biophysical analysis. Here, we describe how to study lncRNA global compaction in the presence of divalent ions at equilibrium using sedimentation velocity analytical ultracentrifugation and analytical size-exclusion chromatography as well as how to use these uniform RNA species to determine robust lncRNA secondary structure maps by chemical probing techniques like selective 2'-hydroxyl acylation analyzed by primer extension and dimethyl sulfate probing.
Collapse
Affiliation(s)
- Isabel Chillón
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Michal Legiewicz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Fei Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Lai D, Proctor JR, Meyer IM. On the importance of cotranscriptional RNA structure formation. RNA (NEW YORK, N.Y.) 2013; 19:1461-1473. [PMID: 24131802 PMCID: PMC3851714 DOI: 10.1261/rna.037390.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation.
Collapse
|
3
|
Fedorova O, Pyle AM. The brace for a growing scaffold: Mss116 protein promotes RNA folding by stabilizing an early assembly intermediate. J Mol Biol 2012; 422:347-65. [PMID: 22705286 DOI: 10.1016/j.jmb.2012.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/21/2023]
Abstract
The ai5γ group II intron requires a protein cofactor to facilitate native folding in the cell. Yeast protein Mss116 greatly accelerates intron folding under near-physiological conditions both in vivo and in vitro. Although the effect of Mss116 on the kinetics of ai5γ ribozyme folding and catalysis has been extensively studied, the precise structural role and interaction sites of Mss116 have been elusive. Using Nucleotide Analog Interference Mapping to study the folding of splicing precursor constructs, we have identified specific intron functional groups that participate in Mss116-facilitated folding and we have determined their role in the folding mechanism. The data indicate that Mss116 stabilizes an early, obligate folding intermediate within intron domain 1, thereby laying the foundation for productive folding to the native state. In addition, the data reveal an important role for the IBS2 exon sequence and for the terminus of domain 6, during the folding of self-splicing group IIB intron constructs.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
4
|
Abstract
Group II introns are large self-splicing ribozymes found in bacterial genomes, in organelles of plants and fungi, and even in some animal organisms. Many organellar group II introns interrupt important housekeeping genes; therefore, their splicing is critical for the survival of the host organism. Group II introns are versatile catalytic RNAs: they facilitate their own excision from a pre-mRNA, they promote ligation of exons to form a translation-competent mature mRNA; they can act like mobile genomic elements and insert themselves into RNA and DNA targets with remarkable precision, which makes them attractive tools for genetic engineering. The first step in characterization of any group II intron is the evaluation of its catalytic activity and its ability to properly fold into the native functionally active structure. This chapter describes kinetic assays used to characterize folding and catalytic properties of group II intron-derived ribozymes.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Abstract
RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells.
Collapse
Affiliation(s)
- Georgeta Zemora
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
6
|
Chen Y, Eldho NV, Dayie TK, Carey PR. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V. Biochemistry 2010; 49:3427-35. [PMID: 20225830 DOI: 10.1021/bi902117w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
7
|
Fedorova O, Solem A, Pyle AM. Protein-facilitated folding of group II intron ribozymes. J Mol Biol 2010; 397:799-813. [PMID: 20138894 PMCID: PMC2912160 DOI: 10.1016/j.jmb.2010.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 01/29/2023]
Abstract
Multiple studies hypothesize that DEAD-box proteins facilitate folding of the ai5gamma group II intron. However, these conclusions are generally inferred from splicing kinetics, and not from direct monitoring of DEAD-box protein-facilitated folding of the intron. Using native gel electrophoresis and dimethyl sulfate structural probing, we monitored Mss-116-facilitated folding of ai5gamma intron ribozymes and a catalytically active self-splicing RNA containing full-length intron and short exons. We found that the protein directly stimulates folding of these RNAs by accelerating formation of the compact near-native state. This process occurs in an ATP-independent manner, although ATP is required for the protein turnover. As Mss 116 binds RNA nonspecifically, most binding events do not result in the formation of the compact state, and ATP is required for the protein to dissociate from such nonproductive complexes and rebind the unfolded RNA. Results obtained from experiments at different concentrations of magnesium ions suggest that Mss 116 stimulates folding of ai5gamma ribozymes by promoting the formation of unstable folding intermediates, which is then followed by a cascade of folding events resulting in the formation of the compact near-native state. Dimethyl sulfate probing results suggest that the compact state formed in the presence of the protein is identical to the near-native state formed more slowly in its absence. Our results also indicate that Mss 116 does not stabilize the native state of the ribozyme, but that such stabilization results from binding of attached exons.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | - Anna Marie Pyle
- Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
8
|
The 2'-OH group at the group II intron terminus acts as a proton shuttle. Nat Chem Biol 2010; 6:218-224. [PMID: 20118939 PMCID: PMC2825881 DOI: 10.1038/nchembio.312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/17/2009] [Indexed: 11/16/2022]
Abstract
Group II introns are self-splicing ribozymes that excise themselves from precursor RNAs and catalyze the joining of flanking exons. Excised introns can behave as parasitic RNA molecules, catalyzing their own insertion into DNA and RNA via a reverse-splicing reaction. Previous studies have identified mechanistic roles for various functional groups located in the catalytic core of the intron and within target molecules. Here we introduce a new method for synthesizing long RNA molecules with a modified nucleotide at the 3′-terminus. This modification allows us to examine the mechanistic role of functional groups adjacent to the reaction nucleophile. During reverse-splicing, the 3′-OH group of the intron terminus attacks the phosphodiester linkage of spliced exon sequences. Here we show that the adjacent 2′-OH group on the intron terminus plays an essential role in activating the nucleophile by stripping away a proton from the 3′-OH and then shuttling it from the active-site.
Collapse
|
9
|
Elina H, Brown GG. Extensive mis-splicing of a bi-partite plant mitochondrial group II intron. Nucleic Acids Res 2009; 38:996-1008. [PMID: 19920126 PMCID: PMC2817487 DOI: 10.1093/nar/gkp994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Expression of the seed plant mitochondrial nad5 gene involves two trans-splicing events that remove fragmented group II introns and join the small, central exon c to exons b and d. We show that in both monocot and eudicot plants, extensive mis-splicing of the bi-partite intron 2 takes place, resulting in the formation of aberrantly spliced products in which exon c is joined to various sites within exon b. These mis-spliced products accumulate to levels comparable to or greater than that of the correctly spliced mRNA. We suggest that mis-splicing may result from folding constraints imposed on intron 2 by base-pairing between exon a and a portion of the bi-partite intron 3 downstream of exon c. Consistent with this hypothesis, we find that mis-splicing does not occur in Oenothera mitochondria, where intron 3 is further fragmented such that the predicted base-pairing region is not covalently linked to exon c. Our findings suggest that intron fragmentation may lead to mis-splicing, which may be corrected by further intron fragmentation.
Collapse
Affiliation(s)
- Helen Elina
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
10
|
Scott WG, Martick M, Chi YI. Structure and function of regulatory RNA elements: ribozymes that regulate gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:634-41. [PMID: 19781673 DOI: 10.1016/j.bbagrm.2009.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/01/2009] [Accepted: 09/13/2009] [Indexed: 01/14/2023]
Abstract
Since their discovery in the 1980s, it has gradually become apparent that there are several functional classes of naturally occurring ribozymes. These include ribozymes that mediate RNA splicing (the Group I and Group II introns, and possibly the RNA components of the spliceosome), RNA processing ribozymes (RNase P, which cleaves precursor tRNAs and other structural RNA precursors), the peptidyl transferase center of the ribosome, and small, self-cleaving genomic ribozymes (including the hammerhead, hairpin, HDV and VS ribozymes). The most recently discovered functional class of ribozymes include those that are embedded in the untranslated regions of mature mRNAs that regulate the gene's translational expression. These include the prokaryotic glmS ribozyme, a bacterial riboswitch, and a variant of the hammerhead ribozyme, which has been found embedded in mammalian mRNAs. With the discovery of a mammalian riboswitch ribozyme, the question of how an embedded hammerhead ribozyme's switching mechanism works becomes a compelling question. Recent structural results suggest several possibilities.
Collapse
Affiliation(s)
- William G Scott
- Center for the Molecular Biology of RNA, Sinsheimer Laboratory, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | | | | |
Collapse
|
11
|
Roitzsch M, Pyle AM. The linear form of a group II intron catalyzes efficient autocatalytic reverse splicing, establishing a potential for mobility. RNA (NEW YORK, N.Y.) 2009; 15:473-482. [PMID: 19168748 PMCID: PMC2657011 DOI: 10.1261/rna.1392009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/17/2008] [Indexed: 05/27/2023]
Abstract
Self-splicing group II introns catalyze their own excision from pre-RNAs, thereby joining the flanking exons. The introns can be released in a lariat or linear form. Lariat introns have been shown to reverse the splicing reaction; in contrast, linear introns are generally believed to perform no or only poor reverse splicing. Here, we show that a linear group II intron derived from ai5gamma can reverse the second step of splicing with unexpectedly high efficiency and precision. Moreover, the linear intron generates dramatically more reverse-splicing product than its lariat equivalent. The finding that linear group II introns can readily undergo the critical first step of mobility by catalyzing efficient reverse splicing into complementary target molecules demonstrates their innate potential for mobility and transposition and raises the possibility that reverse splicing by linear group II introns may have played a significant role in certain forms of intron mobility and lateral gene transfer during evolution.
Collapse
Affiliation(s)
- Michael Roitzsch
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
12
|
Mastroianni M, Watanabe K, White TB, Zhuang F, Vernon J, Matsuura M, Wallingford J, Lambowitz AM. Group II intron-based gene targeting reactions in eukaryotes. PLoS One 2008; 3:e3121. [PMID: 18769669 PMCID: PMC2518211 DOI: 10.1371/journal.pone.0003121] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 08/11/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mobile group II introns insert site-specifically into DNA target sites by a mechanism termed retrohoming in which the excised intron RNA reverse splices into a DNA strand and is reverse transcribed by the intron-encoded protein. Retrohoming is mediated by a ribonucleoprotein particle that contains the intron-encoded protein and excised intron RNA, with target specificity determined largely by base pairing of the intron RNA to the DNA target sequence. This feature enabled the development of mobile group II introns into bacterial gene targeting vectors ("targetrons") with programmable target specificity. Thus far, however, efficient group II intron-based gene targeting reactions have not been demonstrated in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS By using a plasmid-based Xenopus laevis oocyte microinjection assay, we show that group II intron RNPs can integrate efficiently into target DNAs in a eukaryotic nucleus, but the reaction is limited by low Mg(2+) concentrations. By supplying additional Mg(2+), site-specific integration occurs in up to 38% of plasmid target sites. The integration products isolated from X. laevis nuclei are sensitive to restriction enzymes specific for double-stranded DNA, indicating second-strand synthesis via host enzymes. We also show that group II intron RNPs containing either lariat or linear intron RNA can introduce a double-strand break into a plasmid target site, thereby stimulating homologous recombination with a co-transformed DNA fragment at frequencies up to 4.8% of target sites. Chromatinization of the target DNA inhibits both types of targeting reactions, presumably by impeding RNP access. However, by using similar RNP microinjection methods, we show efficient Mg(2+)-dependent group II intron integration into plasmid target sites in zebrafish (Danio rerio) embryos and into plasmid and chromosomal target sites in Drosophila melanogster embryos, indicating that DNA replication can mitigate effects of chromatinization. CONCLUSIONS/SIGNIFICANCE Our results provide an experimental foundation for the development of group II intron-based gene targeting methods for higher organisms.
Collapse
Affiliation(s)
- Marta Mastroianni
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Kazuo Watanabe
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Travis B. White
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Fanglei Zhuang
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jamie Vernon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Manabu Matsuura
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - John Wallingford
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
13
|
Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 2008; 13:1025-36. [DOI: 10.1007/s00775-008-0390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022]
|
14
|
Erat MC, Zerbe O, Fox T, Sigel RKO. Solution structure of domain 6 from a self-splicing group II intron ribozyme: a Mg(2+) binding site is located close to the stacked branch adenosine. Chembiochem 2008; 8:306-14. [PMID: 17200997 DOI: 10.1002/cbic.200600459] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Group II intron self-splicing is essential for the correct expression of organellar genes in plants, fungi, and yeast, as well as of bacterial genes. Self-excision of these autocatalytic introns from the primary RNA transcript is achieved in a two-step mechanism that is apparently analogous to that of the eukaryotic spliceosome. The 2'-OH of a conserved adenosine (the branch point) located within domain 6 (D6) acts as the nucleophile in the first step of splicing. Despite the biological importance of group II introns, little is known about their structural organization and usage of metal ions in catalysis. Here we report the first solution structure of a catalytically active D6 construct encompassing the branch point and the neighboring helical regions from the mitochondrial yeast intron ai5gamma. The branch adenosine is the single unpaired nucleotide, and, in contrast to the spliceosomal branch site, resides within the helix, being partially stacked between two flanking GU wobble pairs. We identified a novel prominent Mg(2+) binding site in the major groove of the branch site. Importantly, Mg(2+) addition does not impair the stacking of the branch adenosine, rather it strengthens the interaction with the flanking uridines, as shown by NMR and fluorescence studies. This means that domain 6 presents the branch adenosine in a stacked fashion to the core of group II introns upon folding to the active conformation.
Collapse
Affiliation(s)
- Michèle C Erat
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
15
|
Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J Mol Biol 2006; 365:835-55. [PMID: 17081564 PMCID: PMC1832103 DOI: 10.1016/j.jmb.2006.09.083] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 12/14/2022]
Abstract
The RNA-catalyzed splicing of group I and group II introns is facilitated by proteins that stabilize the active RNA structure or act as RNA chaperones to disrupt stable inactive structures that are kinetic traps in RNA folding. In Neurospora crassa and Saccharomyces cerevisiae, the latter function is fulfilled by specific DEAD-box proteins, denoted CYT-19 and Mss116p, respectively. Previous studies showed that purified CYT-19 stimulates the in vitro splicing of structurally diverse group I and group II introns, and uses the energy of ATP binding or hydrolysis to resolve kinetic traps. Here, we purified Mss116p and show that it has RNA-dependent ATPase activity, unwinds RNA duplexes in a non-polar fashion, and promotes ATP-independent strand-annealing. Further, we show that Mss116p binds RNA non-specifically and promotes in vitro splicing of both group I and group II intron RNAs, as well as RNA cleavage by the aI5gamma-derived D135 ribozyme. However, Mss116p also has ATP hydrolysis-independent effects on some of these reactions, which are not shared by CYT-19 and may reflect differences in its RNA-binding properties. We also show that a non-mitochondrial DEAD-box protein, yeast Ded1p, can function almost as efficiently as CYT-19 and Mss116p in splicing the yeast aI5gamma group II intron and less efficiently in splicing the bI1 group II intron. Together, our results show that Mss116p, like CYT-19, can act broadly as an RNA chaperone to stimulate the splicing of diverse group I and group II introns, and that Ded1p also has an RNA chaperone activity that can be assayed by its effect on splicing mitochondrial introns. Nevertheless, these DEAD-box protein RNA chaperones are not completely interchangeable and appear to function in somewhat different ways, using biochemical activities that have likely been tuned by coevolution to function optimally on specific RNA substrates.
Collapse
Affiliation(s)
- Coralie Halls
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Sabine Mohr
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Mark Del Campo
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Quansheng Yang
- Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Eckhard Jankowsky
- Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712
- *Corresponding author: Phone: 512-232-3418, Fax: 512-232-3420, e-mail:
| |
Collapse
|
16
|
Wang Y, Silverman SK. Experimental tests of two proofreading mechanisms for 5'-splice site selection. ACS Chem Biol 2006; 1:316-24. [PMID: 17163761 DOI: 10.1021/cb6001569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-splicing group II intron RNAs catalyze a two-step process in which the intron is excised as a lariat by two successive phosphodiester exchange reactions. The reversibility of the first step has been hypothesized to act as a proofreading mechanism for improper 5'-splice site selection. However, without synthetic access to mis-spliced RNAs, this hypothesis could not be tested. Here, we used a deoxyribozyme to synthesize several branched RNAs that are derived from the ai5gamma group II intron and mis-spliced at the 5'-splice site. Unlike the correctly spliced ai5gamma RNAs, the mis-spliced RNAs are observed not to undergo the reverse of the first step. This is well-controlled negative evidence against the hypothesis that first-step reversibility is a proofreading mechanism for 5'-splice site selection. In a reaction equivalent either to the hydrolytic first step of splicing or to the hydrolytic reverse of the second step of splicing, a mis-spliced 5'-exon can be "trimmed" to its proper length by the corresponding mis-spliced intron, and in one case, the trimmed 5'-exon was observed to proceed correctly through the second step of splicing. These findings are the first direct evidence that this second proofreading mechanism can occur with a group II intron RNA that is mis-spliced at the 5'-splice site. On the basis of the likely structural and evolutionary relationship between group II introns and the spliceosome, we suggest that this second proofreading mechanism may be operative in the spliceosome.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
17
|
Abstract
We describe a general and efficient two-step strategy for lariat RNA synthesis. In the first step, a deoxyribozyme synthesizes 2',5'-branched RNA. In the second step, T4 RNA ligase closes the loop that completes the lariat. The loop-closure reaction can form either a natural or unnatural lariat isomer, depending on which of the two 3'-termini of the branched RNA reacts with the lone 5'-end. We demonstrate two approaches to control formation of either lariat isomer. In conjunction with other routes for lariat RNA synthesis, the two-step strategy described here will facilitate biochemical studies that require lariat RNAs of varying nucleotide sequence.
Collapse
Affiliation(s)
- Yangming Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
18
|
Su LJ, Waldsich C, Pyle AM. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res 2005; 33:6674-87. [PMID: 16314300 PMCID: PMC1297705 DOI: 10.1093/nar/gki973] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Most RNA molecules collapse rapidly and reach the native state through a pathway that contains numerous traps and unproductive intermediates. The D135 group II intron ribozyme is unusual in that it can fold slowly and directly to the native state, despite its large size and structural complexity. Here we use hydroxyl radical footprinting and native gel analysis to monitor the timescale of tertiary structure collapse and to detect the presence of obligate intermediates along the folding pathway of D135. We find that structural collapse and native folding of Domain 1 precede assembly of the entire ribozyme, indicating that D1 contains an on-pathway intermediate to folding of the D135 ribozyme. Subsequent docking of Domains 3 and 5, for which D1 provides a preorganized scaffold, appears to be very fast and independent of one another. In contrast to other RNAs, the D135 ribozyme undergoes slow tertiary collapse to a compacted state, with a rate constant that is also limited by the formation D1. These findings provide a new paradigm for RNA folding and they underscore the diversity of RNA biophysical behaviors.
Collapse
Affiliation(s)
- Linhui Julie Su
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
| | - Christina Waldsich
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT 06520, USA
- Howard Hughes Medical Institute266 Whitney Avenue, Box 208114Yale UniversityNew Haven, CT 06520, USA
- To whom correspondence should be addressed. Tel: +1 203 432 5733; Fax: +1 203 432 5316;
| |
Collapse
|
19
|
Fedorova O, Pyle AM. Linking the group II intron catalytic domains: tertiary contacts and structural features of domain 3. EMBO J 2005; 24:3906-16. [PMID: 16252007 PMCID: PMC1283951 DOI: 10.1038/sj.emboj.7600852] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/06/2005] [Indexed: 11/09/2022] Open
Abstract
Despite its importance for group II intron catalytic activity, structural information on conserved domain 3 (D3) is extremely limited. This domain is known to specifically stimulate the chemical rate of catalysis and to function as a 'catalytic effector'. Of all the long-range tertiary contacts that have been identified within group II introns, none has included D3 residues. Furthermore, little is known about the atoms and functional groups in D3 that contribute to catalysis. Using a nucleotide analog interference mapping assay with an extended repertoire of nucleotide analogs, we have identified functional groups in D3 that are critical for ribozyme activity. These data, together with mutational analysis, suggest the formation of noncanonical base pairs within the phylogenetically conserved internal loop at the base of D3. Finally, a related nucleotide analog interference suppression study resulted in the identification of a direct tertiary interaction between D3 and catalytic domain 5, which sheds new light on D3 function in the group II intron structure and mechanism.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Box 208114, New Haven, CT 06520, USA. Tel.: +1 203 432 5733; Fax: +1 203 432 5316; E-mail:
| |
Collapse
|
20
|
Vlassov AV, Kazakov SA, Johnston BH, Landweber LF. The RNA World on Ice: A New Scenario for the Emergence of RNA Information. J Mol Evol 2005; 61:264-73. [PMID: 16044244 DOI: 10.1007/s00239-004-0362-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
The RNA world hypothesis refers to a hypothetical era prior to coded peptide synthesis, where RNA was the major structural, genetic, and catalytic agent. Though it is a widely accepted scenario, a number of vexing difficulties remain. In this review we focus on a missing link of the RNA world hypothesis-primitive miniribozymes, in particular ligases, and discuss the role of these molecules in the evolution of RNA size and complexity. We argue that prebiotic conditions associated with freezing, rather than "warm and wet" conditions, could have been of key importance in the early RNA world.
Collapse
|
21
|
Su LJ, Brenowitz M, Pyle AM. An Alternative Route for the Folding of Large RNAs: Apparent Two-state Folding by a Group II Intron Ribozyme. J Mol Biol 2003; 334:639-52. [PMID: 14636593 DOI: 10.1016/j.jmb.2003.09.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite a growing literature on the folding of RNA, our understanding of tertiary folding in large RNAs derives from studies on a small set of molecular examples, with primary focus on group I introns and RNase P RNA. To broaden the scope of RNA folding models and to better understand group II intron function, we have examined the tertiary folding of a ribozyme (D135) that is derived from the self-splicing ai5gamma intron from yeast mitochondria. The D135 ribozyme folds homogeneously and cooperatively into a compact, well-defined tertiary structure that includes all regions critical for active-site organization and substrate recognition. When D135 was treated with increasing concentrations of Mg(2+) and then subjected to hydroxyl radical footprinting, similar Mg(2+) dependencies were seen for internalization of all regions of the molecule, suggesting a highly cooperative folding behavior. In this work, we show that global folding and compaction of the molecule have the same magnesium dependence as the local folding previously observed. Furthermore, urea denaturation studies indicate highly cooperative unfolding of the ribozyme that is governed by thermodynamic parameters similar to those for forward folding. In fact, D135 folds homogeneously and cooperatively from the unfolded state to its native, active structure, thereby demonstrating functional reversibility in RNA folding. Taken together, the data are consistent with two-state folding of the D135 ribozyme, which is surprising given the size and multi-domain structure of the RNA. The findings establish that the accumulation of stable intermediates prior to formation of the native state is not a universal feature of RNA folding and that there is an alternative paradigm in which the folding landscape is relatively smooth, lacking rugged features that obstruct folding to the native state.
Collapse
Affiliation(s)
- Linhui Julie Su
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
22
|
Flynn-Charlebois A, Prior TK, Hoadley KA, Silverman SK. In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'. J Am Chem Soc 2003; 125:5346-50. [PMID: 12720447 DOI: 10.1021/ja0340331] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deoxyribozymes that ligate RNA expand the scope of nucleic acid catalysis and allow preparation of site-specifically modified RNAs. Previously, deoxyribozymes that join a 5'-hydroxyl and a 2',3'-cyclic phosphate were identified by in vitro selection from random DNA pools. Here, the alternative strategy of in vitro evolution was used to transform the 8-17 deoxyribozyme that cleaves RNA into a family of DNA enzymes that ligate RNA. The parent 8-17 DNA enzyme cleaves native 3'-5' phosphodiester linkages but not 2'-5' bonds. Surprisingly, the new deoxyribozymes evolved from 8-17 create only 2'-5' linkages. Thus, reversing the direction of the DNA-mediated process from ligation to cleavage also switches the selectivity in forming the new phosphodiester bond. The same change in selectivity was observed upon evolution of the 10-23 RNA-cleaving deoxyribozyme into an RNA ligase. The DNA enzymes previously isolated from random pools also create 2'-5' linkages. Therefore, deoxyribozyme-mediated formation of a non-native 2'-5' phosphodiester linkage from a 5'-hydroxyl and a 2',3'-cyclic phosphate is strongly favored in many different contexts.
Collapse
Affiliation(s)
- Amber Flynn-Charlebois
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
23
|
Flynn-Charlebois A, Wang Y, Prior TK, Rashid I, Hoadley KA, Coppins RL, Wolf AC, Silverman SK. Deoxyribozymes with 2'-5' RNA ligase activity. J Am Chem Soc 2003; 125:2444-54. [PMID: 12603132 DOI: 10.1021/ja028774y] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro selection was used to identify deoxyribozymes that ligate two RNA substrates. In the ligation reaction, a 2'-5' RNA phosphodiester linkage is created from a 2',3'-cyclic phosphate and a 5'-hydroxyl group. The new Mg(2+)-dependent deoxyribozymes provide 50-60% yield of ligated RNA in overnight incubations at pH 7.5 and 37 degrees C, and they afford 40-50% yield in 1 h at pH 9.0 and 37 degrees C. Various RNA substrate sequences may be joined by simple Watson-Crick covaration of the DNA binding arms that interact with the two RNA substrates. The current deoxyribozymes have some RNA substrate sequence requirements at the nucleotides immediately surrounding the ligation junction (either UAUA GGAA or UAUN GGAA, where the arrow denotes the ligation site and N equals any nucleotide). One of the new deoxyribozymes was used to prepare by ligation the Tetrahymena group I intron RNA P4-P6 domain, a representative structured RNA. Nondenaturing gel electrophoresis revealed that a 2'-5' linkage between nucleotides A233 and G234 of P4-P6 does not disrupt its Mg(2+)-dependent folding (DeltaDeltaG degrees ' < 0.2 kcal/mol). This demonstrates that a 2'-5' linkage does not necessarily interfere with structure in a folded RNA. Therefore, these non-native linkages may be acceptable in modified RNAs when structure/function relationships are investigated. Deoxyribozymes that ligate RNA should be particularly useful for preparing site-specifically modified RNAs for studies of RNA structure, folding, and catalysis.
Collapse
Affiliation(s)
- Amber Flynn-Charlebois
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
At its most basic level, pre-mRNA splicing can be described as two coordinated nuclease reactions that cleave an intron at either end and result in ligation of the flanking exons. The fact that these reactions are catalyzed by a approximately 3-MDa behemoth of protein and RNA (the spliceosome) challenges most biochemical and structural approaches currently used to characterize lesser-sized enzymes. In addition to this molecular complexity, the highly dynamic nature of splicing complexes provides additional hurdles for mechanistic studies or three-dimensional structure determination. Thus, the methods used to study the spliceosome often probe individual properties of the machine, but no complete, high-resolution picture of splicing catalysis has yet emerged. To facilitate biochemical and structural studies of native splicing complexes, we recently described purification of the catalytic form of the spliceosome (known as C complex). This native complex is suitable for electron microscopic structure determination by single-particle methods. In this paper, we describe the purification in detail and discuss additional methods for trapping and analyzing other splicing complexes.
Collapse
Affiliation(s)
- Melissa S Jurica
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | |
Collapse
|